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Abstract— A major challenge in the design and operation
of wireless networks is to jointly route packets and scheda
transmissions to efficiently share the common spectrum aman
links in the same area. Due to the lack of central control in
wireless networks, these algorithms have to be decentraéd.
It was recently shown that distributed (greedy) algorithms
can usually guarantee only fractional throughput. It was ako
recently shown that if a set of conditions regarding the netwrk
topology (known as Local Pooling) is satisfied, simple disifouted
maximal weight (greedy) scheduling algorithms achieve 100
throughput. In this paper, we focus on networks in which paclets
have to undergo multihop routing and derive multihop Local
Pooling conditions for that setting. In networks satisfyirg these
conditions, a backpressure-based joint routing and scheding
algorithm employing maximal weight scheduling achieves 100%
throughput.

I. INTRODUCTION

Efficient operation of wireless networks requidistributed
joint routing and scheduling algorithms that take into agto
the interference between simultaneous transmissionseri

tralized joint routing and scheduling framework that achiev:
the maximum attainable throughput region was presented

Tassiulas and Ephremides [18]. Recently, sevdistributed

algorithms that can achieve only a fraction of the maximu

throughput have been presented. Dimakis and Walrand

presented a set of conditions (termed as Local Pooling)lwhic
are related to the topology of the network. They showed th

if these conditions hold, greedschedulingalgorithms, which
can be implemented in a distributed manrechieve100%

throughput In this paper, we generalize the Local Poolin

conditions and derive conditions under whiclgeeedy joint
routing and schedulinglgorithm achieved00% throughput.

The algorithm is directly based on the on the centraliz
framework of [18] but can be implemented in a distribut

manner.

Joint routing and scheduling in a slotted multihop wirelesd
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settings of wireless networks and input-queued switchgs (e
[1], [14], [17], and references therein). However, optimal
algorithms based on [18] require repeatedly solvingl@bal
optimization problemtaking into account the queue backlog
information for every link in the network. For example, even
for the simple primary interference constrafngs maximum
weight matching problem has to be solved in every slot.
Obtaining a centralized solution to such a problem in a
wireless network does not seem to be feasible, due to the
communication overhead associated with continuouslectl|
ing the queue backlog information. Therefore, the design of
distributed algorithmshas attracted a lot of attention recently.

Assuming that the traffic is exclusively single-hop reduces
the joint problem to achedulingoroblem. Regarding primary
interference constraints, it has been shown that in this set
ting distributed maximal matchinglgorithms achieve 50%
throughput [5], [13]. It was also proved in [5], [12], [20]
that under secondary interference constrdithie throughput
gbtained by a distributed maximal scheduling algorithm may
?e significantly smaller than the throughput under a ceintdl
(}f)timal) scheduler. In particular, in [5] it was proved tlza
distributed algorithm may achieve as low1as of the possible
f foughput.

Dimakis and Walrand [8] recently showed that although
learbitrary topologiesthe worst case performance of dis-
tributed maximal scheduling algorithms can be very low,
there are some topologies in which thegn achievel 00%

roughput In particular, they consider a graph of interfering
glueueé and study the performance of greedy maximal
weight schedulingalgorithm (termed Longest Queue First -

AH.qQF) that selects the set of served queues greedily acaprdin

the queue lengths. They present sufficient conditions for
such an algorithm to provide 100% throughput (notice that
nlike amaximumweight solution anaximalweight solution

netwqu with a StOCh?‘StIC packet am,val ,proces,s was CGmSIdZPrimary interference constraints imply theich station can converse with
ered in [18]. The routing and link activation policy presat at most a single neighbor at a tine. the set of active links at any point
there guarantees to stabilize the network (i.e. provided 0(f time constitutes a matching).

; i ; . 3Secondary interference constraints imply that each pasiroiltaneously
throthPUt) whenever the arrival rates are within the Btﬁbl active links must be separated by at least two hops (links¢s& constraints

region! The results of [18] have been extended to varioyge usually used to model IEEE 802.11 networks [5], [20].
4A graph of interfering queues can be constructed from thevarét graph
1we note that the algorithm presented in [3] deals with a simsktting by according to the interference constraints and is usualfgrned to as an
using similar methodologies. interference or conflict graph [10].



