
Graph Edge Partitioning via Neighborhood Heuristic

Chenzi Zhang
∗†

University of Hong Kong

czzhang@cs.hku.hk

Fan Wei
†

Stanford University

fanwei@stanford.edu

Qin Liu
‡

Huawei Noah’s Ark Lab

karlqliu@gmail.com

Zhihao Gavin Tang

University of Hong Kong

zhtang@cs.hku.hk

Zhenguo Li
§

Huawei Noah’s Ark Lab

li.zhenguo@huawei.com

ABSTRACT
We consider the edge partitioning problem that partitions the edges

of an input graph into multiple balanced components, while mini-

mizing the total number of vertices replicated (one vertex might

appear in more than one partition). This problem is critical in min-

imizing communication costs and running time for several large-

scale distributed graph computation platforms (e.g., PowerGraph,

Spark GraphX). We first prove that this problem is NP-hard, and

then present a new partitioning heuristic with polynomial running

time. We provide a worst-case upper bound of replication factor for

our heuristic on general graphs. To our knowledge, we are the first

to provide such bound for edge partitioning algorithms on general

graphs. Applying this bound to random power-law graphs greatly

improves the previous bounds of expected replication factor. Ex-

tensive experiments demonstrated that our partitioning algorithm

consistently produces much smaller replication factors on various

benchmark data sets than the state-of-the-art. When deployed in

the production graph engine, PowerGraph, in average it reduces

replication factor, communication, and running time by 54%, 66%,

and 21%, respectively.

CCS CONCEPTS
• Information systems → Computing platforms; • Mathe-
matics of computing→ Graph algorithms;

KEYWORDS
Graph edge partitioning; distributed graph mining

∗
Work performed during the author’s internship at Noah’s Ark Lab, Huawei.

†
Equal contribution.

‡
Work performed during the author’s graduate study at the Chinese University of

Hong Kong.

§
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00

https://doi.org/10.1145/3097983.3098033

(a) (b) (c)

Figure 1: Vertex vs edge partitioning. (a) Ideal vertex parti-
tioning cuts two edges; (b) Ideal edge partitioning cuts only
one vertex, Replication Factor=1.14 (solid edges for one parti-
tion, dashed edges for the other); (c)Worst edge partitioning,
Replication Factor=2.

1 INTRODUCTION
To handle large-scale graphs, distributed graph engines [11, 12, 16]

partition the input graph and parallelize the computation on a clus-

ter of machines. A traditional approach to graph partitioning is

vertex partitioning: a distributed graph engine partitions the vertex

set of a graph into balanced partitions such that the number of

edges across different partitions is minimized. However, for most

of the large real-world graphs, edge partitioning (Fig. 1) is found to

be more effective in advanced distributed graph engines [6, 7, 16],

which evenly assigns edges to machines in a way that minimizes the

number of times each vertex is cut (i.e., replicated). Because most

real-world graphs (e.g., social networks, web graphs) have skewed
power-law degree distribution, which means that most vertices have

relatively few neighbors while a few have many neighbors (e.g.,

celebrities on Facebook’s social network). The power-law degree

distribution can lead to substantial work imbalance in distributed

graph systems that adopt vertex partitioning. Since the storage,

communication, and computation complexity of a partition is lin-

ear in the number of edges in the partition, the running time of

each vertex partition can vary widely. Not surprisingly, researchers

demonstrated that edge partitioning performs better on many large

real-world graphs [6, 7]. This important finding attracts great in-

terests in edge partitioning recently [3, 6, 13, 15, 17].

Edge partitioning has been widely adopted in recent graph sys-

tems including PowerGraph [6], Spark GraphX [7], and Chaos [16],

to divide the graph across machines. It turns out that the overall

https://doi.org/10.1145/3097983.3098033

system performance depends greatly on the quality of graph parti-

tioning. To understand what makes a good edge partitioning, two

issues should be addressed. Firstly, the jobs should be distributed

evenly across machines, in order to minimize delay caused by strag-

glers during each round or superstep of computations. More criti-

cally, the communication between machines should be minimized,

which is often a bottleneck in graph computing due to the intrinsic

dependency and expensive random access in the graph [6]. While

it is relatively easy to solve the first issue by partitioning the edges

evenly, the second issue can be highly challenging, which asks to

minimize the so-called vertex replication (Section 2.2) that is caused

when two adjacent edges (join at the same vertex) are allocated to

different machines.

Quite a few methods have been proposed for edge partitioning.

Chaos [16] distributes the edges randomly (RAND) under high net-

work bandwidth. RAND ignores all graph structure and incurs high

vertex replication (Section 5). The density-based hashing method

(DBH) [17] first partitions the vertices randomly, and then assigns

each edge (x ,y) by following one of its end vertices (i.e., x and y)
of smaller degree. DBH can exploit the skewed degree distribution

of power-law graphs, but it leverages little graph structure, like

RAND. Oblivious [6] is a streaming algorithm that considers the dis-

tribution of previously assigned edges when assigning an incoming

edge – an edge is more likely to be assigned to the partition with

more adjacent edges. HDRF [15] is another streaming algorithm that

extends Oblivious by further exploiting the power-law degree distri-

bution, like DBH. Both HDRF and Oblivious rely only on historical

data, and thus use the graph structure only partially. Sheep [13]

partitions the graph in a divide and conquer manner, which uses

more graph structure than Oblivious and HDRF, but it works well

only for tree-like graphs. Those methods mentioned above, due to

their not attempting to exploit the graph structure, typically yield

high replication factor. The notable multi-level vertex partitioning

algorithm METIS [8] is extended for edge partitioning [3], which

makes full access to the graph structure by partitioning the graph

entirely in memory. This does lead to the state-of-the-art replication

factors on a great number of graphs [13], but it is not applicable to

large graphs.

In this paper, we present a heuristic calledNE (Neighbor Expansion)
that is developed based on a new, theoretically sound partitioning

model that greedily maximizes edge locality. Our main contribu-

tions are summarized as follows:

• We establish theoretical understanding of the edge partition-

ing problem, including proving its NP-hardness and showing

that every graph can be p-edge partitioned with replication

factor O (
√
p).

• We propose a new edge partitioning heuristic called NE,

and provide a worst-case upper bound of replication fac-

tor for our heuristic on general graphs. To the best of our

knowledge, we are the first to provide such bound for edge

partitioning algorithms on general graphs. We also show

that it improves over existing bounds on random power-law

graphs. We conduct extensive experiments which show that

it significantly reduces the replication factor.

• We apply our partitioner to a distributed graph engine, Pow-

erGraph. In average it reduces replication factor, communi-

cation, and running time by 54%, 66%, and 21%, respectively.

