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Applications

 Healthcare
— Medical record

* Social science
— Voting behavior
— Census data
— Energy consumption
— Marketing

« Computer vision

— Facial attributes (90 percent
of Asians have black hair”)
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Applications

» Healthcare Privacy issues
— Medical record

* Social science
— Voting behavior
— Census data
— Energy consumption
— Marketing

« Computer vision

— Facial attributes (90 percent
of Asians have black hair”)
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Applications

 Healthcare
— Medical record

* Social science
— Voting behavior
— Census data

— Energy consumption Easier to get
— Marketing label proportions
« Computer vision

— Facial attributes (90 percent
of Asians have black hair”)
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Related Works

« Related learning settings: semi-supervised learning,
clustering, multi-instance learning etc.

« Learning with label proportions: former works rely
heavily on the “mean of each bag”
— MeanMap (Quadranto et al., 2009)

» exponential model
 class-conditional distribution of data is independent of the bag
— Inverse Calibration (Rueping, 2011)
« large-margin regression
* mean of each bag has a soft label corresponding to its label proportion
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(c) MeanMap and InvCal

with 0% accuracy.
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(d) «SVM with 100% accu-

racy.
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Contributions

e Introduce «SVM which explicitly models the unknown instance labels.
e Alleviates the need for making restrictive assumptions on the data.

e Two optimization algorithms based on alternating minimization and con-
vex relaxation.

e Outperforms existing methods under various settings/datasets.
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Formulation (Learning Setting)

e The training set {x;} , is given in the form of K non-overlapping bags:
{xili € Br}i—y, UpiBe={1---N}.
e The k-th bag is with label proportion py:
ili € By, y; = 1}
\V/K_ PR = |{ 9 .
o= |Br|
y¥ € {1, —1}: the unknown ground-truth label of x;, V&,
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Formulation

e Prediction model:
f(x) = sign(w' (x) + b).

e [xplicitly model the unknown instance labels as
Yy = (yla T 7yN)T' Yi € {17 _1}7 ij,il

e The label proportion of the k-th bag can be modeled as

- {ili € Br,yi =1} 2ieB ¥i | 1

pr(y) = = + 5

|Br| 2|Bk| 2
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«<SVM Formulation

Large-margin framework:

N K
: 1 =
min §WTw—|—CZL(yi,WTLp(X@-) +b) —I—C'pz:LjD (Pr(y), pr)

Y Wb i =
8.t v’fila Yi € {_17 1}
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«<SVM Formulation

Large-margin framework:

N K
: 1 =
min §WTw—|—CZL(y¢,WTLp(X@-) +b) —I—C'pZ:Ljp (Pr(y), pr)

y,wsb i=1 k=1
8.t viila Yi € {_17 1}

e Generalizes the classic SVM.

e Naturally spans supervised /semi-supervised learning and clustering,.
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«<SVM Formulation

e Large-margin framework:

N K
: 1 =
min §WTw—|—CZL(y7;,WTLp(X@-) +b) —I—C'pZ:Ljp (Pr(y), pr)

y,wsb i=1 k=1
8.t viila Yi € {_17 1}

e Generalizes the classic SVM.

e Naturally spans supervised /semi-supervised learning and clustering,.

However:

e A non-convex integer programming problem.
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The alter-«SVM Algorithm

e For a fixed y, the optimization w.r.t w and b is an SVM problem.

e When w and b are fixed:

c, K
II;IH ZLyﬁ,w o(x;) +b) + FZZ:

=1
8.t vz 1, Yi € {1')_1}
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The alter-«SVM Algorithm

c, K
min ZL yi, Wl o(x;) + ) + 62

Y 1=1

s.t. \V/N 1, Yi € {1,—1}.

e Consider each bag separately.

e For the k-th bag: sorting, O(|Bg|log |Bx|) time).