can be easily obtained in a distributed manner [9]). Thesedes between which data flows can occur, with |Ey|.
conditions are referred to asocal Pooling (LoP) and are The directionality of data flows across links necessitaltes t
related to the properties of all maximal independent setken treatment of the network grapli’y as a directed graph.
conflict graph. The LoP conditions were recently generdlizé&depending on the circumstances, we denote links as either
in [11] that provided conditions under which a greedy maximé&i, j) or aseg. In Gy, if two nodesv,,ve € Vi are within
weight matching algorithm obtains some guaranteed fraatio communication range, then the directed edggs= (v1, v2)
throughput. Moreover, in [4], [21] several graph classest thand es; = (v2,v1) both belong toEy. For a directed edge
satisfy the LoP conditions have been identified and the effeg let o(e) denote the source (initial) vertex, ande) denote
of multihop interference has been studied. For example,tlite terminal (destination) vertex. Throughout this papeid
has been shown in [21] that under any interference degrsgmbols are associated with vectors and matrices.
tree network graphs yield interference graphs that satisfyThe interference between network links can be summarized
LoP (i.e. under any interference degree, distributed &lgos in an interference graph(or conflict graph G; = (V1, Er)
achieve 100% throughput in trees). Moreover, an applinatipased on the network graphiy [10]. We assignl; £ Ey.
of the LoP conditions to channel allocation in Wireless Meshhus, each edge;, in the network graph is represented by a
Networks has been demonstrated in [4]. vertexuy, of the interference graph, and an edgg v;) in the

In general, networking environments in which the traffihterference graph indicates a conflict between networglyra
is inherentlysingle-hopand where packets must depart thénks ¢; ande; (i.e. transmissions on; ande; cannot take
system upon transmission across a link are rare. This iftsesplace simultaneously).
from the fact that many connections are necessarily mytino | et11(G ) denote the set of available link activations in the
connections due to geographical and physical constraimts getwork graphG y: the vectorr = (m.,e € Ey) € II(Gn)
user connectivity. Networks witmultihop traffic where pack- s a 0-1 column vector representing a possible link activati
ets follow a fixed multihop path, have been studied by Wu anthe setlI(G/y) corresponds to all possible independent sets
Srikant [19], who proposed the use of regulators along Wit the interference grapl;; = (V;, E;). Under primary
a maximal matching scheduling algorithm. It was shown ifterference I1(Gy) corresponds to the set of matchings in

[19] that under primary interference constraints, thedlglipout . We denote byM(V;) the matrix ofmaximalindependent
may be reduced to 50%. These results have been extendegdfg in G;: that is, the set of maximal column vectors in

[12], [20] where it was also pointed out that only a fractiom(GN)_

of the throughput is attainable. _ For simplicity, we assume that time is slotted and that
Since the LoP results of [8] have been derived for networlg,cyets are of equal size, each packet requiring one tirhefslo

with single-hop traffic, it is desirable to identify topoieg in  seryice across any link. There is no self-traffic. We wilkreto

which distributed algorithms can obtain 100% throughput iﬁackets destined to nodec Vi ascommodityj packets Let

the multihop traffic setting. Therefore, in this paper wedgtu A,;(t) denote the number of exogenous commogityackets

the LoP properties of a distributed routing and schedulifgat arrived at node by the end of slot. We assume that

framework which is based on the backpressure mechani§m 5rrivals have long term ratés; = limy .o A;;(£)/, with

of [18]. In this framework the edge weights are obtained by erql system arrival rate vector = (\;;, i, 5 € V).

the backpressure mechanism but unlike in [18fistributed Every node is assumed to have a queue for each possible

maximal weight scheduling algorithm is used to determin&

X . . : .destination. Fok, j € Vy, letQ,;;(t) be the number of packets
which edges should be activated in every time slot. We deri nat S € VN @is (*) . P

new Multihop Local Pooling conditions that are sufficient fois nodej. Assume that);;(0) = 0 for all 7, j. Thedifferential

guaranteeing that this distributed framework achieled% backl back f dity i ket d
throughput. Similarly to the conditions of [8], the new cénd eac Eog aSt :t:ng;eisss;rg)(t)ciQOo I?g _pag © §(gcr2rs]3 ?hege
tions are based on the interference graph and are not “mi?ﬁgxirévum backpressfl]ie Zx(t) “_(er)]?lax y TZ(G).J(LL) '

e - J€EVN “ej .

to networks with primary interference constraints. Service is applied to the system at each time slot by activat-
This paper is organized as follows. In Section Il we pp Y y

present the network model, stability definitions, and ting/e- Ing a set of edge_s, and routing a packet of a single co_mmodlty
L . o cross each active edge. We denote the correspomdirg:
hop LoP conditions. In Section Ill we present a distribute ; S : .
ervice activation matrbby S = (S.j,e € En,j € V).

adaptation of the backpressure-based framework of [183. Tﬁlere for edge: € Ey and commodity; € Vi, S.; can have
) N N> ej

new LoP conditions for networks with multihop traffic are X . . .