2 GRAPH EDGE PARTITIONING
In this section, we first formalize the graph edge partitioning prob-

lem. We then show it is NP-hard and prove a sharp bound of repli-

cation factors (Section 2.2) for general graphs.

2.1 Notation
Let G = (V ,E) be an undirected, unweighted graph with n = |V |
vertices and m = |E | edges. An edge connecting vertices x and

y is denoted as (x ,y) or ex,y . For a vertex x , denote by N (x) =
{y |(x ,y) ∈ E} the set of vertices adjacent to x . For a vertex set S ,
denote by N (S) = ∪x ∈SN (x) and ES = {(x ,y) ∈ E : x ,y ∈ S }. For
an integer p ≥ 2, denote by [p] = {1,2, . . . ,p}. For an edge set Ei ,
denote V (Ei) = {x |{x ,y} ∈ Ei } as the set of vertices covered by Ei .

2.2 Problem Statement
A p-edge partitioning of G refers to a disjoint partitioning of its

edge set E into p subsets Ei , such that Ei ⊆ E,∪i ∈[p]Ei = E, and
Ei ∩ Ej = ∅ for i , j. A p-edge partitioning is α-balanced if

max

i ∈[p]
{|Ei |} ≤ ⌈α |E |/p⌉ . (1)

The replication factor [3] of a partitioning is defined as

RF(E1, . . . ,Ep) :=
1

|V |

∑
i ∈[p]

|V (Ei) |. (2)

Definition 1 (MIN-RF(p,α)). The MIN-RF(p,α) problem is to
find an α-balanced p-edge partitioning {Ei }i ∈[p] to minimize the
replication factor RF(E1, . . . ,Ep).

2.3 NP-Hardness
The p-edge partitioning problem has been proved to be NP-hard

in [3] when p grows with n = |V |. To our best knowledge, it has

not been proved elsewhere that this problem is NP-hard when p
is constant

1
. We fill this gap and give the following NP-hardness

result (proof in Appendix A).

Theorem 2.1. For any α ≥ 1, p ≥ 2, the MIN-RF(p,α) problem
is NP-hard with respect to the number of vertices. In particular, the
MIN-RF(2,α) problem is NP-hard.

2.4 Bound for General Graphs
In this section, we show that it is always possible to achieveO (

√
p)

replication factor for any MIN-RF(p,α) problem (though it may

take exponentially long time to find such a partitioning). We also

show that this bound is tight up to constant factors. These results

mean that O (
√
p) is the best replication factor we can hope for if

we are dealing with general graphs. However, for certain graphs

like power-law graphs, it is possible to obtain a tighter bound

(Section 4.2).

1
In [3], the NP-hardness is proved by a reduction from 3-partition problem. When p
is constant, the 3-partition problem, hence the derived edge partitioning problem, is

polynomial time solvable.

Lemma 2.2. For any graph G and any positive integer p, there al-
ways exists a 1-balanced p-edge partitioning such that the replication
factor is at most 2

√
p +

p
n , which is 2

√
p + o(1) if p = o(n).

Proof. We first prove the following claim.

Claim 1. Given any graph H with t vertices andm edges, and let
k be a positive integer, there must exist a subset of vertices U such
that |U | ≤ t−1√

k
+ 1, and the number of edges in the induced subgraph

byU is at leastm/k .

Proof. We use an averaging argument. Consider all subsets

of size l = t−1√
k
+ 1. If none of them is such that the induced

graph on the vertex set has more thanm/k edges, we would have∑
U ⊂V (H): |U |=l |E (U) | ≤ m/k ·

(t
l

)
. On the other hand, each edge in

H is counted in

(t−2
l−2

)
vertex sets of cardinality l . Therefore we have∑

U ⊂V (H): |U |=l |E (U) | = m ·
(t−2
l−2

)
. Combining the two formulas

above, we have

m/k ·

(
t

l

)
≥ m ·

(
t − 2

l − 2

)
,

which is equivalent to t (t−1)/l (l−1) ≥ k . However, l > t/
√
k , which

means

t (t − 1)

l (l − 1)
<

(t − 1
l − 1

)
2

= k . □

Given the claim, inG0 = G , we can find a vertex setU1 such that

the number of edges induced by U1, i.e., the number of edges in

G0[U1] is at least |E (G0) |/p. By the claim, we know |U1 | ≤
n−1√
p + 1.

Then we remove |E (G0) |/p edges in G0[U1] from G0, obtaining

G1. By a similar argument, we can find a vertex set U2 such that

the number of edges induced by U2, i.e., the number of edges in

G1[U2] is at least |E (G1) |/(p − 1) = |E (G) |/p. By the claim, we

know |U2 | ≤
n−1√
p−1 + 1. Removing |E (G1) |/(p − 1) edges in G1[U2]

from G1, obtaining G2. Repeating this process, eventually we have

obtainedU1,U2, . . . ,Up that exhaust all the edges in G, while

|Ui | ≤
n − 1√

p − (i − 1)
+ 1.

Therefore the replication factor is∑
1≤i≤p

|Ui |/n ≤
1

n

∑
1≤i≤p

*
,

n − 1√
p − (i − 1)

+ 1+
-
≤ 2

√
p +

p

n
. □

Remark 1. For a graph, the lemma gives a 1-balancedp-partitioning,
which is also a valid partitioning of MIN-RF(p,α) problem for α ≥ 1.

Lemma 2.3. There exists a graph such that the replication factor
is at least

√
p/2

√
(n − 1)/n =

√
p/2(1 − on (1)) for any 2-balanced

partitioning.

The proof also generalizes to α-partitioning for any α ≥ 1.

Proof. Consider a complete graph on n vertices. After partition-

ing into p parts, we have the vertex sets being V1, . . . ,Vp . Suppose

|Vi | = ni and the edges in the i-thmachine is ei . Therefore
(ni
2

)
≥ ei ,

which means ni ≥
√
2ei . We know

∑p
i=1 ei =

(n
2

)
and ei ≤ 2

(n
2

)
/p

by the definition of 2-balancedness. Therefore

p∑
i=1

ni ≥

p∑
i=1

√
2ei ≥ p/2 ·

√
2 · 2

(
n

2

)
/p =

√
p/2

√
n(n − 1),

where the last inequality is by Jensen inequality. Thus the replica-

tion factor is at least

1

n

p∑
i=1

ni ≥
1

n

√
p/2

√
n(n − 1) =

√
p/2

√
(n − 1)/n. □

3 ALGORITHM
In this section, we propose a new edge partitioning algorithm,

which partitions the graph iteratively in p rounds. In each round,

one edge set is generated (for one machine). Specifically, in round

i , edge set Ei is selected from the working graph Gi containing all

un-assigned edges so far, i.e., Gi = (V ,E \ ∪j<iEj). Empty initially,

Ei is expanded in steps until |Ei | > αm/p. In each step, one vertex

x is selected according to a neighbor expansion heuristic discussed

below. Then, adjacent edges of x are added to Ei , and x is added

to core set C . Boundary set S = V (Ei) is the vertex set covered by

Ei . Since edges covered by S are not necessarily in Ei , we also add

those edges to Ei without increasing vertex replication. The above

step is repeated until |Ei | > αm/p. We now elaborate the heuristic

to select the core vertex x .
Neighbor Expansion. By construction the core setC is always

contained in the boundary set S . In case S \ C = ∅, x is picked

randomly from V \C . Otherwise, it is selected as follows,

x := arg min

v ∈S\C
|N (v) \ S |.