Proposition:

The above can be solved in O(N log(J)) time, J = maxg—1...x |Bx/|.
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The alter-«SVM Algorithm

To alleviate the problem of local solutions:

e Multiple initilizations.

e An additional annealing loop to gradually increase C.
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The conv-«SVM Algorithm

e Does not require multiple initializations.

e Motivated by large-margin clustering (Xu et al., 2004) (Li et al., 2009).
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The conv-«SVM Algorithm

e Reformulation:

N
. 1 T T

a C L 1) 7
S, O 2 M whea)

Y= {YHﬁk(Y) —pi| < 6y € {1, 1}»VkK:1}
e Write the inner problem as its dual (with hinge loss):

. 1 T T T
m€1§)1meax 2a ( ON'AY )a—l—a

o c RN
A={al0 <a < (C}
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The conv-«SVM Algorithm

: I ¢ T T
ax ——o (IC o+aoa'l
mig ey e’ (CoyyT)at

a € RY
A={a|0 <a < C}

e Convex in M =yy’.

e Relax the feasible space of M to get a convex problem.

Mo ={yy'ly € Y}
‘1' Relaxation

M={ ey nyyTlpeu}
U= {1l dyey iy) = 1, tiy) 2 05
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The conv-«SVM Algorithm

e Solving the relaxed M is identical to finding p:

1

: T T T
—aT [ Y Kk 1.
peuacd 20 | MW Qe e
ol

e Multiple Kernel Learning (MKL).

e |)|is very large. Not tractable to solve directly.

Primal variables — dual constraints.
Cutting plane method (Li et al., 2009) (Joachims et al., 2009).
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Experiments

» Performance of different techniques on 12 datasets from the
UCI/LibSVM repository.

Dataset Size Attributes | Classes
heart 270 13 2
heart-c 303 13 2
colic 366 22 2
vote 435 16 2
breast-cancer 683 10 2
australian 690 14 2
credit-a 690 15 2
breast-w 699 9 2
ala 1,605 119 2
dna 2.000 180 3
satimage 4,435 36 6
cod-rna.t 271,617 8 2

» Follow the experimental setting of (Rueping, 2011):

— Random bag generation (with different bag sizes). Performance of 5-
fold cross validation.

— Linear and RBF kernels.



Experiments

Horizontal: bag size

Dat ését

T Method

2 1 8 16 32 64

MeanMap 85.07+0.72 | 85.88+0.34 | 85.34+1.01 | 83.3642.04 | 83.1251.52 | 80.58+5.41

. InvCal 86.064+0.30 | 86.1140.26 | 86.32+0.45 | 84.13+1.62 | 82.73+1.70 | 81.874+3.29
australian | o ovn || 85744022 | 85714021 | 86.264061 | 85.6510.43 | 83.6341.83 | 83.62+2.21
conv-ocSVM || 85.9740.53 | 86.4640.23 | 85.30+0.70 | 84.1840.53 | 83.694+0.78 | 82.98+1.32

MeanMap 01.53£0.25 | 90.58+0.34 | 86.00£1.04 | 80.77£3.60 | 77.35+3.50 | 68.47+4.30

dual InvCal 89.3243.39 | 92.7340.53 | 87.994+1.65 | 81.0543.14 | 74.77+2.95 | 67.7543.86
alter-«SVM || 95.67+0.40 | 94.654+0.52 | 93.71+0.47 | 92.524+0.63 | 91.854+1.42 | 90.64+1.32

conv-ocSVM || 93.36+0.53 | 86.754+2.56 | 81.03+3.58 | 75.90+4.56 | 76.924+5.91 | 77.94+2.48

e Our methods outperform MeanMap and InvCal.

e The gains from ««SVM are typically even more significant when the bag

size is large.

-- on the dna-1 dataset, with RBF kernel and bag size 64, alter-«<SVM outperforms
the former works by 22%.

e Also shown in the paper: less sensentive to bag proportion variations.
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Conclusion

e xSVM
e Two optimization algorithms

e State-of-the-art result

Future works/ Open issues

e Robustness to proportion noise.
e Bag generation, bags with overlappings.

e xSVM for semi-supervised learning, and learning with label errors.
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