. . . .__value0 or 1, depending on whetheris inactive or active for
presented in Section IV. We summarize the results and discus == . o . o
future research directions in Section V servicing commodityj, respectively. Note that an admissible

service activation matrix must have a valid underlying link

g?lqueued at nodeat timet, whose destination in the network

[I. MODEL AND PRELIMINARIES activation belonging tdI(Gy). This property characterizes
A. Network Model
Consider a wireless networley = (VN EN) where 5Although it has been recently shown that in some cases thiictaraph
B is th f d ﬂ?’ C PO _ does not fully capture the wireless interference charisties [16], it still
Vn = {1,...,n} is the set of nodes, anfiy C {(i,]) : provides a reasonable abstraction. Extending the resuligeneral SINR-

1,7 € Vn,i # j} is a set of directed links indicating pairs ofbased constraints (e.g. [17]) is a subject for further metea



the set of admissible service activation matricgs, (for more details regarding the algorithm of [18], see Setcti
).
_ mxXn . — .

S = {S €{0,1} tTe =D jevy Seiy T € H(GN)} ' For general interference graph;, the algorithm of [18]
The matrixS € S leads to packet transitions through thénust find themaximum weight independent set G, at
network. To model the queue evolution implied by invokilig €ach time sidtto obtain an optimal solution to (1). Namely,
we introduce for each commoditye Vi then x m routing it must solve an NP-hard problem in every time slot or

matrix R/ = (Rfe,i € Vn,e € Ey), where: time frame. Under primary interference, the optimizatisn i
) simpler and the algorithm has to schedule the edges of a
_ 1, if o(e) =1 maximum weight matchinig the network graph at each slot.
Rl, =< -1, if 7(e) =i andi#j This requiresO(n3) computation time, using a centralized
0, else algorithm. In wireless networks, implementing a centediz

algorithm is often not feasible and simple distributed algo

Denote byd;;(S) the net amount of servicein number of i usually obtain an approximate solution, resultingai
packets per time slot, to queu@;; under activation matrix ¢.o-tional throughput.

S. Using the above routing matrix we can exprésgS) =
> RS C. Local Pooling for Single Hop Traffic

Denote byD;;(t) the total service applied to commodify e briefly reproduce important definitions and implications
packets at nodeup to the end of time-slat Finally, for each of Local Pooling (LoP) in networks with single-hop traffic,
S € S, denote byFs(t) the number of time slots up to thepresented in [4], [8]. In Section IV we will introduce the LoP
end of time-slot in which service activation matri§ € S conditions for themultihop traffic case. Recall thaM(V;)
was active. The following are the system dynamicstfer 0. s the collection of maximal independent vertex sets(én

Qi;(t) = Ay(t) — Dy (t) (i, 5) organized as a matrix. We designate déyhe vector having
' each entry equal to unity. We deliberately avoid specifyitag
Di;(t) = Z dij(S)Fs(t) V(i,J) size, because it will be obvious by the context of its use.
Ses Definition 3 (Subgraph Local Pooling - SLoP): An inter-
Z Fg(t) = t, and Fg is non-decreasing ference graphG; satisfies SLoP, if there exists nonzeroc
ses R'XI' and ¢ > 0 such thata"M(V;) = ce™.
B. Stability Considerations Definition 4 (Overall Local Pooling - OLoP): An interfer-

We can now define the stability region of the network. ence graphG; satisfies OLOP, if each induced subgrapler

Definition 1 (Admissible Rate Vector): A non-negative art-he nodes/ C Vi sati;fies SLoP. .
rival rate vector is admissible if there exists a collection of W& can now describe the stability of the system when the
service in each time slot is scheduled according to the Makim

Weight Independent Set (MWIS) algorithm. This algorithm
Nij < SO0 endi;(SY), wherea; > 0V, S ap < 1. is an iterative greedy algorithm that selects the nodeof
with the longest corresponding queue, and removes it and its
neighbors from the interference graph. This process isatepe

At each time slot, a joint scheduling and routing a|gorithrﬁuccesswely until no nodes remain. When multiple queues

makes a link activation and routing decision that must fatis12ve the same length, a tie-breaking rule is applied. Thefset
the interference constraints. A stable algorithm, whichalge S€!€Cted nodes is a maximal independent set in the intedere

refer to as a throughput optimal algorithm or an algorithat th9raPh- Such a greedy algorithm can be implemented in a
achievesl00% throughput, is defined as follows. distributed manner and has the following property.