The objective |N (v) \ S | is the number of vertices that will be

assigned to machine i , ifv is selected as core vertex and its adjacent

edges are added to Ei . Our heuristic is to select x to minimize the

number of vertices to be added to the boundary set S , thereby to

minimize the increment of replication factor due to adjacent edges

of x .

Example. We illustrate one step of our algorithm in Fig. 2. The

left and right figures stand for the graph before and after this step.

Allocated edges are denoted in solid line and edges in dashed line

have not been allocated yet. At the beginning, there are 2 vertices

in the core set C , 4 vertices in the boundary set S , and there are

4 allocated edges. Now we need to choose the next core vertex to

expand the core set C . Among the candidates S \C = {x ,z}, vertex
x is selected because |N (x) \ S | = 1 < |N (z) \ S | = 3. Then, vertex

x is added to C and S , and its neighbor y is added to S . Two edges

ex,y and ey,z are allocated in this step.

We summarize our heuristic in Algorithm 1, where for ease of

presentation the sub-routine of core set update and boundary set

update is described in Algorithm 2.

Figure 2: Illustrating a step in our algorithm. Left: a core ver-
tex x is selected. Right: the core vertex set C, the boundary
vertex set S , and the edge set Ei are updated.

Algorithm 1 Generate one edge partition Ek .

1: procedure Expand(E,δ) ▷ δ = αm/p

2: C,S ,Ek ← ∅
3: while |Ek | ≤ δ do
4: if S \C = ∅ then
5: x is selected randomly in V \C
6: else
7: x ← argminv ∈S\C |N (v) \ S |

8: AllocEdges(C,S ,Ek ,x)

Algorithm 2 Allocate edges for core vertex x .

1: procedure AllocEdges(C,S ,Ek ,x)
2: C ← C ∪ {x }, S ← S ∪ {x }
3: for y ∈ N (x) \ S do
4: S ← S ∪ {y}
5: for z ∈ N (y) ∩ S do
6: Ek ← Ek ∪ {ey,z }
7: E ← E \ {ey,z }
8: if |Ek | > δ then return

4 ANALYSIS
4.1 Upper bound of replication factor
Weanalyze the replication factor for Algorithm 1. Let Sk = V (Ek) be
the covered vertex set when the algorithm terminates for partition

k . To the best of our knowledge, we are the first to provide a worst-

case upper bound of replication factor on general graphs.

Theorem 4.1. Suppose G has no isolated vertex, and let Ei ’s be
the edge sets produced by Algorithm 1 solving MIN-RF(p,α) and
Si = V (Ei). Then, we have

RF =
1

n

∑
i ∈[p]

|Si | ≤
1

n

(
3

2

|E | +
1

2

σ + p − 1
)
, (3)

where σ is the number of connected components in the original graph.

Remark 2. A trivial bound for the replication factor is 1

n
∑
i ∈[p] |Si | ≤

2 |E |
n as each edge corresponds to 2 vertices. To our best knowledge, our

bound is the first improvement for general graphs that brings down
the constant from 2 to 3/2.

Proof. Observe that Alg. 1 contains p rounds of iterations. In

the i-th iteration, a new vertex in Si \ Ci is added to the core Ci
and some edges are added to Ei until |Ei | >

αm
k . Recall Si = V (Ei).

We analyze how these variables change as the number of steps

t increase. We rename the variables and sets above in terms of t
for convenience. Let s0 = 0. At each step t ≥ 1, a new vertex is

added to the coreCst . Thus 1 ≤ st ≤ p. LetCi,t ,Si,t , and Ei,t be the
sets Ci ,Si ,Ei at the beginning of step t respectively. Let σt be the

number of connected components of Gt = G \
⋃p
j=1 Ej,t removing

the isolated vertices. Let |Gt | be the number of edges in Gt .

We define a potential function Φt =
3

2
|Gt | +

1

2
σt + p − st +∑

i ∈[p] |Si,t |. Initially, all Si,0 = ∅. We will show that when the

algorithm terminates at t = T , ΦT ≤ Φ0. We show this by showing

(1) Φ1 ≤ Φ0, and (2) Φt ≤ Φt−1 or Φt ≤ Φt−2. For simplicity, denote

st = i . Define the difference operator ∆ as ∆(·) = (·)t+1 − (·)t . In
step t , a vertex x is added to Ci,t ; then one of the four following

cases happens. Let k be the number of x ’s adjacent edges added to

Ei,t , and let h be the number of non-adjacent edges of x added to

Ei,t . We analyze Φt in each of the cases.

C1. When Ei,t is full (i.e., the i-th machine is full); x is the first
vertex added to Si+1,t+1: Thus st+1 = st + 1. Counting x and

k of its adjacent neighbor vertices, we have ∆|Si+1 | = k + 1.
The total number of edges allocated is ∆|G | = −(k + h).
However, ∆σ ≤ k + h as deleting each edge can increase the

number of connected components by at most 1. Then we

have ∆Φ = 3

2
∆|G | + 1

2
∆σ −∆s +∆|Si+1 | ≤ −

3(k+h)
2
+ k+h

2
−

1 + (1 + k) = −h ≤ 0. (thus Φ1 ≤ Φ0).

C2. When Ei,t is not full; x ∈ Si,t \Ci,t . At the end of step t + 1,
there are still edges in the same connected component as x in
Gt not assigned: Similarly ∆|G | = −(k +h), ∆σt ≤ k +h, and

∆|Si,t | = k . Hence, ∆Φ =
3

2
∆|G | + 1

2
∆σ +∆|Si | ≤ −

3(k+h)
2
+

k+h
2
+ k = −h ≤ 0.

C3. When Ei,t is not full; x ∈ Si,t \Ci,t . At the end of step t + 1,
all edges in the same connected component as x in Gt are
assigned to Ei,t : We have ∆|G | = −(h + k) and ∆|Si | = k .
By assumption, this step removes fully in Gt the connected

component containing x , meaning ∆σ = −1. Therefore ∆Φ =
3

2
∆|G | + 1

2
∆σ + ∆|Si | = −

3(k+h)
2
− 1

2
+ k ≤ −k+1

2
≤ 0.

