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Connectivity Maintenance in Mobile Wireless
Networks via Constrained Mobility

Joshua Reich, Vishal Misra, Dan Rubenstein, and Gil Zussman

Abstract—We explore distributed mechanisms for maintaining
the physical layer connectivity of a mobile wireless network
while still permitting significant area coverage. Moreover, we
require that these mechanisms maintain connectivity despite the
unpredictable wireless propagation behavior found in complex
real-world environments. To this end, we propose the Spread-
able Connected Autonomic Network (SCAN) algorithm, a fully
distributed, on-line, low overhead mechanism for maintaining
the connectivity of a mobile wireless network. SCAN leverages
knowledge of the local (2-hop) network topology to enable each
node to intelligently halt its own movement and thereby avoid
network partitioning events. By relying on topology data instead
of locality information and deterministic connectivity models,
SCAN can be applied in a wide range of realistic operational
environments. We believe it is for precisely this reason that, to
our best knowledge, SCAN was the first such approach to be
implemented in hardware. Here, we present results from our
implementation of SCAN, finding that our mobile robotic testbed
maintains full connectivity over 99% of the time. Moreover,
SCAN achieves this in a complex indoor environment, while still
allowing testbed nodes to cover a significant area.

Index Terms—Adaptive systems, Cooperative systems, Mobile
ad hoc networks, Mobile robots, Network topology, Wireless
networks.

I. INTRODUCTION

WE FOCUS on a fundamental problem facing mobile
wireless networks: How can such a network maintain

its own physical-layer connectivity as its constituent nodes
move about? Our exploration of connectivity maintenance is
prompted by such specific examples as the recent DARPA
LANdroids initiative to develop a self-configuring network
that can deploy itself for temporary use in highly complex
wireless environments [1]. More generally, full network con-
nectivity may be required for a network’s overall mission (as
above), useful for that mission (e.g., coordinated search and
rescue, perimeter monitoring), or simply provide a way to
prevent nodes from becoming lost.
Given the practical nature of our motivation, we focus on

designing a protocol that can be implemented on a wide
variety of hardware and work in wide range of real-world
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Fig. 1. A testbed node.

environments. In many such environments, wireless propa-
gation itself may be quite unpredictable, failing to correlate
well with intuitive quantities like distance - due to multipath
propagation, interference from outside networks, interference
between network nodes, and RF-absorbing environmental
features. Even if all of these factors can be successfully
incorporated into a (suitably conservative) predictive model,
the presence of obstacles in the environment may prevent
actual connectivity from reflecting the model’s predictions.
With currently available techniques, practical deployment
of a connectivity maintenance scheme for many complex
environments (e.g., indoor settings, urban/semi-urban areas,
woodlands, battlefields), requires either explicitly mapping the
deployment arena, or using an algorithm that does not rely on
knowledge of the wireless propagation patterns.
Our work takes this latter approach, as pre-deployment

mapping of complex environments is often costly and some-
times infeasible. Online mapping is a challenging problem
in-and-of itself [2] (let alone when combined with a real-
time connectivity maintenance constraint). To this end, we
have developed the Spreadable Connected Autonomic Network
(SCAN) protocol to handle complex environments in real-time
without any prior knowledge of the environment.
Contrastingly, most previous work (e.g., [3], [4]) has relied

on simple broadcast models (e.g., deterministic, spherical
broadcast). By leveraging geometric properties, tractable al-
gorithms for optimizing the movement of the nodes under
a connectivity maintenance constraint can be created. Our
work, which does not rely on such broadcast models, cannot
produce such optimizations. The trade-off is that while these
approaches may be appropriate for networks comprising un-
manned aerial vehicles, or mobile nodes on a large plain, they
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may be unable to address many realistic scenarios of greater
complexity - scenarios in which our technique can provide an
implementable working solution. To demonstrate this claim,
we have successfully implemented and tested SCAN on an
802.11-based robotic wireless networking testbed (Fig. 1). To
our best knowledge, SCAN has been the first autonomous
connectivity maintenance algorithm to have been deployed in
hardware [5].
SCAN works by enabling individual nodes to determine

when they must constrain their mobility in order to main-
tain connectivity. SCAN achieves this through an entirely
distributed process in which individual nodes utilize only
local knowledge (2-hop) of the network’s topology to freeze
their movement if SCAN’s decision criterion indicates further
movement risks network partition. Keeping with our focus
on implementability, we have designed SCAN to work with
commercially available off-the-shelf components. We have
also designed SCAN to be agnostic to the particular movement
goals of the nodes, allowing SCAN to accommodate differing
mission goals. For example, a civilian self-deploying network
might aim to maximize coverage area, while a military version
may need to balance coverage with providing nodes the ability
to move when threatened.
We assess SCAN with respect to two potential use scenarios:
• Self-deploying mesh network: In this application a
SCAN spreads over some area to provide wireless cover-
age for previously disconnected, wireless (perhaps sta-
tionary) end nodes. Once it has covered these nodes,
the SCAN can provision them with point-to-point con-
nectivity. By ensuring that mobiles remain connected, a
self-spreading mesh network infrastructure can provide
wireless services in a more robust way than could a
sporadically connected network. Moreover a system that
maintains connectivity inherently prevents nodes from
disconnecting - thereby preventing them from wandering
off and becoming lost and unused. In this case, we
evaluate performance with respect to the coverage area
achieved: the total area covered by at least one mobile
node that remains connected to the base station/uplink.

• Search and rescue: A wirelessly-communicating robotic
search and rescue team deployed during an ongoing
disaster must move to locate victims, but it must also
remain connected to base-station points to immediately
notify first responders when a victim has been found, in
addition to providing ongoing feedback about the search
environment. In this case, we evaluate performance with
respect to target detection: the probability of detecting
one or more targets located within a search area.

We conduct this assessment with analytic modeling, simula-
tion, and implemented experiments. We use analytic modeling
to explore SCAN’s asymptotic properties. Through simulation,
we verify these analytic results and extend them to scenarios
more realistic than those captured by our modeling. Our
hardware experiments examine the practical functioning of
SCAN and its suitability for use in a real-world setting.
While SCAN is only a first step towards a comprehensive

solution to an extremely complex and exciting problem, we
believe it offers the correct jumping-off point for future
research on practical methodologies for connectivity main-

tenance. Moreover, where previously discussed techniques
are applicable, SCAN offers a robust fall-back mechanism.
Additionally, SCAN addressess scenarios in which connectivity
of very simple nodes is desired (e.g., micro-scale robots).
Our main contributions are:
• We propose SCAN as a baseline connectivity maintenance
mechanism for challenging environments.

• We describe SCAN’s intuition and properties under the
most general (and challenged) settings. We also show
how additional specialized information (e.g., RSSI) can
be incorporated into SCAN’s framework (Sec. IV).

• Through analysis and simulation, we evaluate SCAN’s
ability to maintain network connectivity while enabling
significant area-coverage. We identify a phase-transition
point at which SCAN networks transition between asymp-
totically frozen and always moving. We characterize that
point as a function of node population and bounding
region.

• We implement SCAN on our mobile robotic network
testbed as proof-of-concept, and evaluate its performance
for use as the connectivity maintenance facility for a self-
deploying mesh network system (Sec. V).

