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~ Abstract—Based on the local keypoints extracted as salient lighting changes in images and video shots. Global features are
image patches, an image can be described as a "bag-of-visual-known to be limited in face of these difficulties, which stim-
words (BoW)” and this representation has appeared promising - jateq the development of local invariant features (keypoints)

for object and scene classification. The performance of BoW . t K int lient patches that tain rich
features in semantic concept detection for large-scale multimedia In recent years. Keypoints are salient patches tat contain ric

databases is subject to various representation choices. In this local information about an image. The most popular keypoint-
paper, we conduct a comprehensive study on the representation based representation is bag-of-visual-words (BoW) [1]. In
choices of BoW, including vocabulary size, weighting scheme, Bow, a visual vocabulary is generated through grouping
stop word removal, feature selection, spatial information, and similar keypoints into a large number of clusters and treating

visual bi-gram. We offer practical insights in how to optimize h clust isual d B ing the k ints of
the performance of BoW by choosing appropriate representation €&C1 CIUSIEr as a visual word. By mapping the keypoints o

choices. For the weighting scheme, we elaborate a soft-weighting@n image back into visual words of the vocabulary, we can
method to assess the significance of a visual word to an image.represent the image as a histogram of visual words and use it
We experimentally show that the soft-weighting outperforms gas the feature for classification.
other popular weighting schemes such as TF-IDF with a large  1he Bow image representation is analogous to the bag-
margin. Our extensive experiments on TRECVID data sets also f d tati f text d ts in t f both
indicate that BoW feature alone, with appropriate representation of-words represer_1 ation _0 ex ocume_n S In terms of bo
choices, already produces highly competitive concept detection form and semantics. This makes techniques for text catego-
performance. Based on our empirical findings, we further apply rization readily applicable to the problem of semantic concept
our method to detect a large set of 374 semantic concepts. Thedetection. As it is true with text categorization, where feature
detectors, as well as the features and detection scores on Sev‘?@epresentation has a large impact on its performance, the
recent benchmark data sets, are released to the multimedia . . . o
community performance of semantic concept detection is also sensitive
Index Terms — Bag-of-visual-words, representation choice, O various representation choices. In this paper, we conduct
semantic concept detection. a comprehensive study on the representation choices of Bow
feature and their impact to the performance of semantic con-
cept detection. Some of the representation choices are related

|. INTRODUCTION to text categorization techniques, including word weighting

Semantic concept detection is a research topic of gresg{heme, stop word removal, feature selection, and visual bi-
interest as it provides semantic filters to help analysis af@m. while the others are unique to concept detection in
search of multimedia data. It is essentially a classification tadR2ges and videos, including vocabulary size (number of
that determines whether an image or a video shot is relev&gyPoint clusters) and spatial information of the keypoints.
to a given semantic concept. The semantic concepts covefaticularly, for the visual word weighting scheme, we provide
wide range of topics such as those related to objects (el§;depth analysis of a soft-weighting method, which was
car, airplane, indoor/outdoor scenes (e.gneeting, deseyt initially proposed in.our earlier work [2]. We generate BoW
events (e.g.people marching, etc. Automatically detecting fea_tures based on_d|fferent representation ch0|.ces and (_avaluate
these concepts is challenging especially in the presencetraﬁwperformance in large scale concept detection experiments.