C4. When Ei,t is not full but Si,t \Ci,t = ∅. Thusx is a random node
chosen in Step 5:Notice this case happens only when previous
step is in Case 3. Similarly ∆|G | = −(k + h), ∆σ ≤ k + h and

∆|Si | = k + 1. Note that Φ will not decrease in this step.

However, if take into consideration Φt − Φt−1 ≤
−(k ′+1)

2
for

k ′ ≥ 1, we have Φt+1 −Φt−1 = (Φt+1 −Φt) + (Φt −Φt−1) ≤(
−3(k+h)

2
+ k+h

2
+ 1 + k

)
+

(
−(k ′+1)

2

)
≤ 0.

Moreover, right before Alg. 1 terminates, we are in Case 3. Therefore

ΦT − ΦT−1 ≤
−(k+1)

2
≤ −1. Furthermore, since ΦT−1 ≤ Φ0, we

have that ΦT ≤ Φ0 − 1. In other words Φ0 =
3

2
|G0 | +

1

2
σ + p ≥

Φ
end
+ 1 =

∑
i ∈[p] |Si | + 1, which finishes the proof. □

We construct the following example, showing that the analysis

for Algorithm 1 (Theorem 4.1) is tight.

Example. In this example, our algorithm is required to partition

the edges (in Fig. 3) into four parts. In the worst case, the edge set

E1 can be selected as the green edges, by first including the two

green edges in the first line and then the middle edge in the second

line. Similarly, E2,E3,E4 may be partitioned as the blue, brown, and

red edges respectively. In this case, |E | = 12,σ = 6,p = 4, while

|Sgreen | = |Sblue | = |Sred | = |Sbrown | = 6. Hence

∑
i |Si | = 24 =

3

2
· 12 + 1

2
· 6 + 4 − 1 = 3

2
|E | + 1

2
σ + p − 1, which achieves equality

in Theorem 4.1. This example can be easily extended to any p.

Figure 3: Bound in Theorem 4.1 is tight.

4.2 Upper bound for random power-law graphs
Prior to this work, DBH [17] and HDRF [15] give upper bounds

of expected replication factor of their graph edge partitioners for

random power-law graphs. In this section, we apply Theorem 4.1

to give an improved numerical upper bound of replication factor

for a “typical" random power-law graph, and compare our upper

bound with the existing ones in literature.

Power-law graphs specify the degree distribution in the way that

the fraction of k-degree vertices pk is proportional to k−τ e−k/κ ,
where τ and κ are constants. τ > 2 controls the skewness of the

distribution, and κ gives a soft upper bound of the vertex degree,

i.e., pk decreases exponentially when k ≥ κ.
To apply Theorem 4.1, we need to estimate the expectation of

|E |/n and σ/n. Here we apply the elegant treatment of random

power-law graphs by Newman [14] using generating functions,

and derive the expected number of connected components and

the expected number of edges. Recall that a generating function

carries a sequence of numbers as coefficients of a series expan-

sion. The following is a generating function that carries the degree

distribution,

G0 (x) =
∞∑
k=1

pkx
k ,

where pk = Ck
−τ e−k/κ , with C being a normalization constant so

that G0 (1) = 1.

Computing E [|E |/n]. We can calculate the expectation of |E |/n

as E
[
|E |
n

]
= 1/2

∑
k≥1 kpk = 1/2G ′

0
(1).

Computing E [σ/n]. We now estimate the term E[σ/n]. When

τ > 2, it is almost sure that the graph is not fully connected [14];

when 2 < τ < 3.4785 and κ → ∞, besides small connected compo-

nents the graph contains a giant component of constant fraction

of vertices [1]. To give a quantitative argument, we define the fol-

lowing terms. If we pick an edge and go to one of its end vertices

uniformly at random, then the probability q̂k that the end vertex

has degree k is proportional to kpk . Let qk = q̂k+1 be the proba-
bility that the end vertex has outgoing degree k , not counting the
edge we come from. This sequence qk is expressed in the following

generating function

G1 (x) =
∞∑
k=0

qkx
k =

∞∑
k=1

q̂kx
k−1 =

∑∞
k=1 kpkx

k−1∑∞
k=1 kpk

=
G ′
0
(x)

G ′
0
(1)
,

where the last two steps normalize the sequence so that G1 (1) = 1.

We study the size of a component reached by choosing a random

2 2.2 2.4 2.6 2.8 3

10
0

10
1

10
2

τ

R
e
p
l
i
c
a
t
i
o
n
F
a
c
t
o
r

NE

DBH

HDRF

General

Figure 4: Theoretical bounds of NE, DBH, HDRF and the
bound (Lemma 2.2) for general graphs (p = 30).

edge and following it to one of its ends. LetH1 (x) be the generating
function for the component size distribution, excluding the giant

one, i.e., H1 (x) = a · 0+
∑
tkx

k
, where a is the probability that this

edge leads to the giant component, and tk is the probability that this

edge leads to a small component of sizek . Here we followNewman’s

assumption [14] that there is no loop in the small components.

Hence we have

H1 (x) = a · 0 + xq0 + xq1H1 (x) + xq2[H1 (x)]
2 + . . . ,

and thus

H1 (x) = xG1 (H1 (x)). (4)

Combining H1 (1) + a = 1 and H1 (1) = G1 (H1 (1)) we can solve

G1 (1 − a) = 1 − a for a ∈ (0,1). Knowing a, we can approximate

H1 (x) by solving Equation 4 numerically for the first few hundred

terms. Similarly, if we start with a randomly chosen vertex, the size

of the small component reached by this vertex is encoded by the

generating function

H0 (x) = xG0 (H1 (x)) =
∞∑
k=2

hkx
k .

The term E[σ/n] can be expressed as

E
[σ
n

]
=

1

n
+

∑
k≥2

hk
k
,

where the first term 1/n stands for the giant component. As we can

numerically compute the first few hundred coefficients of H1 (x),
we can numerically compute the coefficients for H0 (x), which are

the hk ’s.

Expected Upper Bound. Plugging E [σ/n] and E [|E |/n] into the

bound in Theorem 4.1, we obtain an upper bound of expected

replication factor for a random power-law graph.

Comparison with Existing Bounds. Let us compare our theoretical

bounds with the ones in literature. Prior to ours, DBH [17] and

HDRF [15] give upper bounds of expected replication factor for

random power-law graphs. In HDRF [15], an average-case analysis

Table 1: Real-world graphs.