Definition 2 (Stable Algorithm): An algorithm is stable Theorem 1 (Dimakis and Walrand, 2006 [8]): If interfer-
if for any arrival process with rate vecto;n € A*, ©€Nce graphz; satisfies OLoP, a Maximal Weight Independent

thm Qi;(t)/t = 0 with probability 1Vi, j € V. Set (MWIS) scheduling algorithm achievig®)% throughput.

“This stability criterion is termedate stability [1]. Tassiu- |||, BACKPRESSUREBASED ROUTING AND SCHEDULING

las and Ephremides developed a stable joint scheduling anclin this section, we present a simple adaptation to the
routing algorithm_that applies in this setting [18]. At timeoackpressure fra,mework of [18] that allows a distributed
t2 O their algorithm calculgtes for each queg Ey the implementation. Recall from Section II-B that the optimahe
mfmmum t:ackpressure, Wh'.Ch We €express in vector fofm ft3lized scheduler (1) calculatezaximumweight independent

Z (.t) - (Z:(t), e € En). Their algorithm then selects a IInksets based on backpressure link weights. Instead, thenpeelse
activation vector algorithm employsnaximalweighted independent sets based

w*(t) € argmax w1 Z*(t). (1) on the backpressure link weights. Similarly to the singbg-h
TEN(GN)

service activation matriceS' € S, 1 <1 < L such that

The set of all admissible rate vectors is called the stapili
region and is denoted b ™.

. . . . 8In fact, it can be shown that throughput optimality is maimea when
ROUF”‘_‘Q is carried Ogt over each edgdavingm; () = 1, by solutions are obtained at bounded time intervals that argelothan a time
servicing a commodity € arg max; Z.;(t) across that edge slot (e.g. [15]).



traffic setting [8], we use &aximal Weight Independent Set 7z = {(J®,e € Ex) : Q € Qg, Q # 0}, where

(MWIS) algorithm but unlike in [8] we use the backpressure o o o

link weights (instead of the queue backlogs). The MWIS Qe ={(Qij, i,j € Viv,i # j) : Qij € Ry Vi, j,

algorithm operates on the interference graph and sinceait is E = argmax, max;(Qq(e); — @r(e)5)}

greedy algorithm, it can be easily implemented in a dist|_a'tju JR={jeVy:j+#ale),

manner (e.g. the algorithm of [9] that can be applied to Qoteri — Qrieri > Quterir — Qoorir V5’ € Vi)

a network with primary interference constraints). As in the . .ﬁf)ﬂm Coﬁrﬁoﬁ't ”%%1 T(?gllatejs clogel' o
single-hop case and as in [18], the algorithmiridependent a system )c(>lf dL:fferentiaI eq:J}elltions Ic:yajlﬁadﬂ:alid limit mo)(/jel

of the global network topology and traffic statistics [6], derived from the queueing system. In order to better

- - s __understand the Maximum Commodity Family, we next explore
Algorithm 1 Backpressure Routing and (Maximal) SChedUIIngome of its properties. To this end, we introduce for each

(BRMS)_ i commodity j € Vy the directedcommodity graphG; =
1: for time mdex; =1,2,...do _ (Vn,E;), whereE; = {ec E: j € J.}.
2. For each directed edge € Ey assignZ;(t) — Lemma 1: ForE C Ey, E # 0, the commodity collection
(Qo(e)j (1) — Qr(e);(1)) J = (Je,e € Ey) € Jg satisfies:

3 AssignZ;(t) = max; Z;(t)

4:  Obtain a maximal link activation*(¢) € II(Gy) using
a decentralized MWIS algorithm, based on the edge
weight vectorZ*(t) = (Zi(t),e € En)

5. For eache € Ey such thatr}(t) = 1, choosej* €

(t)} packets of

1) Je # (), Ve € Ey.

2) Je - VN \ {0’(6)}

3) For j € UecrJe, G5 has no directed cycles.

4) If G; has a directed path between vertices v, € Vy
of length L, then

argmax; Z;(t). Routemin{1l, Q)= ' .
Commogjity;* acrosse () a) the minimum length path betweenandw, in the
6: end for network graphG is L, and

b) the edges of all paths i&'y betweeny; and vy of
length L are in G;.