within-class variation, occlusion, background clutter, pose afSides, we also study the choice of kernel functions used in
the classification of BoW features.
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choices of visual-word features in semantic concept detectionto Harris Laplace and SIFT respectively [19]. Improvements
By evaluating various representation choices, we intend @b the color boosted features over the traditional ones were
answer the question of what BoW representation choices (watiserved in [6], [15], [16].
dimension, weighting, selection, etc) are likely to produce the In addition, [20] also used local feature for semantic concept
best performance in terms of both accuracy and efficiency.detection, but in a different way. They adopted geometric
We evaluate semantic concept detection performance babkd features [21] as keypoint descriptor. The geometric blur
on various visual-word representations on TRECVID dafeatures were computed based on 200 randomly sampled
sets. Our experiments indicate that, with carefully chosgwints with high edge energy from a keyframe. A total of
representation choices, BoW feature offers very competitit®91 training example keyframes are picked as references.
performance. Additionally, to stimulate innovation of newsiven a test keyframe, online point-to-point matching was
techniques and reduce the re-implementation effort of operformed between the keyframe and the exemplars. Each
approach, we apply our method to detect a large set kdyframe was then represented as a 1291 dimensional vector
374 LSCOM [7] semantic concepts, namely VIREO-374. Weith each component indicating the distance of the keyframe
release our features, classifier models, and detection scdrea reference. The feature vectors were used directly for SVM
on several popular data sets. Compared to existing large-sdakning. In this representation, for each keypoint in the test
concept detector sets [8], [9], VIREO-374 is better in termeyframe, the number of keypoint comparisons is as high as
of scale and/or performance. 1291x200. This is computationally more expensive than the
The remaining sections are organized as follows. SectionBPW representation where the number of comparison for each
reviews the existing works. Section Ill describes the generatitgst keypoint is equal to the number of visual words used
process of BowW image representation. Section IV outlines tfigsually a few thousands; cf. Section IV-A).
representation choices of BoW feature, including vocabularyIn computer vision, BoW has already exhibited surprisingly
size, weighting scheme, stop word removal, feature selectig®wod performance for object retrieval and categorization across
spatial information and visual bi-gram. Section V introduceseveral data sets (e.g., [2], [3], [4], [5], [22], [23] among
the kernel choices of BoW classification. Section VI evaluatethers). In our recent work [2], a study on keypoint detectors,
the representation and kernel choices on TRECVID 2006 dédgature weighting and vocabulary size was given. In [5], Zhang
set. Section VII further discusses the generalizability of o@t al. conducted a comprehensive study on the local feature
empirical findings to other popular data sets and extendgsed object and texture classification. They provided compar-
our method to detect a large set of 374 concepts. Finaligons on the choice of a few keypoint detectors and proposed
Section VIII concludes this paper. to use x> RBF kernel for SVM learning. In [4], Nowak
et al. studied the sampling strategies of BoW to compare
dense (grid-based local image patches) and sparse (keypoints)
representation. They claimed that sample size is critical for
Semantic concept detection aims to annotate images bmilding vocabularies and thus the randomly sampled image
video shots with respect to a semantic concept. In exigtatches could offer a more powerful representation than the
ing works, this task is often conducted in a diverse settirgparse keypoints. In [22], Grauman et al. proposed to use
where the emphasis usually includes feature selection, mupiiramid matching kernel (PMK) for image comparison based
modality fusion, and machine learning on huge multimedian local keypoint features. The orderless keypoint feature sets
data sets [10]. Here we focus our review on feature-levelere mapped to multi-resolution histograms and weighted
analysis which is related to our latter experimental comparisdristogram intersection was used as kernel response. In [3],
In [11], rich sets of features (visual, motion, text, face) anddazebnik et al. exploited the spatial location of keypoints and
classifiers were demonstrated to have excellent performancepooposed a spatial pyramid kernel, in which an image was
concept detection. Visual features, in particular, were extractidtly divided into multi-level equal-sized grids and each grid
simultaneously from global, grid, region and keypoints levelsjas described by a separate BoW. The BoWs from image
activating more than 100 SVM classifiers for learning a singlgrids at each level were concatenated and finally, similar to
concept. While technically impressive, it becomes expensitPMK, the weighted histogram intersection was used as kernel
to scale up such a system, for instance, when thousandsredponse. Recently, in both [23] and [24], the effects of soft
semantic concepts are considered for detection. Meanwhé@d hard weighting schemes in generating BoW features for
the approaches in [6], [12], [13], [14], [15], [16] used less feasbject retrieval are contrasted.
tures but still shown comparable performance to that of [11]. In this paper, we assess and improve the performance of
The features include color and texture (in global and grifloW for semantic concept detection in large-scale multimedia
levels), motion, text, etc. BoW is also used in [2], [17]corpus, extending our previous works [2], [17] with results
[12], [14], [15]. Specifically, [12], [14] adopted single typeon two more recent data sets, ample result analysis, and an
of keypoint and the SIFT descriptor [18], while [6], [15], [16]extension to detect 374 semantic concepts. Different from [3],
used a combination of different keypoint sampling method4], [5], [6], [14], [15], [16], [22], [23], we first separately
(including sparse detectors such as Harris Laplace and Boosded then jointly consider various representation choices such
ColorHarris Laplace, as well as dense sampling) and keypoa# feature weighting, vocabulary size, feature selection and
descriptors (SIFT, HueSIFT, and etc). The ColorHarris Laplaggsual bi-gram, which could govern the BoW performance but
and HueSIFT are constructed by integrating color informatidrave not yet been seriously studied in other works.