Graph Alias |V | |E |

com-LiveJournal LJ 3,997,962 34,681,189

com-Orkut Orkut 3,072,441 117,185,083

Twitter [9] TW 41,652,230 1,468,364,884

com-Friendster FS 65,608,366 1,806,067,135

uk-union [2] UK 133,633,040 5,507,679,822

is applied to their streaming method to give a bound for power-

law graphs. In DBH [17], an upper bound on expected replication

factor is derived for their randomized algorithm. However, they

only study the case when κ → ∞. To apply these bounds, we let

κ = ∞, and consider the graph n = 10
6
, i.e. set pk = 0 for k > 10

6
.

The results in Fig. 4 indicate that our upper bound is consistently

lower than theirs for τ ∈ (2,3) with a wide margin. We also plot

the general bound derived in Lemma 2.2. As expected, it is worse

than the bound we derived in this section that relies on special

properties of random power-law graphs.

5 EXPERIMENTAL RESULTS
In this section, we evaluate our neighbor expansion (NE) algorithm
and compare it against other state-of-the-art partitioners.

To evaluate a partitioner, we consider the following metrics:

workload balance, replication factor, and time consumption. For work-
load balance, we ensure results of each partitioner are 1.1-balanced

and do not report the detailed values. We compare the replication

factor and running time in Section 5.1. Since one important appli-

cation of edge-partitioning algorithms is to partition graphs for

distributed graph processing systems, we also evaluate whether the

given partitioner can reduce the communication cost and execution

time on distributed graph processing systems like PowerGraph [6]

and PowerLyra [4] in Section 5.2.

Testbed. We evaluate all partitioners and run graph analytic ap-

plications (Section 5.2) on a cluster of nine machines, each with

24 Intel E5-2620 2.40 GHz cores and 125 GB RAM connected via

Gigabit Ethernet.

Datasets. Five real-world benchmark graphs of various scales

are used for our evaluation. Most of the graphs can be found in

SNAP [10]. The statistics of the graphs are listed in Table 1.

Competing partitioners. We compare our NE algorithm with

six existing edge partitioners, including METIS [8], RAND [6],

DBH [17], Oblivious [6], HDRF [15], and Sheep [13]. METIS is the

state-of-the-art method for vertex partitioning which minimizes

edge cut and balances user-defined vertex weight. One can turn a

vertex-partitioner into an edge-partitioner while preserving its per-

formance [3]. To transform METIS to an edge-partitioner, we first

call METIS with the vertex weight equal to its degree. Then based on

the vertex partitioning produced by METIS, each edge is randomly

assigned to one of its adjacent vertices’ partition. For Oblivious
and HDRF, following [15], we feed the edges in a random order,

to balance the resulting partitions.

Table 2: Replication factors for real-world graphs
(p = 30, α = 1.1).

LJ Orkut TW FS UK

METIS 2.16 5.24 - - -

RAND 8.27 19.48 11.68 11.84 15.99

DBH 5.18 11.97 3.67 6.88 5.14

Oblivious 3.43 6.94 8.60 8.82 2.03

HDRF 3.33 7.27 7.90 8.87 1.62

Sheep 3.33 7.94 2.34 4.45 1.29

NE 1.55 2.48 1.88 1.98 1.04

10
8

10
9

10
0

10
1

10
2

10
3

10
4

|V | + |E |

R
u
n
n
i
n
g
T
i
m
e
(
s
)

DBH Sheep NE METIS

Figure 5: Running time of different partitioning methods.

5.1 Experiments on real-world graphs
In this section, we compare the performance of partitioners on

real-world graphs.

Replication factor. As shown in Table 2, our NE algorithm
2
out-

performs all existing methods with large margins. Among existing

partitioners, METIS gives the lowest replication factor which is con-

sistent with literature [3, 13]. However, METIS runs out of memory

when partitioning the Twitter, Friendster and UK-union graphs on

our 125 GB RAM machine. This result also echoes the fact reported

by [13].

Running time. Fig. 5 plots the running time of all partitioners

for a variety of input graphs. As expected, DBH is the fastest since

they only scan the input graph once. We did not report the running

time of RAND, Oblivious and HDRF since they are integrated in

PowerGraph and we cannot get the standalone running time. But

their performance should be similar to DBH since they all scan

the input graph once sequentially [17]. Using only a single thread,

NE and Sheep [13] have similar running time. But Sheep can be

speeded up significantly by multi-threading, which is not directly

applicable to NE due to the difference in memory access pattern.

2
Since there is randomness in the NE algorithm, we report the average replication

factor, with relative standard error less than 1%.

Table 3: Replication factor, network communication cost (GB), and running time (second) for distributed graph mining.

Task Graph

PowerGraph + RAND PowerGraph + Oblivious PowerLyra + Hybrid_Ginger PowerGraph + NE

RF Comm. Time RF Comm. Time RF Comm. Time RF Comm. Time

PageRank

LJ 4.81 40.51 101.07 3.25 26.37 80.77 2.98 12.24 43.12 1.35 3.65 39.23
Orkut 8.04 54.65 123.37 5.79 37.05 94.67 5.99 25.63 64.90 1.75 6.66 44.93
TW 6.18 509.96 851.30 2.43 209.46 335.53 2.76 152.25 311.40 1.38 51.45 297.97
FS 5.39 768.33 1183.90 3.40 411.82 670.10 3.60 294.54 589.24 1.48 92.16 392.70
UK 6.89 1535.57 2582.93 1.86 540.48 764.10 2.12 386.41 759.26 1.02 55.89 554.77

Triangle

Count

LJ 4.81 4.10 3.90 3.25 3.05 3.01 2.99 3.76 3.02 1.35 0.88 1.39
Orkut 8.04 9.24 9.93 5.79 7.59 8.08 6.02 11.69 10.41 1.75 2.53 4.36
TW 6.18 91.63 154.73 2.43 56.52 119.97 2.74 97.77 188.36 1.38 30.45 154.91

FS 5.39 128.12 138.05 3.40 99.22 111.82 3.60 152.69 234.71 1.48 41.29 84.18
UK 6.89 344.13 2166.17 1.86 157.32 185.54 2.13 299.49 1207.06 1.02 72.34 166.07

5.2 Experiments on graph analytics
Table 3 compares our NE algorithm against two partitioners, RAND

and Oblivious, in PowerGraph and one partitioner, Hybrid_Ginger,

in PowerLyra, in terms of replication factor, communication cost,

and execution time for running the PageRank (100 iterations) and

triangle counting applications on a cluster of nine machines. Each

result reported in Table 3 is an average of three runs to ensure

that their relative standard error is less than 5%. We observe that

the communication cost is closely related to the replication factor,

roughly as a linear function. This is not surprising because replica-

tion factor is designed to model the communication cost. Our NE

algorithm optimizes the replication factor and successfully reduces

the communication cost for all cases.