II. RELATED WORK

Connectivity maintenance for mobile networks has become
an active area of research over the past several years. The
control theory community began exploration of this area, in the
context of motion planning algorithms. These motion planning
algorithms attempted the maximization of some specific target
function under the constraint that connectivity be maintained.
Node movement patterns are determined completely by the
specified controller(s). Early work focused on maximal cov-
erage [6], and shortly thereafter, on continuously connected
group movement [3]. A series of papers considers the use
of potential fields to supply centralized [7], distributed [8],
and centralized double integrator [4] schemes for ensuring
connectivity while maximizing a metric encoded in those
fields. More recently, [9] adds the consideration of collision
avoidance, while [10] looks at the looser constraint that con-
nectivity reoccur periodically. Most work in this area leverages
either geometric properties or assumes perfect knowledge of
the potential fields used for determining connectivity and
utility. An exception, [11] uses only two-hop information to
maintain connectivity, albeit by dividing the node population
into backbone and regular nodes.
However, all of the above approaches make restrictive

assumptions regarding node connectivity - assumptions which
are unlikely to be true in practice. By far the most popular
such assumption is that node broadcast ranges are perfectly
spherical, deterministic, non-interfering, and not subject to
attenuation from obstacles or other environmental conditions.
Notably, [12] does relax these assumptions, considering a
fairly realistic broadcast model, but only for simple chain
topologies.
Given the restrictive assumptions made by this body of

work, it is perhaps unsurprising that only two related hard-
ware evaluations have been attempted, [13] and [14]. Each
conducted their hardware evaluation in a single, empty, rect-
angular room. [13] maintains connectivity by utilizing both



REICH et al.: CONNECTIVITY MAINTENANCE IN MOBILE WIRELESS NETWORKS VIA CONSTRAINED MOBILITY 937

onboard IR sensing and an overhead camera that continuously
transmitted each node’s current global position. [14] does not
attempt to maintain connectivity physical layer connectivity
at all. Instead their goal to ensure they avoid partitioning the
network at the IP-level. In this approach, robot movement is
controlled via joystick by human operators who ensure the
physical layer of the wireless network does not partition. The
robots themselves are only responsible for estimating their
relative coordinates and choosing which neighbors with whom
they will communicate so as maintain IP-level communication.
Recently, several papers have noted the practical short-

comings of approaches reliant on simple broadcast assump-
tions and have taken heuristic approaches utilizing actual
connectivity/signal strength information. Consequently, these
approaches have been much more amenable to at least limited
hardware prototyping and evaluation. [15] uses previously
generated radio signal strength maps and hand-produced free
space cell decompositions as input to their connectivity algo-
rithm. [16] addresses a different problem - extending a con-
nected network by having human operators drop “breadcrumb”
routers when connectivity begins to weaken. Another related
problem is considered by [17], which proposes mechanisms
that repair disconnected networks, leveraging graph properties
similar to those used by SCAN. Finally, [18], develops a
distributed algorithm that is a slight modification of the
Neighbor Density (ND) algorithm we presented previously [5]
and use for comparison here. When evaluating this algorithm
on a testbed built along the lines published in [19], [18] found
eight nodes needed 35 minutes to converge - several times
longer than needed by SCAN as described in V-B.
Finally, it is worth noting that, like the body of work above,

SCAN does not provide a facility for IP-level routing. We
believe most MANET routing protocols should be able to work
alongside the SCAN protocol. However, we note [20] has found
that even such protocols may perform poorly with mobile
robots. Consequently we recommend choosing a protocol that
fits well with the SCAN approach, localizing control messages
as much as possible to the vicinity of topological changes.

III. PROBLEM SETTING

A. Operational Environment

SCAN was designed to operate in unknown and complex
environments using commercially available hardware. As a
result, SCAN must contend with both unpredictable wireless
broadcast and unknown obstacles to broadcast (and also poten-
tially to nodal movement). With respect to the former, wireless
broadcast in the 802.11 spectrum is unpredictable, subject
to cross-talk, multipath propagation, fading, and interference.
These effects are only exacerbated by unknown features of
the operational environment. Multipath effects are engendered
by walls and obstacles, while fading increases in the presence
of RF-absorbent surfaces. In such an environment, knowing
where two nodes are positioned with respect to one another
is often a very different matter from knowing whether they
will be wirelessly connected. Moreover, many environments
(e.g., indoors, underground, battlefield) are GPS denied. While
there are techniques addressing indoor localization [21], [22],

such systems require significant time to setup and/or leverage
expensive hardware.
Automated techniques to create maps that allow such in-

ference to be performed with reasonable confidence are just
now being developed [2]. It is unclear how these might be
incorporated into an algorithm that maps while simultane-
ously maintaining connectivity. Moreover, such a map can
quickly become obsolete should any contributing factor of
the environment change sufficiently. Our guiding philosophy
behind SCAN is that the most effective and practical way
to determine whether nodes will be connected in the future
is by extrapolating from their current connectivity. Sec. V-A
discusses the features of the particular operational environment
used for our experiments.

B. Robotic Testbed

The mobile robotic networking testbed used for our im-
plementation and experiments is similar to recent systems
such as [19], [23], and [24]. Each mobile node in our
testbed is composed of an iRobot Roomba Create mobility
and sensing platform (Fig. 1). On top of each Roomba we
affix a Linksys WRTSL54GS wireless router running OpenWrt
Linux. The Linksys router provides an integrated unit featuring
a Broadcom 4704 processor running at 266MHz, 8MB flash,
32MB RAM, an integrated Broadcom wireless 802.11g radio,
BCM5325 switch, and a USB 2.0 port. The WRTSL54GS
provides communication, computation and memory, while
the Roomba provides power, movement, and environmental
sensing. The Roomba platform and the router are connected
by a modified serial cable that allows the router to both poll
the Roomba’s sensors and control the Roomba’s motors and
actuators. The serial cable also provides a direct unregulated
power feed to the Roomba’s battery which we use to power
the router. Typically a node can run without a recharge for
several hours. This setup allows us to experiment with real
mobile nodes whose broadcast and mobility decisions we can
specify utilizing standardized programming languages.
Our nodes do not utilize GPS, although we are working

to incorporate RSSI. Aside from brief discussion regarding
these efforts presented in Sec. IV-E, the current work focuses
on utilizing the presence/absence of connectivity and not the
relative strength of that connectivity. This focus was driven
by our desire to devise a general-purpose mechanism that can
be used today. Currently, proprietary WiFi drivers hide signal
strength information (in our case Broadcom drivers hid all but
an instable RSSI reading of average channel strength which
was essentially useless for estimating signal strength with any
given peer).

C. Network Model

Assume our network contains N mobile robots, each with
a (mean) transmission range r, and deployed within an area
A. We represent the network as a graph in which each
node corresponds to a mobile robot. Two nodes u and v
are neighbors and are directly connected via a link, if they
can directly, mutually, and consistently communicate over a
wireless channel (if u can receive v’s broadcast but not vice
versa then u and v are not directly connected).
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(a) a and b are neighbors. a
and d are connected by path
(a, b, c, d).

(b) A network with both robust
and fragile connections.

Fig. 2. Network connectivity and robustness.

We define N(u) as the set of nodes that are node u’s
neighbors with u /∈ N(u), and assume, as is the case in our
testbed, that each node u knows N(u), and is also informed
of N(v) for each of its neighbors v ∈ N(u). u and v are
connected if there is a path from u to v across a series of
links. A network is globally connected when every two nodes
u and v in the network are connected.
Within each fixed-length broadcast cycle, each node as-

sesses its current local connectivity, and, based on this state
decides to either move or freeze until the next broadcast cycle
completes. We do not require that nodes make their decisions
simultaneously, nor do their respective T ’s need to match
exactly (clock drift is permissible).
Over time, new links can form and existing links can fail.