In step 4, the BRMS algorithm uses the MWIS algorithm to L
P g g 5) If G; has a path of lengthl originating at vertexv,

select amaximalweight link activation based upon maximum

link backpressures, obtained in step 3 (notice that thifés t then
main difference from [18]). In step 5, the BRMS algorithm a) G has no paths of length less thdnoriginating
makes routing decisions to service commodities achieving at vertexv and terminating at vertey, and
maximum backpressure. b) the edges of all paths of lengthin Gy, originat-
ing at vertexv and terminating at vertex belong
IV. LOPIN NETWORKS WITHMULTIHOP ROUTING to Gj.
Proof: See Appendix A. ]

In this section, we study LOP properties in networks em- ypder the BRMS algorithm, when the set of directed edges
ploying the algorithm described above. We derive new locai C Ex have backpressures exceeding those of the other
pooling conditions that are sufficient for guaranteeing the edges in the graph, there must exist a commodity collection
BRMS algorithm achieve300% throughput in the multihop (Jo,e € Ex) € Jg for which J, is the set of commodities

traffic environment. maximizing differential backlog across € Ey. In this
. - case, a MWIS algorithm must select a link activatiar
A. Towards Multihop LoP Conditions that is maximal among the edges i i.e. 7% € M(E).

Recall that the OLoP conditions consider all possible verté\dditionally, the commodity; that is routed across edge
subsets of the interference gragh,C V;. By the definiton ¢ € £~ must belong toJ.. These properties characterize
of the interference graph, the node détcorresponds to a the MaX|maI Service Activation Set (an example is given in
subset of the network graph edgésC Ey. Thus, the OLop Section IV-B): _ _ o
conditions effectively consider every subset of networapgr  Definition 6 (Maximal Service Activation Set): Fdi C
edgesE C Ey. In the multihop routing scenario, we mustén and J = (Je,e € Ey) € Jg, the Maximal Service
again consider each set of network graph edfes. Ey. Activation Setis given by
Since routing across network graph edges is not unique in
the multihop scenario, we muatditionally consider various Sp. = {S €s: Zj Skj € M(E),
combinations of commaodities associated with network graph Sej =1 impliesj € J. whene € EN}
edges. We formalize the possible edge/commodity combina-Above, Sg; is the vector(S.j,e € E). The Maximal
tions by introducing the Maximum Commodity Family (arService Activation SetSg ; for a set of edgest € Ey
example is given in Section IV-B). consists of every service activation matrix whose undegyi

Definition 5: [Maximum Commodity Family]For E C link activation is maximal over the edges . Recall that
En, E # (), the Maximum Commodity Family is given byach edge € Ey is a vertex in the interference gragly.
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Fig. 2. Commodity graphs for commodity;, that are invalid based on the properties of Lemma 1.

In order to characterize the stability properties of the BRMbelow to backpressure service vectars ;(S). The service
algorithm, we will track the dynamics of the link differeati vectors are ordered by (link, commodity) pairs as follows:
backlogs. Hence, we must understand how each service mattix, v1), (e42,v1), (53, v1), (e54,v1), (€32, v2), (€35, v2).

S € § affects the distribution of commodity backpressures

over the network links. We next introduce the Backpressure {?e“’ice )a‘z“"a“or?} BaCkpressgeosgr‘gcg ‘(’SCWEJ S
H €32,v1), (€54, V1 y Uy Uy 4, Uy
Service Vector. . _ {(ea,v1), (e55,v1)) (0.2.2,0,0,0)
Definition 7 (Backpressure Service Vector): BBrC Ey, {(e32,v2), (e54,v1)} (0,-1,1,2,1,1)
J = (Je,e € En) € Jg, and service matriXS € S, the {(es5,v2), (e42,v1)} (1,2,0,-1,1,2)

Backpressure Service Vectarz ;(S) contains thedecrease
in differential backlog of commodity across linke under
service matrixS for every edge/commodity pafe, j) where
eecE,je Je:

Consider the third service activation from the table, which
activates edgess for service of commoditys, and edgess,
for service of commodity;. We have depicted in Fig. 1(c)
ug j(S) = ((do(e); (S) — dr(¢);(S)),e € E,j € Je). the active link for servicing commodity; packets in the graph
The Backpressure Service Vectog ;(S) tracks the change on the left, and the active edge for servicing commodity
in backpressure incurred by a set of edge/commaodity paipgickets in the graph on the right. At each node of the graph,
when a particular service activation matsxis employed for we indicate the number of packedepartedfrom that node

a single time slot. under that service activation. The backpressure servicesith
edge/commodity combinatiofe, j), wheree € F andj € J.,
B. Examples is then obtained by calculating on the graph corresponding