Running time depends on replication factor in a similar pat-

tern. For most cases, a reduction of replication factor (hence the

communication cost) means a reduction in running time. The only

exception is the triangle counting application on Twitter graph. In

this case, comparing the NE and the Oblivious methods, we find

that a reduction of replication factor dose not reduce the running

time. Based on our understanding of the PowerGraph system, this

may be explained by several factors. One factor is that, in Pow-

erGraph, the computation and network communication happen

concurrently, so the reduction of the communication cost can only

reduce the running time when the network communication is the

bottleneck of the whole system. Another factor is the potential un-

balanced computation workload on each machine. For each vertex

with multiple replicas in PowerGraph, one replica is nominated as

the master, while others are mirrors. The computation in Power-

Graph is conducted on each edge and each master replica. Since

our algorithm only guarantees the edge partitioning is balanced,

the unbalanced allocation of master replicas may cause congestion

on some machines.

In conclusion, compared with other existing methods, our par-

titioner NE successfully reduces the communication cost for all

graphs and reduces the running time for most graphs. In average
3

NE reduces replication factor, communication, and running time

by 54%, 66%, and 21%, respectively.

3
We report the average decrease of ten cases (five from PageRank and five from triangle

counting). Each decrease is calculated as (y−x)/y , where x is the value of NE and y is

the lowest value of existing methods.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed a new graph edge partitioner Neigh-

bor Expansion (NE) that outperforms other state-of-the-art ones

including METIS [8] and Sheep [13] in terms of replication factors.

Applying the NE algorithm to distributed graph mining effectively

reduces communication cost and running time for applications such

as PageRank and triangle counting.

Our algorithm can be further improved in several aspects. Firstly,

it will be very interesting if any theoretical approximation results

can be proved for the NE algorithm, to explain its good performance

in the experiments. Secondly, we might need new data structures to

support the NE heuristic in a distributed, multi-thread environment.

Thirdly, the NE algorithm needs to load the whole graph edge set in

main memory, while other methods like Sheep or DBH only store

vertex set. For instance, our implementation of NE takes about 90

GB RAM to partition uk-union [2]. We have made some preliminary

attempts to extend the NE algorithm to a streaming algorithm via

sampling methods (Appendix B), which is able to partition the clue-

web graph [2] (|V | = 978M, |E | = 42.5B) whose edge set exceeds

the volume of main memory.

REFERENCES
[1] William Aiello, Fan Chung, and Linyuan Lu. A random graph model for massive

graphs. In STOC, pages 171–180, 2000.
[2] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. A large time-aware web

graph. In ACM SIGIR Forum, volume 42, pages 33–38. ACM, 2008.

[3] Florian Bourse, Marc Lelarge, and Milan Vojnovic. Balanced graph edge partition.

In SIGKDD, pages 1456–1465, 2014.
[4] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra: Differentiated

graph computation and partitioning on skewed graphs. In Proceedings of the
Tenth European Conference on Computer Systems, page 1. ACM, 2015.

[5] Uriel Feige and Mohammad Mahdian. Finding small balanced separators. In

STOC, pages 375–384, 2006.
[6] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

Powergraph: Distributed graph-parallel computation on natural graphs. In OSDI,
pages 17–30, 2012.

[7] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J

Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow

framework. In OSDI, pages 599–613, 2014.
[8] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–
392, 1998.

[9] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter,

a social network or a news media? In WWW, pages 591–600, 2010.

[10] Jure Leskovec and Andrej Krevl. SNAP Datasets:Stanford large network dataset

collection. 2014.

[11] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,

and Joseph M Hellerstein. Distributed graphlab: a framework for machine learn-

ing and data mining in the cloud. VLDB, 5(8):716–727, 2012.
[12] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale

graph processing. In SIGMOD, pages 135–146, 2010.
[13] Daniel Margo and Margo Seltzer. A scalable distributed graph partitioner. VLDB,

8(12):1478–1489, 2015.

[14] Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. Random graphs

with arbitrary degree distributions and their applications. Physical review E,
64(2):026118, 2001.

[15] Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Gior-

gio Iacoboni. Hdrf: Stream-based partitioning for power-law graphs. In CIKM,

pages 243–252, 2015.

[16] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.

Chaos: Scale-out graph processing from secondary storage. In SOSP, pages
410–424, 2015.

[17] Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. Distributed power-law graph

computing: Theoretical and empirical analysis. In NIPS, pages 1673–1681, 2014.

A MIN-RF(p,α) PROBLEM IS NP-HARD
Notation. Given a graph G = (V ,E), two vertex sets A,B, let

E (A,B) = {{u,v} : u ∈ A,v ∈ B}, let e (A,B) = |E (A,B) |. Further-
more, we define E (S) = E (S ,S) and e (S) = e (S ,S).

Theorem A.1. For any α ≥ 1, MIN-RF(p,α) problem is NP-hard
with respect to n. In particular, we show that MIN-RF(2,α) problem
is NP-hard.

Proof. We claim that MIN-RF(2,α) problem is equivalent to

the following MIN-β-separator problem which we will prove to be

NP-hard.

Definition 2 (MIN-β-separator problem). Given a graph G =
(V ,E), a β-separator is a vertex subset S such that V (G) \ S can be
partitioned into two vertex setsW1,W2 such thatW1,W2 are discon-
nected from each other and e (Wi) + e (Wi ,S) ≤ ⌈βe (G)⌉ for i = 1,2.
The MIN-β-separator problem is to find the smallest β-separator S .

LemmaA.2. MIN-RF(2,α) problem is equivalent toMIN-β-separator
problem with β = α/2.

Proof. Given a graph G = (V ,E), let {E∗
1
,E∗

2
} be the optimal

solution to the MIN-RF(2,α) problem. Let S∗ be the optimal solu-

tion to the MIN-β-separator problem with β = α/2. We show that

|V (E∗
1
) | + |V (E∗

2
) | = |V | + |S∗ |, and this will infer that two problems

are equivalent.

Given E∗
1
,E∗

2
, let S = V (E∗

1
) ∩ V (E∗

2
). LetWi = V (E∗i) \ S for

i = 1,2. There is no edge betweenW1 andW2 because E
∗
1
,E∗

2
is a edge

partition. And e (Wi) + e (Wi ,S) ≤ |E
∗
i | ≤ ⌈α |E |/2⌉ = ⌈β |E |⌉, hence

S is a β-separator. Therefore, we get |V (E∗
1
) | + |V (E∗

2
) | ≥ |V | + |S∗ |.