Il. RELATED WORKS



Feature Extraction e, IV. REPRESENTATIONCHOICES
T @ <><> space Visual-word Vocabulary
o ¢ - This section introduces various factors that can affect the
performance of BoW feature for semantic concept detection.

@—’/ Some are widely used in text categorization, such as term

weighting, stop word removal, feature selection, and bi-grams
(word co-occurrence), while others are unigue to images, such
as changing the vocabulary size and encoding the spatial
information. We discuss these techniques below.

o o0 ‘ J:l]_, A. Vocabulary Size

Since the visual words are generated by clustering local
keypoint features, the size of a visual vocabulary is controlled

[ A . . .

e " by the number of keypoint clusters in the clustering process.

coa This is different from the vocabulary of a text corpus whose
“bags of visual words” Visual-word vectors

size is relatively fixed. A small vocabulary may lack the
discriminative power since two keypoints may be assigned into
the same cluster even if they are not similar to each other. A
[1l. BAG-OF-VISUAL-WORDS(BOW) FEATURE large vocabulary, on the other hand, is less generalizable, less
o ) ) forgiving to noises, and incurs extra processing overhead.
~ Similar to terms in a text document, an image has local The {rade-off between discrimination and generalization
interest points or keypoints defined as salient patches thatiivates the study of visual vocabulary size. Our survey
contain ri.ch Ioca}l information about the image. Shown as smafhows that previous works used a wide range of vocabulary
crosses in the images on the left of Figure 1, keypoints aBes |eading to difficulties in interpreting their findings. For
usually around the corners and edges of image objects, SH’%}ance, Lazebnik et al. [3] adopted 200-400 visual words,
as the edges of the map and people’s faces, etc. Keypoifsng et al. [5] adopted 1,000, Sivic et al. [1] adopted 6,000

can be automatically detected by various detectors [25] anﬂlooo, Philbin et al. [23] adopted as high as 1 million, etc. In

described by different descriptors [26]. _ ~our study, we experiment with vocabularies of various numbers
Images can be represented by sets of keypoint descripteysyisual words.

but the sets vary in cardinality and lack meaningful ordering.
This creates difficulties for learning methods (e.g., classifiers) o
which usually demand feature vectors of fixed dimension & VWeighting Schemes
input. To address this problem, we adopt vector quantizationTerm weighting is known to have a critical impact on text
(VQ) technique to cluster the keypoint descriptors in theinformation retrieval (IR). Whether such impact extends to
feature space into a large number of clusters usingimeans visual keywords is an interesting question. A fundamental
clustering algorithm, and then encodes each keypoint by thiference is that: text words are natural entities in a language
index of the cluster to which it belongs. We conceive eadaontext, while visual words are the outcomes of feature clus-
cluster as aisual wordthat represents a specific local patterrering. The former carries semantic sense of natural language,
shared by the keypoints in that cluster. The clustering proceshile the latter infers statistical information of repetitive local
generates a&isual word vocabularnydescribing different local image patterns. The existing work on Bow mostly adopted
patterns. The number of clusters is the size of the vocabulaggnventional weighting schemes in IR, which are based on
which usually varies from hundreds to over tens of thousandsrm frequency (TF) and/or inverse document frequency (IDF).
Mapping the keypoints to the visual words, we can represdnt[1], Sivic et al. adopted TF-IDF, while most of the other
an image as a bag-of-visual-words (BoW). This representatiaorks chose TF directly [3], [5]. In [4], binary weighting,
is analogous to the bag-of-words document representationwhich indicates the presence and absence of a visual word
terms of form and semantics. Both representations are spaké values 1 and O respectively, was used.
and high-dimensional, and just as words convey meanings ofAll these weighting schemes perform the nearest neighbor
a document, visual words reveal local patterns characteristi&sarch in the vocabulary in the sense that each keypoint is
of the whole image. mapped to the most similar visual word (i.e., the nearest
The BoW representation can be converted into a visual woellister centroid). For visual words, however, assigning a
vector, which is similar to the term vector of a documenkeypoint only to its nearest neighbor is not an optimal choice,
This visual word vector may contain the presence/absengigen the fact that two similar points may be clustered into
of each visual word in the image, the count of each visudlfferent clusters when increasing the size of visual vocabulary.
word (i.e., the number of keypoints in the correspondinigloreover, simply counting the votes (e.g., TF) is not optimal
cluster), or weights of each visual word by other factors (ses well. For instance, two keypoints assigned to the same
section 1V-B). This visual word vector is used in classifyingisual word are not necessarily equally similar to that visual
the semantic concepts. The process of generating visual warard, i.e., their distances to the cluster centroid are different.
representation is illustrated in Figure 1. Ignoring their similarity with the visual word during weight