However, the state of a link between two nodes u and v
can change only if at least one of the nodes is moving. If
both u and v are frozen, then an existing link between them
cannot fail, nor can a link be added when there is none. In
other words, only the mobility of node pairs significantly alters
whether a pair can communicate.

D. Neighbor Detection

The first challenge in implementing SCAN on our testbed
lies in determining when two Roombas should be considered
“connected”. Consider two Roombas, which we label u and
v. If u and v can receive (a majority of) one another’s
transmissions, then clearly they should be connected, and if u
and v cannot hear one another’s transmissions, they should not
be connected. But what about cases in between? In particular:

• u could hear v, but the reverse need not hold true.
• u might hear from v only intermittently, their connection
being too sporadic to allow for communication that
consumes any significant bandwidth.

To determine whether a given pair of nodes can directly,
mutually, and consistently communicate over a wireless chan-
nel, we use the following neighbor detection protocol. Each
node runs repeatedly broadcasts and listens over a fixed
period of time we refer to as a broadcast cycle. We make
no attempt to synchronize the start time of a cycle across
nodes, or to eliminate drift across node clocks, as such tight
synchronizations are not needed for our use of the broadcast
cycle. The remainder of this subsection discusses the details
of how we determine when two nodes are connected within a
broadcast cycle, and how a node learns of both its neighbors
and 2-hop neighbors (i.e., its neighbors’ neighbors). This
discussion can safely be skipped by the reader who is not
concerned with these details.
In our testbed, a broadcast cycle lasts 1.5 seconds. In each

cycle, a node u classifies a node v whose transmissions it

hears during the previous or current cycle into one of three
possible classes: heard, reciprocally-heard, and confirmed as
a neighbor. v is heard by u if u receives transmissions from v.
v is reciprocally-heard if in addition, u receives a broadcast
from v indicating u is currently heard by v. Finally, v is
confirmed as a neighbor if u has reciprocally-heard from v
in two consecutive broadcast cycles. Once v is confirmed as
a neighbor, v remains in u’s set of neighbors until such time
as u fails to reciprocally hear v for two consecutive broadcast
cycles.
The messages sent in a broadcast cycle, a node broadcasts

a sequence of 3 heard messages followed by a sequence of
3 confirmed messages. A heard message begins with the
prefix “2” followed by a list of IP addresses nodes heard by the
sender in its previous broadcast cycle. A confirmed mes-
sage begins with the prefix “3” and is followed only by a list
of IP addresses belonging to the sender’s confirmed neighbors.
Either heard or confirmed messages received can be used
to classify a node as being reciprocally heard. However, only
nodes whose addresses appear in a confirmed message can
be used for SCAN’s calculations.
We found this scheme to be very effective in both locally

communicating the information used by SCAN and providing
neighbor sets that were fairly stable against random fluctua-
tions on the wireless channel - without artificially restricting
the set of neighbors detected.

E. Node Mobility Pattern

Aside from sometimes requiring the Roombas to freeze, we
place no other explicit restrictions on their movement. As our
primary interest lies in networking, rather than robotics, we
have focused our main efforts on SCAN. To spread our nodes
across the test area we use the simple movement algorithm
shown in Fig. 3. Each robot moves straight ahead until it is
stopped by an obstacle. Each robot has two sensors which
allow it to determine whether the obstacle is off to the side or
in front. If the obstacle is to a side, the robot rotates a random
angle and continues. If the obstacle is in front, the robot backs
up slightly, rotates a random angle, and proceeds. To further
encourage network spreading, once every few seconds robots
will randomly turn several degrees.
This algorithm ran as a separate thread on each of our nodes.

At the end of each broadcast cycle each node would reassess
the SCAN criterion. If its mobility state changed from freezing
to moving, the main thread would notify the mobility thread
to begin again. Conversely, if the mobility state changed from
moving to frozen, then the thread would be paused and a
freeze command sent to the Roomba platform.
The important point is that the default node movement

pattern is oblivious to any network connectivity requirement.
Consequently, we believe that SCAN’s success at maintaining
connectivity while providing for reasonable area coverage
under this movement pattern, will generalize well to many
other movement patterns.

IV. ALGORITHMS FOR CONNECTIVITY MAINTENANCE

Our approach to constructing a connectivity maintenance
algorithm utilizes a three-step structure. The first step is to
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while move = True do
if sensorInput = hitBothBumpers then

ROOMBA← back up(0.5)
ROOMBA← turn(random(180))

else if sensorInput = hitRightBumper then
ROOMBA← arc(left)

else if sensorInput = hitLeftBumper then
ROOMBA← arc(right)

else
ROOMBA← forward
sleep unless input changed(random(5))
if inputChanged then
continue

end if
ROOMBA← turn(random(10))

end if
end while

Fig. 3. Node mobility algorithm.

gather data on the current network topology. The second is to
assess the robustness of that topology. The final step uses this
assessment to then determine whether further movement en-
dangers future network connectivity. If so, we require that the
node(s) for whom this is true refrain from further movement
by freezing until such time as continued movement no longer
poses this risk.
To this end we introduce two algorithms leveraging this

basic structure: a naive Neighbor Density (ND) algorithm
which uses a very simple metric for assessing connectivity
robustness, and SCAN which conducts a still simple, yet
significantly more powerful assessment of robustness.
Both ND and SCAN share the common assumption that,

while the quality of the wireless channel may fluctuate
unpredictably over space, it will remain relatively constant
over time: relative movement of two nodes may effect their
connectivity, but time-wise fluctuations will not have a sig-
nificant effect. In situations where the quality of the wireless
channel is fluctuating wildly over time (e.g., significant and
varying external interference, fast fading) more specialized or
conservative techniques will be required.

A. Neighbor Density Algorithm

The Neighbor-Density (ND) algorithm (shown in Fig. 4(a))
serves as a naive parameterizable heuristic solution to the
connectivity problem. ND utilizes nodal density (or more
precisely valence) to achieve connectivity: if a node has more
than k neighbors it considers local connectivity robust and
consequently may move; if it has fewer, it must freeze1. ND’s
messages are constant in the number of neighbors, as only the
sending node’s ID need be sent.

B. Spreadable Connected Autonomic Network Algorithm

The Spreadable Connected Autonomic Network (SCAN)
algorithm (shown in Fig. 4(b)) takes the greedy approach
that a node’s movement should only be constrained in direct

1Both [16], [18] use slight variations on ND for maintaining connectivity.

response to a perceived lack of robustness in the (local)
network connectivity structure. To get a feel for when we may
wish to freeze a node, consider the example in Fig. 2(b).
Node a is connected to 3 neighbors. To disconnect a from

any of the neighbors to its right (or in fact any of the nodes
to which it is connected) at least 2 links in S must be broken.
In contrast, only a single link needs to fail to disconnect node
a from node b. When links fail infrequently (e.g., 1 failure
during a broadcast cycle), then if a were only concerned about
the nodes in the set S, it could continue to move. However,
there is a high likelihood that any movement could cause the
single link between a and b to fail, ending the connection
with b, thereby partitioning the network. To keep the network
partition-free, both a and b should freeze.
But what if, during a broadcast cycle, k ≥ 1 links can be

expected to fail? How do we then determine whether nodes
must freeze to ensure network connectivity is maintained? It
is this question that SCAN is designed to address.
Formally, SCAN is pre-configured with a parameter k, such

that a node u is allowed to move as long as |N(u)∩N(v)| ≥ k
for every v ∈ N(u). In other words, u moves if it shares k
neighbors with each of its neighbors v. If this property does
not hold for even a single neighbor, u must freeze.