In this section, we consider the network graphy of to commodity; the difference between the quantity indicated
Fig. 1(a), with the convention that the directed edge fromenoat the source node af and that indicated at the destination
v; to v; is labelede;;. node ofe. Edgees, has a+1 at its source and a1 at its

We begin by considering a specific feasible combinatiafestination in the graph for commodity, which indicates
of edges and commodities. In the next section we will show backpressure service dfcommodityv; packets. Through
that certain conditions have to hold for each such comlsimilar computation, we find that edge, sees a backpressure
nation. The subseE of network edges of interest i€ = service ofl commodityv, packet. Note that although no other
{es2, e3s, €42, €53, €54}, @s depicted in Fig. 1(b). Each edge iredge is active, some inactive edges do incur service under
E has associated with it a set of commoditiés;, = {vi,v2}, this service activation: edges; sees a backpressure service
Jess = {v2}, Jepn = {1} Jews = {01}, Jes, = {v1}. of 1 commodityv; packet, while edge,. sees arincrease
These commodity sets are elements of commodity collectioh commodityv; backpressure of packet (this implies—1
J = (Je,e € Ey). This collection is a member of theunits of backpressure service). Finally, edgg sees a service
Maximum Commaodity Family. of 1 commodityvs packet. No other edge/commaodity pairs

Assuming primary interference constraints, the Maximdk, j) wheree € F andj € J., see service. Thus, we
Service Activation SetSg ; is summarized by the following have determined each entry in the backpressure servicervect
table of valid edge/commodity pairs. For example, actbrati corresponding to this particular service activation.

(es2,v1) means that commodity; is sent over linkess. We next provide examples to illustrate the properties of
Additionally, each activationS is translated in the table Lemma 1. Figs. 2(a)-2(e) show graphs that are inadmissible a



the commodityv; graph,G,,, for the network graph depicted ACKNOWLEDGEMENT

in Fig. _1(a) (th_e indices qf the vert.ices in these examples ar This work was supported by NSF ITR grant CCR-0325401,
according to Fig. 1(a)). Fig. 2(a) fails Property 3 becalis¢ py ONR grant number N000140610064, by a Marie Curie
contains a directed cycle; Fig. 2(b) fails Property 4a se@ge |niernational Fellowship within the 6th European Commynit

¢s3 provides a shorter path between vertiegsvs; Fig. 2(C)  Framework Programme, and by the MAGNET/ISRC Consor-
fails Property 4b since edgess, e3> are not included irG'y,;  jym.

Fig. 2(d) fails Property 5a since the path — v3 — wv5

belongs toG,,, while pathvy, — v; belongs toGy; and APPENDIXA

Fig. 2(e) fails Property 5b since edge, does not belong to PROOF OFLEMMA 1

Gy, . Let E C Ey, with E # (. Consider anyJr € Jg, and
C. Stability of the Backpressure-based Algorithm suppose/p = (J3, ¢ € Ey) for Q € Qg. Item 1 follows

Q
We now introduce the multihop LoP definitions, and provbecause the set.* can never be empty. ltem 2 follows by the

. Q ‘ ;
a sufficient condition for stability of a network operate(ﬁmcmmon of J:2. For Item 3, suppose that graghy contains

according to the BRMS algorithm, based on these conditio%.déreéteditc%ﬂif%;rsz ;aé' _)St:’}I(LZ tlﬁdzlc.r;— ;Seens 222335
Recall that the quantityl;;(S) is the amount of service at £ i y

) . . L each edge in the cycle. This is clearly a contradiction. For
gueue();; resulting from applying service activatio® for ltem 44, SUDDOSE Vertices. vs are ioined by a path of lenath
one time slot. Denote vectal(S) = (d;;(S), i,j € V). » SUPP 9, U2 J yap 9

Definition 8 (Subgraph Multihop LoP - SMLoP): The di-L in G, and there exists a shorter path betwagnv, in