Fig. 1. Image representation using bag-of-visual-words.



assignment causes the contribution of two keypoints equal, and words by choosing visual words witbF above a prede-
thus it becomes more difficult to assess the importance of a fined threshold, whileDF_min removes frequent words

visual word in an image.

In order to tackle the aforementioned problems, in our e

earlier work [2], we proposed aoft-weightingscheme to

weight the significance of visual words. For each keypoint in
an image, instead of mapping it only to its nearest visual word,

in soft-weighting we select the top- nearest visual words.
Suppose we have a visual vocabularyFofvisual words, we
use aK-dimensional vectorw = [wy,...,wy, ..., wk] With
each component; representing the weight of a visual word

by choosing visual words witBF below a threshold.

x? statistics (CHI} The x?2 statistics measures the level

of (in)dependence between two random variables [27].
Here we compute?(t, c;) between the presence/absence
of a specific visual word and the binary label of an
image classc;. A large value ofy?(t,c;) indicates a
strong correlation between and ¢;, and vice versa.
Since x?(t, c;) depends on a specific class, we compute
the average statistics across all the image classes as

Xowg(t) = & S \3(t,¢;), whereC is the number of
N oM cl2ass(e)s ti)n ;che corrr])us.r:Nﬁjthen eliminate visual words with
_ Ny X2,.(t) below a threshold.
we= ;Zl 2i=1 sim{j,t), (1) . Infogrmation gain (IG): IG is another measure of the de-
T pendence between two random variables. Mhéetween
a visual wordt and a class label; is computed as:

N oe L)
te%l}c,;§1} PAt, ci)log P(t)P(c;)’ )

We computel G, (t) = & Ziczl IG(t,¢;), and remove
visual words withIG,4(t) below a threshold.

o Mutual information (MI): Ml is related tolG. It uses
one term in the sum of Egn 2 to measure the association
between a visual word and a class label;:

Pt=1,¢=1)
Pt=1)P(c;=1)
Similar toCHI andIG, visual words with small/ I,,,,,(t)
are eliminated from the vocabulary.

t in an image such that

where M; represents the number of keypoints whadse
nearest neighbor is the visual wordThe measureim(j,t)
represents the Cosine similarity between keypgiand the
visual word t. Notice that in Egn 1 the contribution of
a keypoint is its similarity to wordk weighted by 2%1
representing that the visual word is itk nearest neighbor.

