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ABSTRACT
An image can be assumed to be a composite of the fore-
ground and the background. The foreground and the back-
ground of each pixel are linearly combined in terms of this
pixel’s foreground opacity (called alpha). Image matting
is the process of estimating the foreground, the background
and the alpha for each pixel. In this paper, we transform the
ill-posed image matting problem into two over-determined
linear optimization problems by introducing two medium
variables and imposing smoothness constraints. Closed form
solutions can be obtained from the two problems. Extensive
experimental results indicate that our algorithm can gener-
ate high-quality matting results.

Categories and Subject Descriptors
I.4 [Image Processing and Computer Vision]: Miscel-
laneous

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Image matting is an important technique in image and

video editing, which was originally developed for film and
video production [3]. The task of image matting is to extract
the foreground object from an image by estimating a color
and an opacity for each pixel of the foreground object. The
opacity of a pixel i is called the alpha (αi) and the whole
opacity map is referred to as the alpha matte (α).

Formally, a color image I can be modeled as the com-
posite of a foreground image F and a background image B,
where I, F, and B all have three RGB color channels, de-
noted by (Ir, Ig, Ib), (Fr, Fg , Fb), and (Br, Bg , Bb), respec-
tively. Based on the alpha channel presented by Porter and
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Duff [8], the most common compositing equation for the ith
pixel in the image is expressed as:

Ii = αiFi + (1 − αi)Bi, (1)

where Ii = (Iri, Igi, Ibi), Fi = (Fri, Fgi, Fbi), and Bi =
(Bri, Bgi, Bbi) are the ith pixel’s composite, foreground color,
and background color, respectively, and αi is the opacity of
the ith pixel. The value of αi is within the interval [0, 1].
The task of image matting is to find Fi, Bi, and αi for given
Ii. Obviously, for natural image matting, this problem is
under-constrained since at each pixel we have 3 equations
from the RGB channels with 7 unknowns. To pull a matte
accurately, additional constraints are necessary.

Usually, an input image is labeled manually as three parts
before matte pulling, including the definite foreground, the
definite background, and the unknown region. These three
parts combined is called the trimap. For a given trimap,
the matte pulling is carried out in the unknown region using
information taken from the definite foreground and back-
ground. Some recent matting approaches [13], [6] start from
a few scribbles indicating a small number of foreground and
background pixels, and then estimate the 7 unknowns at
every pixel in the unknown region.

The early matting approaches are based on known back-
ground. The blue screen matting [11], [7] approaches try to
simplify the matting problem by constructing F and α with
B known (typically blue and green). The difference mat-

ting [9] is similar to the blue screen matting, which requires
pre-recording a background image which may be a complex
image without any foreground object. Then α is determined
by taking the difference between B and I, and comparing the
difference to a threshold. Although the blue screen matting
and difference matting are successful in many applications,
one limitation is the need of the background from a user-
controlled environment.

Recently, many natural image matting approaches are pre-
sented, which pull a matte from an image with arbitrary
background. The Knockout [1] algorithm starts from the
known foreground and background of the trimap and extrap-
olates the known foreground and background colors into the
unknown region to estimate α. Ruzon and Tomasi’s method
[10] analyzes the color samples of the foreground and back-
ground by the mixture Gaussian distribution and uses them
to estimate α. Hillman et al. [5] use the principal compo-
nents analysis (PCA) to analyze the foreground and back-
ground samples. The Bayesian matting [2] improves Ruzon
and Tomasi’s method, in which the color samples of F and
B are clustered and modeled as mixture Gaussians. A maxi-
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mum a posterior (MAP) estimation is then used to calculate
F, B, and α simultaneously for each pair of the foreground
and background in a Bayesian framework. The final α is cho-
sen from the pair of the background and foreground giving
the maximum likelihood. The Poisson matting proposed by
Sun et al. [12] formulates the natural image matting prob-
lem as one that solves the Poisson equation with the matte
gradient field and the Dirichlet boundary conditions.