Given S∗ which separatesV (G) \S∗ into two vertex setsW ∗
1
,W ∗

2
,

we obtain α-balanced 2-edge partition E1,E2 as follows. Let ei =
e (W ∗i)+e (W

∗
i ,S). Then we know ei ≤ βe (G). The β-separator gives

a natural edge partition for our problem: the first machine contains

the verticesW ∗
1
∪ S∗ and the second machine contains the vertices

W ∗
2
∪S∗. The edges in the first machine are e (W ∗

1
)∪e (W ∗

1
,S∗) and x

number of edges in E (S∗) with 0 ≤ x ≤ e (S∗) = e (G)−e1−e2. Thus
there are e1 + x edges in the first machine. The edges in the second

machine are e (W ∗
2
) ∪ e (W ∗

2
,S∗) and the rest of the edges in e (S∗),

thus the number of edges in the second machine is e2 + e (S
∗) − x =

e (G)−e1−x . We show that we can find an x such that |Ei | ≤ ⌈α |E |/2⌉.
WOLG, we assume e1 ≥ e2. We separate it into two cases:

(1) If e1 ≥ e (G)/2, we choose x = 0. Then the number of edges

in the first machine is e1 and the number of edges in the

second machine is e (G) − e1 ≤ e1. Because S
∗
is β-separator,

we know max{|E1 |, |E2 |} ≤ e1 ≤ ⌈β |E |⌉ = ⌈α |E |/2⌉.
(2) If e1 < e (G)/2, we choose x = ⌊e (G)/2⌋−e1. Thus the number

of edges in the first machine is ⌊e (G)/2⌋, and the number of

edges in the second machine is ⌈e (G)/2⌉. Clearly E1,E2 is

α-balanced.

Therefore we have obtained an α-balanced 2-edge partition from

S∗, which means |V (E∗
1
) | + |V (E∗

2
) | ≤ |V | + |S∗ |.

Thus we have shown that MIN-RF(2,α) problem is equivalent

to MIN-β-separator problem. □

Lemma A.3. MIN-β-separator problem is NP-hard.

Proof. The proof is motivated by [5] which proves that a vertex

constraint MIN-separator problem is NP-hard. To the best of our

knowledge, our work here is the first focusing on the edge con-

straint of separator and showing that MIN-β-separator problem is

NP-hard.

We reduce MAX-CLIQUE problem to MIN-β-separator problem.

Given a graph G on n vertices v1, . . . ,vn , we show that checking

whether there is a clique inG containing a fixed v1 with size k can

be reduced to our problem of checking whether there is a separator

of size k that satisfies the edge β-separator constraint. (Notice that
there are at most n choices of v1 and at most n choices of k).

We create an auxiliary graph H from G. First create a vertex

setW of order |W | = max

(
1−β
β

((n
2

)
+ 2e (G)

)
− 3

β

(k
2

)
,0

)
. When

k ≤ n − 1 as n is large enough, |W | > 0. Let the vertex set of H be

{v1, . . . ,vn }∪
⋃
vi∼vj ui j ∪W , whereui j are newly created vertices

corresponding to each un-ordered pair i, j with vi ,vj adjacent inG .
Thus |V (H) | = n+e (G)+ |W |. The edges inH are as follows. Within

{v1, . . . ,vn } all edges are connected (thus it is a clique onn vertices).

Vertex ui j is only connected to vi ,vj . There is a complete bipartite

graph betweenW and v1 while withinW it is an independent set.

Thus the number of edges in H is e (H) = |W | +
(n
2

)
+ 2e (G).

We show that finding the β-separator of size k containing v1 in
H is equivalent to finding a k-clique containing v1 in G. Suppose
V (H) \ S can be partitioned into two connected components (each

connected componentsmight be disconnected)V1,V2. Ifv1 < S , then
WOLG assume v1 ∈ V1. Suppose the separator of size k consists of

s verticesU ⊆ {v2, . . . ,vn }, x vertices X inW , and y vertices Y in

{ui j }. By the construction, we know that v1 is connected to all the

vertices in {v2, . . . ,vn } \U , and it is connected to all the vertices

in

⋃
i,j not all in U {ui j }. SinceV1,V2 are not connected to each other,

all the neighbors of v1 excluding S should be in V1. Therefore the
following edges are known to be in E (V1) ∪ E (V1,S): the |W | − |X |

edges from v1 toW \Y , the
(n
2

)
−

(s
2

)
edges within {v1,v2, . . . ,vn }

excluding the edges withinU , and the edges coming out from ui j
with vi ,vj not both in U and not including the edges coming from

vertices in X . The latter case consists of 2(e (G) − e (U)) − 2y edges.

Thus we have

|E (V1)∪E (V1,S) | ≥ |W | −x +

(
n

2

)
−

(
s

2

)
+2(e (G)−e (U))−2y. (5)

Since x +y +s = k we know x + 2y ≤ 2(k −s). Also e (U) ≤
(
|U |
2

)
=(s

2

)
. Therefore (5) satisfies

|E (V1) ∪ E (V1,S) |

≥|W | +

(
n

2

)
−

(
s

2

)
+ 2

(
e (G) −

(
s

2

))
− 2(k − s)

≥|W | +

(
n

2

)
−

(
k

2

)
+ 2

(
e (G) −

(
k

2

))
(6)

=e (H) − 3

(
k

2

)
. (7)

The second to last inequality holds because to minimize the expres-

sion over 0 ≤ s ≤ k we should choose s = k fork ≥ 2 by simple com-

putation. The last equality holds because e (H) = |W | +
(n
2

)
+ 2e (G).

However, by our choice of |W |, we have that (1 − β)e (H) =

|W | + 3

(k
2

)
. Thus e (H) − 3

(k
2

)
> βe (H). However, if this is the

case, then (7) tells us that |E (V1) ∪ E (V1,S) | > βe (H). This is a
contradiction.

Therefore v1 ∈ S . Suppose the separator of size k consists of

s vertices U ⊆ {v1,v2, . . . ,vn } and v1 ∈ U , x vertices X in W ,

and y vertices Y in {ui j }. Suppose v ∈ {v1,v2, . . . ,vn } \ {v1}. Then
similarly, by the construction, we know that v is connected to all

the vertices in {v1,v2, . . . ,vn } \ U , and it is connected to all the

vertices in

⋃
i,jnot all in U {ui j }. Since V1,V2 are not connected to

each other, we know all the neighbors of v excluding S should be

in V1. Therefore the edges we are certain to be in E (V1) ∪ E (V1,S)

include the

(n
2

)
−

(s
2

)
edges within {v1,v2, . . . ,vn } excluding the

edges withinU , and the edges coming out from ui j with vi ,vj not
both inU and not including the edges coming from vertices in X .
The latter case consists of 2(e (G) − e (U)) − 2y edges. Thus we have

|E (V1) ∪ E (V1,S) |

≥

(
n

2

)
−

(
s

2

)
+ 2(e (G) − e (U)) − 2y

≥

(
n

2

)
−

(
s

2

)
+ 2(e (G) − e (U)) − 2(k − s)

where the last inequality holds because x + y + s = k and thus

−2y ≥ −2(k − s). If 1 ≤ s ≤ k − 1, we know

|E (V1) ∪ E (V1,S) |

≥

(
n

2

)
−

(
s

2

)
+ 2(e (G) − e (U)) − 2(k − s)

≥

(
n

2

)
−

(
s

2

)
+ 2

(
e (G) −

(
s

2

))
− 2(k − s)

≥

(
n

2

)
−

(
k − 1

2

)
+ 2

(
e (G) −

(
k − 1

2

))
− 2,

where the last inequality is by optimizing the quadratic in s . How-
ever, (

n

2

)
−

(
k − 1

2

)
+ 2

(
e (G) −

(
k − 1

2

))
− 2

>βe (H)

=

(
n

2

)
−

(
k

2

)
+ 2

(
e (G) −

(
k

2

))
.