C. Global Connectivity

Consequently, if a directly connected pair of nodes lack a
sufficient number of redundant paths routed through mutual
one-hop neighbors, SCAN concludes that movement on either
of their part may in the worst case sever all one-hop routs
between these two nodes. Even in such a scenario other
longer routes may, in fact, remain, in which case these nodes
might still remain connected. However, SCAN conservatively
assumes that only the known routes can be relied upon in as-
sessing connectivity robustness and SCAN only provides nodes
with up-to-date local two-hop topologies. Another algorithm
could, of course, utilize more topological information, but only
at the cost of propagating a greater amount of information
and ensuring this information is up-to-date. In fact, ND can be
thought of as an algorithm in this family that uses only local
one-hop topology information.
We now make rigorous the argument that by assessing

connectivity robustness between each pair of nodes on a local
basis, SCAN will likely prevent any pair of directly connected
nodes from severing all of the locally known paths between
them. Applied across all nodes this property prevents global
network partition (albeit with lower probability than that of
any individual node partitioning).
Lemma 1: In any graph, if u and v are directly connected

and |N(u)∩N(v)| = m, if fewer than m links fail, then there
is a path of at most 2 hops from u to v.

Proof: Clearly, if u and v remain directly connected, then
there is a 1-hop path from u to v. To remove 2-hop paths, a
link must fail between each node in N(u) ∩N(v) and either
u or v. Hence, at least m + 1 links must fail to remove all 1
and 2-hop paths.
For the following Lemma, we remind the reader that, as

stated in Section III-C, links cannot fail between a pair of
frozen nodes.
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if |N(u)| ≥ k then move else freeze
(a) ND

if |N(u) ∩N(v)| ≥ k, ∀v ∈ N(u) then move else freeze
(b) SCAN

Fig. 4. Mobility criteria.

Lemma 2: Consider a network that is connected at some
time t, with all nodes using SCAN with parameter k. If at
most k links can fail near a node during its broadcast cycle,
then the network remains connected for the duration of the
broadcast cycle.

Proof: We note that links may form during the period
in which k links fail. If we ignore these forming links and
show the network remains connected, then clearly the network
remains connected when we add these forming links back in.
We proceed by contradiction. Let t be the time that the

graph partitions, and let the partition result from the edge
connecting u and v failing. This means that either u was
moving or v was moving under SCAN. WLOG, assume u
was moving at time t. This implies that |N(u) ∩N(v)| ≥ k
at the start of u’s broadcast cycle containing time t. Since at
most k links can fail in a broadcast cycle, at most k links can
fail between the start of this broadcast cycle and time t. By
Lemma 1, u and v must be connected (within at least 2 hops)
even after k links fail, and hence cannot reside in separate
partitions at time t.
Lemma 2 states that, by using SCAN, even if k links

suddenly drop simultaneously (and are connected to at least
one moving node), the way that SCAN chooses nodes to move
and freeze ensures that these k dropped links, each of which
must drop between two nodes where at least one is moving,
will not disconnect the network.
Theorem 1: If a node reconsiders its decision to move or

freeze at the end of each of its broadcast cycles, and at most
k links can fail within its broadcast cycle, then a SCAN that
is initially connected will always remain connected.

Proof: The proof is by induction on the iteration of
the broadcast cycle. Our assumption is that for the initial
broadcast cycle, the network is connected. Using the inductive
assumption, assume the network remains connected by the end
of the ith broadcast cycle of node u. u reassesses its local
connectivity at the end of the cycle, and moves in the i + 1st
broadcast cycle only if |N(u) ∩N(v)| ≥ k for all v ∈ N(u).
We simply apply Lemma 2 with t equal to the start time of
the i + 1st broadcast cycle to complete the inductive step.

D. Choosing SCAN’s k Parameter

Since SCAN disconnections only occur when at least k + 1
nearby links fail simultaneously, the best value of k depends
upon how many neighboring links are expected to fail (i.e.,
nodes move out of communication range) within a broadcast
cycle. As one increases the speed of a node, decreases the
range of transmission, or increases the broadcast cycle time,
a larger k is needed to ensure connectivity. In general, as k
increases, it becomes less likely that the network will partition,
but the expected time that nodes spend moving is reduced as
well, which can delay, or even prevent, achievement of the
goal for which mobility of nodes is required in the first place.
In Section VI we find that for network whose nodes move

slowly k = 2 is more than sufficient while for more volatile
settings k > 4 appears extremely robust.
Pre-determining the optimal k for an arbitrary setting is

quite difficult because: (i) link failures will often exhibit co-
dependence, (ii) disconnection of a nearby nodes are de-
pendent, (iii) k + 1 nearby link failures permit but do not
necessitate severing of all locally known paths between two
neighbors, and (iv) even if all locally known paths connecting
a node to some neighbor are severed, there may still be a
global path connecting them.
Consequently, we will use a back-of-the-envelope calcula-

tion to give some insight into how k should be set. We begin
by setting the probability p of a link breaking during a given
SCAN broadcast cycle to the distance a node travels in a period
divided by the mean broadcast radius. Roughly speaking, k+1
or more links break with probability order pk+1. Assuming a
disconnection lasts for a mean time of τ broadcast cycles,
the expected fraction of time the network is fully connected
is 1 − τpk+1. k should be chosen such that τpk+1 is less
than the tolerated level of partitioning. The interested reader
may observe our algorithm in action and test the effect of
changing k using a simplified applet version of our simulation
environment [25].

E. Incorporating Additional Information

While we do not address utilizing additional sources of
information such as GPS or RSSI in this paper, we do wish
to briefly describe how they might be incorporated in SCAN’s
general approach. SCAN simply views each connection as a
binary value, 1 if connected, 0 if not, corresponding to the
presence or absence of an edge in our network. A version
of SCAN utilizing additional information (SCAN+) could use
weighted edges, whose weights correspond to normalized
RSSI values or relative distance measurements. One possibility
would be to require that the weighted sum of the of the paths
connecting any neighbor and a given node be greater than
a constant k′ allowing the presence of strong connections to
offset lower absolute numbers of common neighbors. Clearly
more sophisticated schemes might be devised leverage an
increasingly nuanced view of the connectivity topology for
improved performance.

V. TESTBED EXPERIMENTS

Our goal was to develop connectivity maintenance tech-
niques that could actually be implemented and tested on
hardware in a noisy, challenging environment. To this end, we
have implemented SCAN on our Roomba robotic testbed. Over
the course of weeks, we ran trials on our testbed, collecting
several hours worth of experimental data. Recall from Sec.
III-E that our nodes operated in a GPS-denied environment
and explored the area randomly. It seems reasonable to expect
that if our blindly moving nodes could stumble into a success-
ful configuration, nodes with more robust mobility routines
tailored for a particular application should do at least as well.
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(a) Run time vs. size of partition.
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Fig. 5. SCAN partitioning statistics.

We found that SCAN could provide connectivity in a
remarkably robust fashion while also providing latitude of
movement sufficient to cover clients scattered throughout our
test environment. Out of 273 minutes and 50 seconds of
experiments, our network remained connected in all but 2
minutes and 23 seconds. Moreover, the network partitions we
encountered comprised a single node disconnecting from the
rest of the network. The sole exception was one 15-second
period during which a pair of nodes partitioned themselves
as a connected component. This result is shown graphically
in 5(a) which compares the total time (y-axis) during which
zero, one, or two nodes partitioned from the main networks (x-
axis). Fig. 5(b) shows the partition frequency (y-axis) broken
down by the number of nodes in experiments (x-axis).