The above natural image matting approaches need a known
trimap. The methods proposed by Wang and Cohen [13]
and Levin et al. [6] use a scribble-based interface. Both
start from a few scribbles indicating a small amount of back-
ground and foreground pixels. The former uses belief prop-
agation to iteratively estimate the unknowns at every pixel,
while the latter proposes a spectral analysis method to do
the work.

In this paper, we present a novel matting approach that
converts the image matting problem into a simple linear op-
timization problem and obtains a closed form solution. Like
some existing algorithms [1], [2], our approach also handles
the problem in two steps. First, F and B are estimated,
and then α is calculated using F and B. In our method,
with two sets of medium variables X and X′ introduced, X,
X′, F, and B are estimated simultaneously by solving a sys-
tem of linear equations using the least square error (LSE)
estimation, and then α is obtained with these estimated X,
X′, F, and B by solving another system of linear equations
also using the LSE estimation. In both steps, closed form
solutions are obtained.

Extensive experimental results have demonstrated that
our algorithm can obtain high-quality image matting. We
also give comparative experimental results obtained by our
algorithm and other four recent algorithms. In most cases,
the five algorithms present comparable results, but in many
cases, our algorithm outperforms the others.

2. FORMULATION
Our approach to image matting is to formulate it as a lin-

ear optimization problem, from which a closed form solution
can be obtained. From (1), obviously we cannot obtain F,
B, and α using a linear optimization. Define two sets of
medium variables

Xi = αi(Fi − Bi), X′
i = (1 − αi)(Bi −Fi). (2)

Then the compositing equation becomes

Ii = Xi + Bi, Ii = X′
i + Fi. (3)

We can see that if X, X′, F, and B are available, from (2), α
can be obtained immediately. Therefore, the matting prob-
lem is divided into two steps: to find X, X′, F, and B by
solving (3) with a smoothness constraint, and to calculate
α using (2). Here one of the equations in (2) seems redun-
dant if the other one is defined. Why both are used will be
explained in Section 2.2.

2.1 Calculating X, X′, F, and B

From (3) we cannot obtain Xi, X′
i, Fi, and Bi since there

are 12 unknowns in the 6 equations for a color image. There-
fore, we enforce a smoothness constraint on F and B like
some other methods [2], [12]. Let P denote the set of the
pixels of the unknown region and Wi be a window of size
n × n centered at pixel i. By enforcing the smoothness as-
sumption on F and B, for each color channel c = r, g, or b,

our goal is to minimize the following cost function:

J(Xc, X
′
c, Bc, Fc) = J1(Xc, Bc) + J2(X

′
c, Fc), (4)

where

J1 =
∑

i∈P

((
Ici − (Xci + Bci)

)2
+

∑

j∈Wi

(
Bci − Bcj

)2
)
, (5)

J2 =
∑

i∈P

((
Ici − (X ′

ci + Fci)
)2

+
∑

j∈Wi

(
Fci − Fcj

)2
)
. (6)

The first terms on the right hand sides of J1 and J2 are from
(3), and the second terms are the smoothness constraints,
where Ici is known and for j /∈ P , Bcj and Fcj are also
known.

It is clear that every term in (5), (Ici − (Xci + Bci))
2 or

(Bci − Bcj)
2, can be rewritten in this form:

(
aT z− y

)2

, (7)

where z = [xc,bc]
T , xc (or bc) represents the values of Xc

(or Bc) in the unknown region in vector form, and a =
(a1, a2, ..., a2|P |)

T . More specifically, for (Ici−(Xci +Bci))
2,

we have

ai = 1 (for Xci),

ai+|P | = 1 (for Bci),

at = 0, t ∈ {1, 2, ..., 2|P |}\{i, i + |P |},

y = Ici;

for (Bci − Bcj)
2,

ai+|P | = 1 (for Bci),

aj+|P | =
{

−1, if j ∈ P\{i}
0, if j /∈ P

(for Bcj),

at = 0, t ∈ {1, 2, ..., 2|P |}\{i + |P |, j + |P |},

y =
{

0, if j ∈ P\{i}
Bcj , if j /∈ P

.