Thus we have that s = k . Thus we must have

βe (H) =

(
n

2

)
−

(
k

2

)
+ 2

(
e (G) −

(
k

2

))
(8)

≥|E (V1) ∪ E (V1,S) | (9)

≥

(
n

2

)
−

(
k

2

)
+ 2(e (G) − e (U)). (10)

This means that U must be a clique of size k and it contains v1.
Therefore we reduce MAX-CLIQUE problem to MIN-β-separator
problem. Since MAX-CLIQUE problem is NP-hard, we have that

MIN-β-separator problem is NP-hard. □

The claim is a direct consequence of the two lemmas. □

B THE STREAMING ALGORITHM
Based on Alg. 1, we propose a streaming algorithm (Alg. 3) that con-

siders the trade-off between the partitioning quality and memory

consumption. This algorithm only requires O (|V |) memory, hence

can process graphs whose edge set exceeds main memory. Our

technique is to sample edges uniformly from the original graph,

and then run Alg. 1 on the sampled graph.

In total, we need to scan through the edge list
4
from the hard

disk twice. In the first scan, we randomly shuffle the edge list, and

record the number of vertices, the number of edges, and the degree

of each vertex. In the second scan, we stream in the edges one by

one from the shuffled edge list, and maintain CacheSize number of

edges in memory. The value of CacheSize is determined mostly by

the memory budget. In general the larger of CacheSize the better

the partitioning quality. In practice, we find that CacheSize = 2×|V |
produces balanced partitions of good replication factor.

Like Alg. 1, the streaming algorithm produces edge partition for

each machine in turn. In round i , it constructs the working graph
consisting of the sampled edges (denoted as Ê), and then applies

Alg. 1 to allocate a |Ê |/p−i+1 fraction of edges for machine i . The
allocated edges Ei are immediately stored to the hard disk, while the

core set Ci and the boundary set Si are stored in the main memory

for partitioning the unallocated edges.

Prior to round i , the CheckEdge procedure (Alg. 4) is used to add

extra unallocated edges to the edge set Ej for |Ej | ≤ αm/p and j < i .
The reason is that by the time Ej is established, the sampled edge

set Ê does not contain the full information of the graph and Ej has
fewer edges than expected. The edges allocated to Ej is based on

its core set Cj and boundary set Sj . The CheckEdge procedure is

applied to the current sampled edge set Ê, and also the edges to be

loaded into memory. An edge e = {x ,y} is allocated to Ej if one of
the following two conditions is true.

(1) if e is covered by Sj , i.e., e ⊆ Sj , or
(2) if e is touched by Cj , i.e., |e ∩ Cj | = 1, and the degree of

each adjacent vertex is less than the average degree of the

original graph, i.e., max{dx ,dy } ≤ 2m/n. (In this case, when

edge e is added to Ej the boundary set Sj is augmented as

Sj ← Sj ∪ e .)

4
We assume the graph is stored in edge list format. Each line represents an edge as a

pair of vertex IDs.

Algorithm 3 Partitioning via sampling.

1: Randomly shuffle edge list, record n,m, d
2: Ê ← ∅, E ← shuffled edge list

3: for i ∈ [p] do
4: Ẽ ← Ê, Ê ← ∅
5: for e ∈ Ẽ do
6: Ê ← Ê ∪ CheckEdge(e,i)

7: while |Ê | ≤ CacheSize AND E , ∅ do
8: pick next edge e ∈ E, E ← E \ {e}
9: Ê ← Ê ∪ CheckEdge(e,i)

10: Ci ,Si ,Ei ← Expand(Ê, |Ê |/p−i+1)
11: Ê ← Ê \ Ei
12: update d , remove degree due to Ei

Algorithm 4 Allocating edges for partitions.

1: procedure CheckEdge(e = {x ,y},i)
2: for j ∈ {1 ≤ t < i : |Ej | ≤ αm/p} do
3: if e ∩Cj , ∅ AND max{dx ,dy } ≤ 2m/n then
4: Sj ← Sj ∪ e

5: if e ⊆ Sj then
6: Ej ← Ej ∪ {e}
7: dx ← dx − 1
8: dy ← dy − 1
9: return ∅
10: return {e}

Memory Consumption. Note that Alg. 3 needs to maintain and

work on an edge set of size |Ê | = CacheSize, while the NE algorithm

works on the whole edge set of size |E |. Both algorithms need to

store the core set Ci and boundary set Si in memory for all the

p machines. They also need to maintain the vertex degree dx in

memory. So the total memory consumptions of the NE algorithm

and the streaming algorithm are O (|E | + p |V |) and O (CacheSize +
p |V |), respectively. Given that CacheSize = O (|V |) and p = O (1),
we show that, by running our NE algorithm on a sampled graph, we

can reduce the memory consumption from O (|E | + |V |) to O (|V |).
Next, we use the experiments to study the partitioning quality of

our streaming algorithm.

Experiments. We compare the replication factor of NE and the

streaming algorithm (Alg. 3) in Table 4. To evaluate the scalability

of the streaming algorithm we add a new graph clue-web [2] of

978,408,098 vertices and 42,574,107,469 edges. Comparing with

NE, the streaming algorithm enables us to process much larger

graphs with some compromise on replication factor.

Table 4: Replication factors (p = 30,α = 1.1).

LJ Orkut TW FS UK clue-web

NE 1.55 2.48 1.88 1.98 1.04 Out of memory

Alg. 3 1.88 4.49 2.83 3.00 1.65 1.94

	Abstract
	1 Introduction
	2 Graph Edge Partitioning
	2.1 Notation
	2.2 Problem Statement
	2.3 NP-Hardness
	2.4 Bound for General Graphs

	3 Algorithm
	4 Analysis
	4.1 Upper bound of replication factor
	4.2 Upper bound for random power-law graphs

	5 Experimental Results
	5.1 Experiments on real-world graphs
	5.2 Experiments on graph analytics

	6 Conclusion and Future Work
	References
	A MIN-RF(p,) problem is NP-hard
	B The Streaming Algorithm