A. Experimental Setup

Our experiments were run on the 8th floor of the CEPSR
research building, covering approximately 1900 m2. A dozen
or so wireless networks were competing for use on this
particular floor, providing a moderate level of interference.
As previously discussed, we assess SCAN’s performance on

our primary metric: the coverage area SCAN allows while
maintaining connectivity with bounded (in this case 99%)
probability. Since measuring the total coverage area of our
combined nodes with instrumentation was not feasible in our
test environment, we instead placed wireless clients around
the floor and measured the total number of clients covered

Fig. 6. Indoor experimental setting.

Fig. 7. Fraction of time clients covered.

as Fig. 6 illustrates. Secondly, we examine SCAN’s ability to
support a target detection task by measuring the percentage
of trials in which at least one of the nodes would reach the
target area before either the network froze or the 20 minutes
elapsed (this timeout was reached only once).

While the experimental space was moderately large and
subject to both wireless interference from competing networks,
as well as broadcast obstacles, our nodes could still broadcast a
good proportion of its length. To conserve power and evaluate
our algorithm in a more transmission-limited environment,
we dialed down the broadcast power to the minimum level
supported in software (0.25dBm) and did not restrict the
shielding of client nodes (e.g., if they were behind doors, in
far corners, or on the ground).

Our experiments tested networks of size N = {4, 5, 6, 7, 8}
using k = 2. Each data point averages 10 trials.

To choose this value of k we followed the logic laid out in
Sec. IV-D. Given Roomba speed (0.5m/s), SCAN assessment
cycle every 3s, mean broadcast radius 20m, and mean number
of cycles for disconnection τ = 100: we have p = 3(s) ∗
0.5(m/s)/40(m) = 0.088 and τpk+1 = 100 ∗ 0.0883 which
would imply a tolerable partition likelihood of around 5% for
k = 2. In fact, we found partition frequencies noticeably lower
than this in our experiments.
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Fig. 8. Trial performance by network size

B. Experimental Results

In our tests SCAN maintained full network connectivity
over 99% of the time. As can be seen from Fig. 8(a), this
high degree of connectivity maintenance did come at the
cost of constraining area coverage. In this figure, the left y-
axis measures the percentage of trials in which coverage was
achieved, the right y-axis the time in minutes, and the x-axis
the number of nodes. Networks of four nodes were unable to
ever fully cover all client simultaneously. Yet nodes were still
able to move far enough that every client was covered for at
least some significant proportion of the experiment as seen in
Fig. V-B which plots the percentage of the time a given node
was covered (y-axis) against the value of k used (x-axis). We
can also see that the client nodes were quite heterogeneous
with respect to coverage: certain clients were always covered,
while others were often quite difficult to cover. Intuitively, this
makes sense given the area’s complexity.
For N > 5, we see a significant performance improvement.

In this space a network of six nodes appears sufficient to
provide simultaneous coverage to all nodes, although it takes
over 2 minutes to do so. We see a continuing decrease in the
time taken until all nodes are covered as N increases, along
with an increase in success rate. The decrease in performance
for N = 7 is most likely due to high variance resultant from
the statistically smaller number of trials run. Thus, SCAN

coupled with the most rudimentary of mobility mechanisms
enabled a small number of mobile nodes to self-organize a
configuration capable of covering to all clients.
Target-detection proved significantly more challenging. In

part this was due to the difficulty an essentially randomly
moving node would have in reaching a specific location in a
circuitous environment with many small obstacles (e.g., waste
baskets). But strikingly in only one out of 50 trials did the
nodes run out of time before they either all froze or the
target was reached by at least one node. The main constraint
appeared to be that smaller networks simply lacked the number
of nodes needed to maintain robust network connectivity as
they continued spreading out towards the target area (for
N = 4 even one link breaking was enough to freeze the
network). Fig. 8(b) plots the percentage of trials (left y-axis)
in which the target was reached, and the time in minutes for
the experiment (right y-axis) against the number of nodes (x-
axis). Unsurprisingly, the larger the number of nodes the more
likely the target was to be detected. The experiment run time
itself was dominated by the tendency of smaller networks
to completely freeze (as explained above), while larger sets
of nodes could continue moving for substantially longer -
thereby increasing the likelihood of some node reaching the
target. Only for the eight node experiment does the trial time
decrease, as here the overall mobility of the network is so
high that some node will quickly find the target. We suspect
that for this environment, eight nodes is close to the network
phase transition point discussed in Sec. VI-B.

C. Additional Results

We also conducted a preliminary assessment of our system
on several outdoor areas which revealed two very interesting
things. The first was that even using our basic hardware
setup with broadcast power set to the minimum allowable,
our testbed was still able to spread over a significant area
as can be seen in Fig. 9. The resultant frozen configuration
for the six nodes spanned an area over 100m north-south
and 70m east-west. The second was the degree to which
the environment effected wireless communication range. Only
300m north on an adjacent plaza we ran the same experiment,
but the average distance between nodes was less than 33% that
of the location we used for our experiments. We believe these
differences are in large part due to the differing levels of radio
frequency interference in these two locations (a weekend test
showed greater distance spread between nodes at the northern
location). Video of our experiment is available at [25].

VI. SIMULATION AND ANALYSIS

To further develop our understanding of SCAN and its
scalability, we turn to simulation and analysis. In this section
we seek to answer three essential questions regarding the
behavior of networks running SCAN:

• Under what conditions will all nodes in a network run-
ning SCAN ultimately freeze?

• How well does a network running SCAN, when frozen,
cover an area as a function of the probability of retaining
connectivity?

• What is a good value of k to use?
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Fig. 9. Aerial view of frozen configuration, 6 node testbed.

While the latter two questions have fairly straightforward
motivation, the first question bears additional discussion. This
question is a significant one since if our nodes are confined
to a very small space relative to their broadcast capabilities,
then the local network topology around at least one node will
always remain sufficiently connected to allow for continued
movement. In some scenarios this could prove highly incon-
venient (one would not want a civilian self-deploying network
moving continually underfoot), while in others it might prove
helpful (the same behavior in a military setting might help
nodes avoid being targeted by the enemy). Either way, this
phenomenon is worth understanding.
We investigate asymptotic freezing via analysis, which we

then confirm by simulation in an obstacle-free environment.
Further, through simulation we find that SCAN outperforms
ND by a significant but not overwhelming margin in obstacle-
free environments. However, when we introduce walls and
use a realistic physical-layer wireless model in our simulation
(an environment matching SCAN’s design concerns), we see
that SCAN continues to perform well for the same range of
k values used in the obstacle-free environment, while ND’s
performance decreases drastically.