rected network graplt; — (V, E) with commodity collection Gr]]v_. r1]'hen there must eX|stdan r(]edgee)n this sgprter p|>ath for
J € Jg satisfies SMLoOP if there exist vectass 3 > 0 with whic Q"<e)j _QT(‘%U excee S.t € corrésponding valu€ across
o £ 0, and a constant > 0 such that = edges in the path joining;, v2 in G;. This violates thal)
' = Q g, which provides a contradiction. Item 4b follows similarly
aTup ;(S)+p7d(S) < ¢, VSES, (2) suppose there exist two paths of lendthin G, with every
aTug ;(S)>c, VS€ESp,. (3) edge in the first path belonging 16;. By definition, every
The SMLOoP conditions associate with each link/commodifdgee in the first path must have equal valu@s .); — Q- (c);-
pair (e, j) a non-negative weight.;, wheree € E,j € J.. If this is not the case for the second path, then there must
Further, for each node/commodity pdir, j), the conditions €Xist some edge’ whose corresponding value exceeds that of
associate a non-negative weight;, wherev, j € Vy. the e_dges in the fllrst. path. This violates ti@xic Ok, which
Definition 9 (Overall Multihop LoP - OMLoP): The net-Provides a contradiction. Item 5a follows by noting thiat =
work graph Gy = (Vi, Ex) satisfies OMLoOP if SMLoP is 0, which implies that the differential backlog of commodity
satisfied by each subgrapfiy, = (Vy, E) with commodity along at least one edge on the shortest path fraoy exceeds
collection J € Jx, whereE C Ey. that of the edges along the path of lenditoriginating atv.
We next state the main theorem regarding stability of thEhis contradicts the seff. Item 5b follows similarly.
BRMS algorithm.
Theorem 2: If network grapld’y satisfies OMLoP, then
the MWIS scheduling and routing algorithm achieves 100%

APPENDIXB
PROOF OFTHEOREM 2

throughput. The proof of stability makes use of thtuid limit tech-
Proof: See Appendix B. m Nique. We consider a countably infinite sequence of queueing
systems, indexed by, subject to the same arrival process,
V. CONCLUSIONS Aij(t),4,75 € {1,...,n}, fort > 0. The queueing variables of

We have derived new multihop Local Pooling condithe r-th system are given by (t), A7;(t) = Ay;(t), Uf;(t)
tions (OMLoP) that are sufficient for the stability of thefor all 4,5 € {1,...,n}, and FZ(¢) for all S € S. At time
backpressure-based joint routing and scheduling alguoritht = 0, the r-th system is assumed to contain zero packets in
(BRMS) that makesnaximalweight link activation decisions. every queue. The following are the queue evolution progerti
Namely, in network graphs that satisfy these conditions, tlf the r-th system:

BRMS algorithm archives 100% throughput. In [21] we have . , .
made some preliminary attempts to identify graphs thasfsati ij(t) = Aj(8) —U5@), >0
these conditions. o Uji(t) =Y dij(S)F§(t), t>0

There are still several open problems in this area. For Ses
example_, the complete chara(_:t_erlzafuon of the graph dasse Z FI(t) = t, andFs is non-decreasing t > 0
that satisfy the OMLoP conditions is a subject for further Sce
research. Moreover, deriving similar conditions for otfoént r . - _ e
routing and scheduling algorithms and studying the efféct o A3 (0) = 0,U55(0) = 0, ¥, j, F5(0) =0, vS €
generalizing the interference model from an interfererreply We extend the queueing variables to the reals udig =
model to a model based on SINR remain subjects for futurg(|t]) for Y = Qi;, A}, U], F§. Now each of these
research. processes is scaled accordingfp(t) = Q};(rt)/r. We obtain



the scaled processes;, a;;, uj;, f§. As in [2], we can infer

eache € En. Suppose that the solutiati to the following

the convergence with probability of the scaled processesoptimization problem ig9* < 0:

over some subsequence of system indieges to afluid limit
(gij,aij,uij, fs) having the following key properties:

qij(t) = ai(t) —u(t), =0
A5 (t) = )\ijt, t Z 0
wig(t) = Y dij(S)fs(t), t>0
Ses
Z fs(t) = t, and fs is non-decreasing ¢ > 0

Ses
aij(0) = 0,u;(0) = 0, Vi, j, fs(0) =0,VS €S

Maximize 6 (6)
SUbjECt to Z ,LLsuE“](S) > Z VSuE_’J(S) + fe
Ses ScSE, s
eTu <1
> usY RLS; >0 ij=1,....n (7)
Ses e
efv=1 (8)
us >0 VvVSeS
vg >0 VS €ESE, 9)

The convergence of each process is uniform on compact S?ﬁsenh(t) <0

for t > 0, and it easily follows that the limiting processes

ij, @i, Wij, fs are Lipschitz-continuous if0, co).
Considerzc;(t) = g (e);(t) — ¢r(e);(t), the fluiddifferential
backlogof commodity; across the directed link Define the
function i : [0,00) — [0,00) whereh(t) = max. ; ze;(t).
Consider a regular tinfet > 0, at whichh(t) > 0. Assign