Then J1(Xc, Bc) in (5) can be rewritten in matrix form:

J1(z) = ‖Az− y‖2 , (8)

where A is a matrix of size n2|P | × 2|P | whose elements are
the ai’s given above, and y is a vector of size n2|P | whose
elements are the y’s.

To minimize J1, we take the derivative of J1 with respect
to z and set the derivative to 0:

∂J1

∂z
= 2AT Az− 2AT y = 0.

Therefore, we have

z = [xc,bc]
T = (AT A)−1AT y = A+y. (9)

If A is a square matrix of full rank, A+ = (AT A)−1AT =
A−1 is the inverse of A; otherwise, A+ is the pseudo inverse
of A.

Similarly, J2(X
′
c, Fc) can be rewritten in matrix form:

J2(z
′) =

∥∥A′z′ − y′
∥∥2

, (10)

where z′ = [x′
c, fc]

T , and x′
c (or fc) represents the values of

X ′
c (or Fc) in the unknown region in vector form. We thus

have

z′ = [x′
c, fc]

T = A′+y′, (11)
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where A′+ = (A′T A′)−1A′T . Since J1 and J2 are indepen-
dent, xc, x′

c, bc, and fc are also the closed form solution to
minimizing J(Xc, X

′
c, Bc, Fc).

By examining J1 and J2 in (5), (6), (8), and (10), we can
see that the above solution can also be obtained by solv-
ing the following system of over-determined linear equations
using the LSE estimation:

Xci + Bci = Ici, Bci − Bcj = 0, i ∈ P, j ∈ Wi\{i}, (12)

X ′
ci + Fci = Ici, Fci − Fcj = 0, i ∈ P, j ∈ Wi\{i}. (13)

2.2 Calculating α

From (2), given X, X′, F, and B, we have:

α̃i =
Xi

Fi − Bi

, α̃i = 1 −
X′

i

Bi − Fi

, (14)

where α̃i is a vector of size 3, whose elements are computed
alpha values for R, G, and B channels, and 1 = (1, 1, 1)T .
Conventionally, the alpha values are the same for the three
channels at each pixel. Here α̃i is considered as a medium
variable, from which with additional constraints, the same
alpha value αi for pixel i can be achieved.

Combining the two equations in (14) results in

α̃i =
1

2
(1 −

X′
i

Bi − Fi

+
Xi

Fi −Bi

). (15)

Let

α̃ci =
1

2

(
1 −

X ′
ci

Bci − Fci

+
Xci

Fci − Bci

)
, c = r, g, b.

Then the mean and variance of the components of α̃i at pixel
i are αi = 1

3

∑
c
α̃ci and σ2

i = 1

3

∑
c
(α̃ci −αi)

2, respectively.
It seems that we have been able to solve the matting problem
by choosing αi = αi. However, this scheme cannot give
satisfactory results. For example, suppose that α̃ri = 0.5,
α̃gi = 1.0, and α̃bi = 0.1 at pixel i. Then αi is unreliable
because σ2

i is too large. In another case, if α̃ri = 0.52, α̃gi =
0.50, and α̃bi = 0.48, then αi is reliable. Our experimental
results show that in regions where σ2

i ’s are large, setting
αi = αi gives unnatural matting results.

Now our goal is to minimize the following criterion:

J ′(α) =
∑

i∈P

((
e−µ1σ2

i (αi − αi)
)2

+
∑

j∈Wi

(
µ2(αi − αj)

)2
)
,

(16)
where µ1 and µ2 are two factors. In the first term of J ′(α),
large (small) σ2

i allows more (less) deviation of αi from αi.
The second term of J ′(α) enforces a smoothness constraint
on α. The two factors µ1 and µ2 are used to balance the
two terms.