IG(t,C,L) =

C. Stop Word Removal

Stop word removal is a standard technique in text catego-
rization. The question is, are there also “visual stop words” that
represent local patterns totally redundant for image retrieval
and classification? Sivic and Zisserman [1] claimed that the
most frequent visual words in images are also “stop words”
and need to be removed from the feature representation.
There is however no empirical evidence that shows doing that
improves image classification performance. Since it is vef: Spatial Information
difficult to judge whether a visual word is a stop word, we \Where within a text document a certain word appears is
focus on the relationship between frequent visual words agigually not very relevant to the category of this document.
group and the classification performance. The spatial locations of keypoints in an image, however,
carry important information for classifying the image. For
example, an image showing a beach scene typically consists
of sky-like keypoints on the top and sands-like keypoints

Feature selection is an important technique in text categg- the bottom. The plain BoW representation described in
rization for reducing the vocabulary size and consequently th@ction 111 ignores such spatial information and may result
feature dimension. It uses a specific criterion for measuring inferior classification performance. To integrate the spatial
the “informativeness” of each word and eliminates the nofxformation, we follow [3] to partition an image into equal-
informative words. Yang et al. [27] found out that, when @jzed rectangular regions, compute the visual-word feature
good criterion is used, over 90% of the unique words in thgom each region, and concatenate the features of these regions
vocabulary can be removed without loss of text categorizatightg single feature vector. There can be many ways of
accuracy. In semantic concept detection of images and Videﬁértitioning, e.g.3 x 3 means cutting an image into 9 regions.
feature selection is potentially important as the size of the Thjs region-based representation has its downside in terms
visual-word vocabulary is usually very high, but it has not beest cost and generalizability. First, if we divide each image
seen in any existing work. We experiment with five featurgytg 1, x n regions, and compute &-dimensional feature on
selection criteria used in text categorization [27]: each region, the concatenated feature vector i& of m x n

o document frequency (DF)DF is the number of images dimension, which can be prohibitively expensive to deal

(documents) in which a visual word (word) appears. Iwith. Besides, encoding spatial information can make the
text categorization, words with smalF are removed representation less generalizable. Suppose an image class is
since rare words are usually non-informative for categodefined by the presence of a certain object, sasplane
prediction. Not knowing whether frequent visual words owhich may appear anywhere in an image. Using region-based
rare ones are more informative, we adopt two oppositepresentation can cause a feature mismatch if the objects
selection criteria based oBF: DF_max removes rare in the training images are in different regions from those in

MI(t,c;) =log

®3)

D. Feature Selection



the testing images. Another risk is that many objects maynumber of general-purpose kernel functions, it is unclear

cross region boundaries. These considerations prefer relativelyich one is the most effective for BoW features in the context

coarse partitions of image regions to fine-grained partitionsof semantic concept detection. In [22], histogram intersection
is implicitly used in the proposed pyramid match kernel. In [5],

F. Visual Bi-gram

Besides the location of individual visual words, the spati
proximity of different visual words is also important for

Zhang et al. adopted thg? RBF kernel which has shown
ood performance, while the authors of many other existing
orks, to our knowledge, chose the traditional linear kernel

or Gaussian RBF kernel. In this paper, we will evaluate the

classification because it captures the geometrical struct%ﬁowmg kernels for BoW-based visual classification:

of an image. For example, visual words depictiiage may
frequently co-occur with visual words characterizingcktie
The spatial co-occurrence of visual words is analogous to the
bi-grams orn-grams in text categorization [28], [29]. Because

o Linear kernel

K(x,y)=x"y, (%)

wherex andy are two input vectors.

the keypoints are sparsely distributed in an image and are no} Histogram intersection kernelThe Histogram Intersec-
necessarily adjacent to each other in our representation, we tion kernel was proposed and proven to be Mercer kernel

name it as sparse visual bi-gram.
We use a two-dimensional co-occurrence histogram to rep-

resent an image based on the visual bi-grams. Suppose there

are K visual words, a x K matrix (2-dimensional histogram)
G, is constructed with each entrg,.(s,¢) indicating the
frequency of visual bi-granfs, ¢} appearing withi(s,¢) <,
whered(-) is the Euclidean distance of the two wordsand

t in the image andr is a threshold. Multiple histograms
with variousr can be used to capture the visual bi-grams of
different word distances.

The visual bi-gram offers a perspective of modeling the
spatial co-occurrence of visual words. Similar works include
recent studies of Lazebnik et al. [30] and Nowozin et al.
[31]. The former used semi-local parts (groups of neighboring
keypoints) for texture and object recognition, while the latter
attempted to mine significant spatial co-occurrent visual word
patterns for object categorization. By using the most informa-
tive visual word patterns, better categorization performance is
observed in [31].