(4)

and fore € E, assignJ. = arg max; z; (t). Note that using

E = {e € Ey : 3j such thatz;(t) = h(t)},

Q = (gi;(t),4,5 € V) in conjunction with Definition 5, we
haveJ £ (J.,e € Ey) € Jg. Under the backpressure-based

algorithm, it is simple to demonstrate that no link actigati
outside ofSg, ; can have an increasing valyg(t). Thus we

have, .
> st =1

ScSE, s

Proof: Supposef* < 0. For an admissible arrival
rate vector A = (\;,i,5 € Vi), we have );; =

Y oses ¢sdij(S) > 0, wheregs > 0VS, and) g s ¢s < 1.
Furthermore S g s,  fs(t) = 1 and fs(t) > 0VS. Thus,
the vectors(¢s,S € S) and (fs(t),S € Sg.s) are feasible
as vectorsu, v respectively, in the linear program (6). The
solution#* < 0 in the optimization clearly implies that there
must existe € F andj € J. such that

Z s (S) — Z fs(t)ue; (S) < 0.

SeSs SeSE, s

(10)

By (5), equation (10) implies that.;(¢t) < 0. Sincet is a
regular time,z.;(t) = h(t), which providesh(t) < 0, as
desired. ]

It only remains to demonstrate that the multihop local
pooling conditions (2)-(3) are sufficient for stability. &h
following lemma demonstrates this property by studying the

Wherefs(t) is the derivative offs(t). Assuming an admissible g5 optimization problem to that in (6).

arrival rate vectotA = (\;;,4,j € V), we have fore € E
andj € J,

Ze,j(t) =

/\a(e)j - )\T(e)j - Z fs(t)(dU(E)j (S) - dT(e)j(S)) =
SeSk,s

D 68(doe);(S) — dr(e);(8))—

Ses

D Is(W)(doe);(S) — dr(e);(8)) =

SeSe,

> bsuci(8) = Y fs(thue;(S) )

Ses SESE,

for some¢ = (¢s,S € S) satisfyinggs > 0, Y g5 ¢s < 1.

Lemma B.2:Consider graphG = (Vy, E), where E C
En. Thend satisfies SMLoP under commodity collectidne
Jg if and only if the corresponding optimization problem (6)
has solutiord* < 0.

Proof: Suppose that the optimization (6) has solution

f* < 0. This implies that there exists a dual solution and
complementary slackness conditions hold. It is simple to
demonstrate that the dual problem to (6) is:

Minimize c¢; + co (12)
Subject to a’ug ;(S)+B7d(S)<c¢, VSeS
aTuEJ(S) > —cy, VS €SEs
efa=1
a,B,¢c1 >0

The following lemma provides a condition under which the _ _ o )
fluid differential backlogs are guaranteed torimn-increasing Since the solution to (6) i8" < 0, the dual solution is attained
at any regular time. Recall our notation thatdenotes the at the point(a®, 8%, cf,c;), wherec + ¢; < 0. Then the

all-ones vector.
Lemma B.1l:Let ¢t > 0 be a regular time at which(t) >
0. Let E C Ey satisfy (4) andJ. = argmax; z.;(t) for

A regular time is a point at which the system is differenabBy the
Lipschitz continuity of the fluid limit, almost every time i, co) is regular.

valuesa = a*, 3 = 8%, ¢ = ¢} satisfy the SMLoP conditions,
as desired.

Conversely, suppose that the SMLoP conditions are sat-
isfied, with values(a,3,¢) > 0, wherea # 0. Then,
the point(a/(e’a), 3, ¢, —c) is a feasible point in the dual
optimization problem (11). This feasible point has cosBy



duality, this implies that the primal problem must attain 0] —, “Bounds on the capacity region of multi-hop wiredesetworks

solution#* < 0. as desired u under distributed greedy scheduling,”Rnoc. IEEE INFOCOM'06 Apr.
L ) . 2006.
Comb!mng _Le_mmas B.1 and B.2, we conclude th_at tb1] G.Zzussman, A. Brzezinski, and E. Modiano, “Multiho4 pooling for
SMLoP is satisfied for anyy C En, with any commodity distributed throughput maximization in wireless netwgrk® appear in
collection J € Jg, thenh(t) < 0 for any regular timet Proc. IEEE INFOCOM'08 Apr. 2008.

at which h(t) > 0. Noting thath(0) = 0, and applying [7,
Lemma 1], Lemma B.1 allows us to conclude th&t) = 0 for
almost everyt > 0. This immediately implies thag;; (t) = 0

for almost everyt > 0, which gives the rate stability of the
BRMS algorithm. Thus the OMLoP conditions are sufficient
for stability, as desired.
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