J ′(α) in (16) is similar to J1(Xc, Bc) in (5). It can also
be rewritten in matrix form:

J ′(α) = ‖Dα − m‖2, (17)

where α represents the values of α in the unknown region
in vector form, D is a matrix of size n2|P | × |P |, and m is
a vector of size |P |. The derivation of D and m is similar
to that of A and y in Section 2.1. By minimizing J ′(α), we
have

α = D+m, (18)

where D+ = (DT D)−1DT .

Figure 1: Some comparative results by the five algo-
rithms. The first column includes two input images
and two zoomed-in regions bounded by the white
boxes in the input images. The results for the two
images are the alpha mattes. The results for the
zoomed-in parts include the alpha mattes and the
composed images with blue background.

Again, this result is the same as the result of the LSE
estimation of the following over-determined linear equations:

e−µ1σ2

i αi = e−µ1σ2

i αi, i ∈ P, (19)

µ2αi − µ2αj = 0, i ∈ P, j ∈ Wi\{i}. (20)

The matrices of A in Section 2.1 and D in Section 2.2 are
of large size, which may cause the out-of-memory problem in
implementation when |P | is large. Fortunately, these matri-
ces are sparse and there are many techniques developed for
sparse matrix computation [4]. Let us take A for example.
It is not difficult to see that the density of nonzero elements
in A is smaller than 1/|P |.

3. EXPERIMENTAL RESULT
To demonstrate the performance of our algorithm, we first

test it on some images frequently used in image matting liter-
ature. We also compare our algorithm to Hillman’s [5], Ru-
zon and Tomasi’s [10], Poisson [12], and the spectral analysis
[6] methods. The trimaps are the same for all algorithms.
In our algorithm, the parameters µ1 and µ2 are set to 100
and 0.01, respectively.

Figure 1 shows some results in which our algorithm out-
performs the others. For the second input image, the spec-
tral method obtains a result with quality similar to ours in
the rectangle region, but it performs not as well as ours in
some other regions, such as the one inside the red circle.

To provide a quantitative evaluation for the five algo-
rithms, we test them on synthesized images. First, an al-
pha matte is simulated as the ground truth (Figure 2(a)).
Then an foreground image is taken from an real fire image.
The composed image of this foreground, the simulated al-
pha, and blue background is shown in Figure 2(b). In each
experiment, the background is a sub-image randomly taken
from an large image (Figure 2(e)). Figure 2(c) gives an ex-
ample of the composed image. The summed absolute error
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(a) (b) (c) (d)

(e) (f)

Figure 2: Quantitative evaluation of the algorithms.
(a) Simulated alpha. (b) Composed image of a fire
foreground, the simulated alpha, and blue back-
ground. (c) Composed image with a background
taken from (e). (d) Trimap. (e) Large image to gen-
erate the background. (f) Total errors by the five
algorithms.

between the computed matte and the ground truth is used
to compare the performances of the algorithms. Figure 2(f)
shows the total errors obtained by the five algorithms after
2000 experiments, from which we can see that our algorithm
obtains the minimum error. Due to space limitation, we can-
not show many comparative results. In most cases, the five
algorithm give comparable results. However, in many cases,
our algorithm performs best.

Figure 3 gives other results by our algorithm. Its goal is
to pull the mattes from the input images and compose the
foreground with new background images. From the result
we can see that the new composed images look quite natural
based on the high-quality mattes.

4. CONCLUSION
In this paper, we have proposed a novel algorithm to trans-

form the ill-posed image matting problem into two over-
determined optimization problems. From these two prob-
lems, closed-form solutions can be obtained by enforcing
the smoothness constraints and introducing two medium
variables. Our algorithm includes two steps. In the first
step, the foreground and the background are estimated and
in the second step, the matte is pulled with the estimated
foreground and background. Each step can be solved using
linear optimization. The experimental results demonstrate
that our algorithm can generate high-quality image matting.
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