A. Simulation Platform and Assumptions

All the simulations discussed in this section were conducted
on NetLogo 4.0.2 [26], a combined Logo-like language and
simulation platform. Netlogo is ideal for modeling a dis-
tributed protocol whose behavior influences and is influenced
by the topology of the dynamically evolving network upon
which it is running. Unless otherwise noted, all plot points
average 100 trials.
1) Obstacle-Free Environment: In our obstacle-free simu-

lation, nodes within mean broadcast range r of one another
were considered connected. To provide additional realism, we
varied the range of broadcast stochastically. Unless otherwise
mentioned, in this simulation two neighbors are connected if
the distance between them is less than or equal to a normal
random variable with mean r = 1 and σ = 5%. Each potential
pair of neighbors had its own independently chosen random

variable, and these random variables were regenerated at a rate
equal to the frequency of the movement decision made by the
nodes We ran these experiments for N = {25, 50, 100, 200}.
2) Indoor Environment: Our indoor simulation mode deals

with an environment partially subdivided by walls of differing
thickness. For modeling the signal propagation in that envi-
ronment, we used the COST 231 Multi-Wall Model (MWM)
[27, Ch. 4]. Among empirical models, this is one of the most
sophisticated ones and it is applicable in the 2.45GHz band.
The MWM model predicts path loss as being equal to free
space loss plus losses introduced by the walls and floors
penetrated by the direct path between the transmitter and the
receiver. Since we consider a single floor, the loss (in dB) is
given by:

L = Lfs + Lc + kw1Lw1 + kw2Lw2 (1)
where Lc is constant loss (we assume Lc = 0), kw1 is the
number of light walls, Lw1 = 3.4dB is the loss due to a light
wall, kw2 is the number of heavy walls, Lw1 = 6.9dB is the
loss due to a heavy wall, and Lfs is the free space loss given
by

Lfs = 32.4 + 20 log(r/1000) + 20 log(f) (2)

where r is the distance between the transmitter and receiver
(in meters) and f is the frequency inMHz (2450 in our case).
As much as possible, we aimed for our simulation to parallel

our indoor experiments, using the same set of barriers shown
in Fig. 6 for our indoor simulations. We set the transmit power
of a node to 0dBm (1mW ). We assume that the receiver
sensitivity is −82dBm, which is a reasonable value for ICE
802.11g devices and we assume a fast fading margin of 16dB.
Hence, we require that the propagation loss will satisfy 0 −
(−82)−L > 16 (or simply L < 66) in order for two nodes to
be within transmission range. In an environment without walls
this translates to allowed distance of approximately 17m. In a
multi-wall environment the distance varies with the locations
of the different nodes.
We note that the simulation model ignores collisions be-

tween SCAN messages simultaneously sent by other nodes. In
our actual implementation, messages were sent on the order
of seconds making such collisions very unlikely.
Given the higher computational complexity of these ex-

periments, our simulations used a smaller number of nodes
(N = {8, 16, 32, 64}).
3) Link Failure: In either simulation environment, the main

factor in whether two nodes are connected arises from nodes’
mobility. Our analysis does not consider stochasticity, relative
movement being the only factor in determining connectivity.
This assumption is made only to ease the analysis and is
not required for SCAN to function correctly, as our testbed
experiments in Sec. V demonstrate.

B. The Freeze Phase-Transition

If our nodes are confined to a very small space relative
to their transmission radii, then they will never freeze. As
the size of the space is increased, and nodes are able to
spread further apart, the likelihood of all nodes eventually
freezing increases. As the size of the space grows to ∞,
we eventually will reach a point where, with probability 1,
all nodes will freeze at some point in time. Once frozen,
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(a) Triangles (b) Squares (c) Hexagons

Fig. 10. The only regular Tessellations.

nodes cannot obtain new neighbors, and thus network remains
permanently in a frozen configuration. Here, we investigate
this phase-transition. Given k and N , what is the ratio of
the size of the space to the node transmission radius, beneath
which the network is forever moving, and above which the
network always reaches a freezing configuration? We will first
build a model to predict this point and then verify our model’s
accuracy via simulation.
1) Minimum Bounding Area: To determine the inflection

point, we begin by considering for a fixed broadcast radius and
number of nodes how tightly those nodes could possibly be
packed and still freeze. By closely bounding how tightly these
nodes might be packed, we can then reverse this relationship
and come to an approximation of how many nodes might be
packed in a given area and still freeze.
Our model is composed of two components: a regular

spatial pattern in which nodes can be laid out in a frozen
configuration and the minimum scaling of this spatial pattern
below which additional links will form. If we choose our
model appropriately, the minimum area needed by this model
will approximate the minimum area needed for such a system
to freeze. Our main task is to identify a regular spatial pattern
that is more dense than almost any frozen configuration we
can expect to encounter and then to deliver a closed form
equation for that pattern’s size as a function of k, N , and r.
We begin by considering the simplest case k = 1 and

a simple topology, a perfectly square space of area A. In
order for a network to freeze, we must find some spatial
configuration of the nodes such that (a) no node has any
neighbors in common with any other neighbor, (b) the nodes
are configured as densely as possible, and (c) the configuration
is regular enough to analyze easily. The final criterion leads
us to explore regular tessellations. A tessellation is created
when a shape is repeated over and over again covering a plane
without any gaps or overlaps. A regular tessellation is simply
a tessellation composed of regular polygons - polygons for
which all sides are the same length s. As it turns out, our
search is relatively simple since there are only three regular
polygons which tessellate in the euclidean plane: the triangle,
square, and hexagon [28] as shown in Fig. 10.
Since we consider k = 1, triangles cannot be used, as

any neighbor v of a given node u is also neighbors with the
third node w on any triangle built upon edge u, v. Of the two
remaining options, the hexagon allows for a tighter packing.
However, it is moderately more difficult to work with than
the square, upon which, as we will see, a very reasonable
approximation of the phase-transition can be built.
Examining Fig. 11(a) we see that the maximum size for s

in a square, the length of whose diagonal is > r is r/
√

2 since
r2 = 2s2. We can then place one node on each of the grid
points on a 
√N�X
√N� grid as seen in Fig. 11(b). Such a
grid will take up an area of A = (r2/2)(
√N − 1�)2 and the

(a) Square w/ radius r (b) 25 node 5x5 grid (c) 37 node 5x5 grid

Fig. 11. Geometry of our bounding area model.

ratio of one node’s broadcast to the N-node bounding area is

πr2/A = 2π(

√

N� − 1)2 (3)

Extending this model to cover larger k is not overly difficult.
For k = 2 instead of placing a single node at each grid
intersection, we place two nodes at every other intersection
as seen in Fig. 11(c). In this way, each node shares precisely
one node with any of its neighbors, whether it is alone on its
grid point or sharing it. Then, for a given N we only need

√2N/3� − 1 grid lines on each side, requiring an area of
(r2/2)(
√2N/3� − 1)2. k = 3 is even easier requiring us to
put two nodes at each grid intersection. We can extend this
strategy to arbitrary k ≥ 1 obtaining:

πr2/A = 2π/(

√

2N/(k + 1)� − 1)2 (4)

which describes the ratio of an individual node’s broadcast
area to the total area. As will now be seen, our model’s
prediction tightly bounds the behavior seen in simulation.
2) Ratio of Broadcast Area to Bounding Area in Simulation:

Our simulation results in this section were obtained through a
binary search for the largest ratio of individual node broadcast
area to bounding area that would result in a frozen configura-
tion. The precise phase-transition point cannot be determined
via simulation as ’failure to ever freeze’ is an asymptotic prop-
erty. Instead, we estimate this value by measuring the average
convergence times from our experiments in the unbounded
space and allowed our system to run in excess of 10 times the
maximum convergence times taken there.
Each combination of N and k received 10 trials, each

over the course of up to 5000 time-steps. To obtain a clearer
correspondence with our model, in this trial alone, we did not
stochastically vary the connection lengths. At the end of each
trial that did not result in a freezing configuration, the ratio
was decreased by half its current value for the subsequent trial.
Conversely, whenever a trial ended in a freezing configuration
the ratio would be increased by half. The first trial began
with a ratio set slightly above the point where freezing might
be expected to occur (determined by a set of preliminary
experiments).
The results of our exploration for k = {1, 4} are shown

in Fig. VI-B2, as are the model predictions from (4) (other k
values bound similarly but were omitted for graphical clarity).
In this figure the y-axis measures the ratio of an individual
node’s broadcast area to the total bounding area while the
x-axis measures the number of nodes N , each plot point
representing the highest such ratio found at which a network
of N froze.
The behavior of the phase-transition point for all k can be

characterized roughly as “for every doubling in the number
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Fig. 12. Freezing phase transition.

of nodes, the ratio between node broadcast area and bounding
area decreases by slightly less than half”. Moreover, increasing
values of k appear to lie at a relatively constant log-scale
distance above one another. This is unsurprising as at higher
levels of k a given number of nodes with a given broadcast
area can fit into a smaller bounding space while still being
able to reach a freezing state.

