Speaker: Dr. Roy (Troy) Olsson PM, DARPA, Arlington, VA
Abstract:
Wireless communications and miniature sensing technologies have developed significantly over the past decade with the advent of the smart phone. However, the communications and sensing technologies developed around the cellular handset market are largely incompatible in energy consumption, frequency band, and data rate with agricultural, environmental, infrastructure, and industrial sensing, referred to here as the edge of the internet-of-things (IoT). While communications for consumer wireless sensors have primarily developed in the 2.4 GHz ISM band, the radio frequency (RF) propagation losses at this frequency are extremely high both on the ground and through structural materials and foliage. In contrast to cellular phones that can recharge relatively large batteries daily, edge IoT sensors must operate for many years without plugging in to recharge the battery or, in some cases, without a battery at all. The low carrier frequencies and energy expense of RF transmissions necessitates sensing and processing technologies for detecting, classifying and compressing the large amount of sensor data into useful information, while the amount of energy available is orders of magnitude lower than a smart phone.
This seminar will present microtechnologies for communications and sensing that are compatible with the stringent energy consumption, data rates and operating frequencies needed at the edge of the IoT. Microelectromechanical resonators for providing high performance, miniature, and low cost RF components in the 150 MHz to 400 MHz bands needed for ground emplaced and structural sensors will be discussed. A new class of intelligent nanowatt wakeup sensors and radio receivers will also be presented. These wakeup components can detect and classify sensor and RF signatures while consuming lower power than the leakage rate of a small battery, greatly extending the lifetime of energy constrained wireless sensor nodes. Finally, technology gaps and new research areas needed to fully deploy long-life sensors at the edge of the IoT will be identified.