C. Performance in Obstacle-Free Environments

Here, we explore properties of the frozen configuration
when SCAN and ND are applied in an unbounded space, where
the configuration is guaranteed to eventually freeze. In our
simulation, nodes are deployed at a gateway from which they
proceed to spread across a 2-dimensional plane. As these
nodes spread across the plane, they extend the area which
the network attached to the station covers. However, if nodes
becomes cut-off from the gateway through a network partition
event, the entire area over which only these nodes broadcast
ceases to be covered. Here we measure coverage area as the
union of the area over which nodes currently connected to
the gateway can broadcast. Consequently, coverage implicitly
takes into account global connectivity, insofar as that connec-
tivity benefits the coverage goal of a self-deploying wireless
network.
1) Bounding the Maximum Coverage for k = 1: We begin

by computing an analytic upper bound on the coverage-ratio.
For the sake of tractability, we will assume that the transmis-
sion range of all nodes have identical broadcast discs bounded
by a fixed radius r 2, and validate the results with simulation
where we allow broadcast distance to vary stochastically.
We bound the maximum area a network running SCAN can

cover for k = 1 (and consequently for all k ≥ 1, although the
bound becomes progressively less tight as k increases). We
first note it is possible to bound this area trivially as Nπr2

where N is the number of nodes in the network. However,
we can give a much tighter bound for k = 1 by examining
the minimally overlapping line topology shown in Fig. 13. To
calculate this area we first must determine the overlap between
two nodes at distance r from one another.
Consider some neighbor v of u. v will be positioned at some

distance s from u. This distance determines the shaded area of

2Although it has been recently shown that in some cases other models are
required in order to capture issues such as collision and wireless interference
[29], [30], the model still provides a reasonable abstraction. Extending the
results to general SINR-based constraints is a subject for further research.

Fig. 13. The connected topology covering maximal area for k = 1.

(a) v at distance d from u (b) calculating overlap

Fig. 14. Overlap calculations.

overlap as seen below in Figs. 14(a) and 14(b). We calculate
this shaded area S by noting that in general it is four times
the size of segment circumscribed by u’s perimeter and the
dashed line and the x-axis. Since both circles have identical
radii r and are centered at u and v respectively, by symmetry
the dashed line lies halfway between them. This implies that
s/2 ≤ x ≤ r and 0 ≤ y ≤ √r2 − x2 in the area of interest.

S = 4
∫ r

s/2

∫ √
r2−x2

0

dydx

= 4
∫ r

s/2

√
r2 − x2dx

= 4
[
x

2

√
r2 − x2 +

r2

2
sin−1

(x

r

)]r

s/2

Since in this case s = r we have:

S =
2π

3
r2 −

√
3

2
r2

Finally, we calculate the total area covered in a straight line
configuration is

A = πr2+(N−1)(πr2−S) =

[
π + (N − 1)

(
π

3
+
√

3
2

)]
r2

(5)

2) Coverage in Simulation for k ≥ 1: Figs. 15(a) and
15(c) plot the size of SCAN’s coverage area (y-axis) as a
function of k (x-axis) for σ = 0.05, 0.2. The respective curves
depict differing numbers of nodes in the network, with each
node’s communication range averaging a unit distance. The
coverage area increases in proportion to the size of N , and is
a decreasing convex function with the size of k, where nodes
are required to maintain larger collections of neighbor sets.
Additionally, for k = 1 the benefit of increased mobility in
providing greater coverage is more than offset by the decrease
in connectivity. For k > 2, the frequency of any network



946 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 5, JUNE 2012

 0

 20

 40

 60

 80

 100

 120

 140

 1  2  3  4  5  6  7  8

C
ov

er
ag

e 
A

re
a

k

n=6
n=12
n=25
n=50

n=100
n=200

(a) SCAN, σ = 0.05
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(b) ND, σ = 0.05
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(c) SCAN, σ = 0.2
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(d) ND, σ = 0.2

Fig. 15. Normalized coverage area (NCA).

partition does decrease but proves increasingly costly from a
coverage standpoint.
Figs. 15(b) and 15(c) provide comparable plots for ND.

The same trends discussed for SCAN are apparent, although
optimally parameterized SCAN covers in excess of 50% greater
area than optimally parameterized ND.
Here, we can see that increasing link variability from σ =

0.05 to σ = 0.2 shifts optimal parameterization of both SCAN
and ND by one. This seems sensible, as with less reliable
links, the best parameterization will need to be a bit more
conservative in estimating when movement can be safely made
without contributing to a network partition event.
3) Frequency of Network Partition: Figs. 16(a) and 16(c)

plot the fraction of time that the SCAN graph is disconnected
(y-axis) as k is again varied on the x-axis with the respective
curves plotting differing values ofN . Here, we see that the rate
of disconnection is relatively unaffected by the size of N , but
drops dramatically as a function of k. Note that even for values
of k = 2 and k = 3, a significant number of disconnections
occur as connections become less stable. This is due to the
variability in the size of the transmission radius: nodes will
form neighbor relationships when the radius is large, and then
suddenly lose them, even when frozen, when the radius is
small. By increasing k, nodes have a sufficiently large set of
neighbors to offset the stochastic disconnections.
Figs. 16(b) and 16(d) show the same plots and trends for ND.

In striking comparison to SCAN, ND’s convergence towards
a zero-partition frequency is both much more gradual, and
incomplete. ND has a non-zero partition rate, even for k = 12.
Increasing the link variability σ has relatively little impact,

primarily affecting SCAN at k = 2 and having a slightly more
noticable, but still minor, impact on the stability of ND.
4) Movement of Nodes: We now examine the impact on

SCAN varying values of k on nodal movement for N = 200
considering first the more stable broadcast scenario.
Fig. 17(a) shows the fraction of nodes moving (y-axis)

plotted against time (x-axis). As is expected, eventually all
networks freeze. There are two interesting trends. The first is
a significant steepening of the curves as k increases. As k
grows larger, not only does the network freeze more quickly,
but the vast majority of the nodes halt their movement within
a relatively short time window. The second interesting trend
is that all distributions have relatively thin tails. There tends
to be a long period before the network freezes during which
only very few of the network’s nodes are moving. This trend
is most pronounced for small k.
When we consider the PDF (y-axis) of the fraction of nodes

moving (x-axis) in Fig. 17(b) we can see the above trends
clearly. For k ≥ 2 the PDF spikes for very large numbers
of nodes and very small numbers of nodes. Most nodes stop
during a relatively short period of time, but the last few
nodes take a significantly longer time to halt. For k = 1 the
PDF actually peaks significantly before this point. We do not
currently have an explanation for this behavior.
5) Target Detection: To assess the performance of SCAN

for a target detection mission, we ran a simulation experiment
in which nodes detected target when they were within 1

10

th
of

their mean broadcast radius. To gain an understanding of the
interplay between connectivity and exploration targets were
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(a) SCAN, σ = 0.05
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(b) ND, σ = 0.05
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(c) SCAN, σ = 0.2
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Fig. 16. Disconnection frequency.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20  40  60  80  100  120  140  160  180  200

F
ra

ct
io

n 
N

od
es

 M
ov

in
g

Time

k=1
k=2
k=4
k=8

(a) % nodes moving vs. time.
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Fig. 17. Node movement N = 200, STD = 5%.

only registered as detected by the system, if the detecting node
was connected to the base station through some path in the
network at time of detection.
Targets were located uniformly throughout the space with

a density of 2 per square mean broadcast radius. Performance
was examined for the 5% STD broadcast case.
Fig. 18(a) shows the performance of SCAN at the target

detection task plotting the number of targets detected (y-axis)
against k (x-axis). For all curves, the number of targets found
decreases monotonically with k. From this we might conclude
that connectivity is of little value in the target detection task,
even though the version we investigate requires some level
of connectivity to detect targets! However, this would be
a mistaken conclusion as comparison to the corresponding
Fig. 18(b) for ND shows. When no provisioning for connec-
tivity is supplied ND we see significantly poorer performance
than that of SCAN. This can be seen in the direct comparison
of optimally parameterized variants of SCAN and ND shown
in Fig. 18(c) (y-axis - percentage improvement of SCAN over
ND, x-axis - network size). The conclusion to be gained is that
intelligent maintenance of some minimal level of connectivity
is substantially helpful for the target detection task (above
and beyond any other potentially advantage provided by con-
nectivity maintenance) although overmuch and/or unintelligent
connectivity provisioning will decrease performance.
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Fig. 18. Target detection.

D. Performance in Indoor Environments

In this set of simulation experiments we examined how
SCAN and ND performed in a more complex environment,
filled with walls that were obstacles to both wireless signal
propagation and also to node movement. For SCAN, we
found the relationship between k and the coverage area to be
substantially similar to those of the obstacle-free environment,
albeit with slightly higher rates of partition for a given k.
However, things are very different for the parameterization of
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(b) 16 nodes.
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Fig. 19. SCAN vs. ND indoors.

ND. In an indoor environment the presence of walls affects not
only connectivity but also movement. Indoors, corridors and
other obstacles increase the likelihood that a cluster of nodes
begins moving in the same direction. When this occurs ND’s
behavior becomes pathological. Particularly if the number of
nodes in the cluster is greater than k, then all nodes in the
cluster will be able to move away from the rest of the network
without ND’s freezing criterion being triggered. Thus k must
be made very high in order to maintain connectivity.
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Partially as a consequence of this, partially because SCAN’s
functioning is little affected by obstacles, the difference in
performance between them is significantly greater than in
our obstacle-free environment. In Figs. VI-D we can see a
comparison of the performance of both SCAN and ND for a
systems of 8, 16, and 32 nodes. The x-axis of each figure plots
the normalized coverage area (the total coverage area, divided
the by broadcast area of a single node) and the y-axis plots
the frequency of disconnections. Several aspects of these plots
are noteworthy. The first trend seen is that as network size
increases, SCAN outperforms ND by an increasing margin. As
the number of nodes with which SCAN has to work increases,
it will be able to cover an increasingly large area. However, ND
which is very sensitive to obstacles cannot make much use of
additional nodes, which stay trapped in a relatively small area.
For this same reason, as the number of nodes increases, the
variability of ND’s resultant coverage area shrinks. Irrespective
of the value k used, nodes running ND will be quickly stopped
as obstacles server connectivity links below the movement
threshold. This can be seen in the steady progression of ND
from greatly bowed to much more mildly so.
Since each of these graphs displays a similar structure

we will discuss Fig. 19(c). In this figure, even at its worst
parameterization (k = 1), SCAN provides strongly bounded
connectivity of 80%, while poorly parameterized ND provides
almost no assurance of connectivity. Moreover, for a given
minimum level of required connectivity, SCAN far outperforms
ND, generally covering between 2 and 3 times greater area
for the network sizes studied in this simulation experiment.
Finally, in this plot, one can see that ND may produce the same
area coverage for different node disconnection frequencies.
When a low k is chosen, ND does a poor job at maintaining
connectivity and no nodes are attached to the base, resulting
in low coverage despite nodes traveling relatively far, while
a high k causes the network to freeze before it has covered
much area.

E. Correlation between Simulation and Experiments

The experimental design for our simulation experiments was
necessarily different from the hardware experiments conducted
on our testbed. This was both because of differences in goal
(our simulation was designed to explore asymptotic propri-
eties and extend modeling, while our hardware experiments
examined the function of SCAN and its suitability for use in
a real-world setting) The natural constraints of our experi-
mental space dictated the design of testbed experiments, our
experimental space limited the number of mobile nodes and
density of monitoring nodes we could reasonably we could
reasonably deploy. Conversely our simulation environment
could only provide a rough approximation of the vagaries of
wireless broadcast (e.g., multi-path, fading, interference from
competing systems) but was well suited towards exploring
SCAN’s behavior at large network scales.
Consequently, we might expect that SCAN’s behavior on

our hardware testbed would show little in common with it’s
behavior in our simulator (and analytic models). However,
when we compared how the number of nodes moving evolved
with time as SCAN was run in identically parameterized
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Fig. 20. Number of nodes moving vs. time for N = 6.

versions of both our simulation and experimentN = 6, k = 2,
we found a substantial degree of correlation. This can be seen
in Fig. 20 which compares the number of nodes moving (y-
axis) for both the testbed and simulation against time (x-
axis). 3 The degree to which movement patterns correlate
between our simulation and testbed experiments indicate that
the general trends of the results produced in each experimental
domain bear significant applicability to the other.

F. Summary of Results

In this section, we identified the freezing phase transition
point for networks running SCAN. Above this point the
network will freeze and below this point the network will
not. We find that our analytic approximation is a good fit
for our simulated results. We then focused our attention on
obstacle-free environments. Using simulation, we found SCAN
superior, covering an area 1.5 times larger than ND. Finally,
we examined SCAN’s behavior under more realistic simu-
lation conditions, finding that its behavior vis-a-vis optimal
k remained substantially the same, but that its performance
advantage over ND increased five-fold over that found in
obstacle-free environments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented SCAN, a fully-distributed,
low-overhead, tunable protocol for maintaining the physical
layer connectivity of a mobile wireless network. SCAN en-
ables nodes to move about the space as they desire, freezing
only when risk of further movement endangers the network’s
connectivity. By relying on local connectivity information
instead of localization data combined with predictive wire-
less models, SCAN is able to handle noise and obstacles
present in realistic settings. SCAN is extensible, allowing
for the inclusion of additional information (e.g., RSSI), and
expects little from the environment or hardware, making it
an ideal connectivity maintenance mechanism for challenged
hardware/environments, or to serve as a backup mechanism
for higher-performance techniques with stronger environmen-
tal/hardware requirements. When tested on hardware in a

3We compare with the higher variability simulation link model with link
length σ = 20% of mean length and appropriate time rescaling.
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challenging indoor environment, we found SCAN allowed
for significant area coverage while robustly maintaining full
network connectivity over 99% of the time.
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