V. KERNEL CHOICES OFBOW CLASSIFICATION

Once images are represented by BoW features, we can
classify images in the same way we classify text documents.
The general approach is to build supervised classifiers from
labeled images based on BoW features and apply them to
predict the labels of other images.

In our experiments, we adopt Support Vector Machines
(SVM) for semantic concept detection. SVM has been one
of the most popular classifiers for Bow-based image classi-
fication [2], [3], [4], [5], [6], [11]. For two-class SVM, the
decision function for a test samplehas the following form:

g(z) = Z ik (x5, x) — b, @)

in [32]:
K(Xay) = Zmln{xzayl}7 (6)
Generalized forms of RBF kernels
K(x,y) = e dtoy), (7)

where d(x,y) can be chosen to be any distance in the
feature space. Since BoW is a histogram of visual words
with discrete densities, thg? distance may be more
appropriate:

(2 — y:)?

, 8
Ti +Yi ®

dy2(x,y) = Z
which gives ay? RBF kernel. They? RBF kernel satisfies
Mercer’s condition [33].

In addition tox?, there are another series of generalized
RBF kernels with the distance function defined as:

dy(x,y) = Z i — il (9)

With this distance function, Eqn 7 becomes the Laplacian
RBF kernel wherh = 1 and the sub-linear RBF kernel
whenb = 0.5. These kernels are popularly used in image
retrieval with color histogram as feature, and have shown
to generate better performance than Gaussian RBF kernel
(b = 2) [34]. The functionse—*%(x¥) satisfy Mercer’s
condition if and only if0 < b < 2 [35].

V1. EMPIRICAL STUDY

In this section we conduct extensive experiments to evaluate
the choices of BoW representations and classification kernels.

A. Experimental Setup

where IC(z;, x) is the response of a kernel function for the 1) Data set:We use TRECVID 2006 data set to empirically
training sampler; and the test sample, which measures the study the choices described in the previous sections. The data

similarity between the two data sampleg;is the class label
of z;; «; is the learned weight of the training samplg and
b is a learned threshold parameter.

The choice of an appropriate kernel functidi(x,y) is
critical to the classification performand€.should be positive

set was used for TREC Video Retrieval Evaluation 2006 [36],
where the training and testing sets consist of 61,901 and
79,484 video shots respectively. One video frame is extracted
from each shot as its keyframe. In the experiments, we use
the 20 semantic concepts which were officially evaluated in

definite and symmetric (a.k.a. Mercer’s condition), to guafRECVID 2006. The labels of these concepts in the training
antee the convergence of SVM training. Although there aset are provided by LSCOM [7]. Figure 2 shows keyframe
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Fig. 2. Keyframe examples of 20 semantic categories in TRECVID 2006
data set. . . . o
First, let us evaluate the influence of different weighting

schemes. Our soft-weighting outperforms the other popular

examples of the 20 semantic concepts. These concepts caveighting schemes across different vocabulary sizes. This
a wide variety of topics, including objects, indoor/outdocihdicates that the visual words are indeed correlated to each
scenes, people, events, etc. The goal of concept detection isttiter and such correlation needs to be considered in feature
rank the 79,484 video keyframes according to the presencer@bresentation. For that reason, our soft-weighting method
each of the 20 semantic concepts. Note that this data set igtéich is tailored for the weighting of visual words performs
multi-label data set, which means each keyframe may belongich better. Next, we move on the see the relationship
to multiple classes or none of the classes (concepts), e.g., le@weerbinary and TF. We see that TF outperforiimary by
example ofweatherin Figure 2 also belongs to conceplap  a large margin only when the vocabulary size is small. This

2) BoW generation:The keypoints are detected by DoGs due to the fact that, with a larger vocabulary size, the count
(Difference of Gaussian) detector [18] and described by SIFSF most visual keywords is either 0 or 1 and thus TF features
descriptor [18]. This results in an average of 235 keypoinige similar withbinary features.
per keyframe. In the experiments, we useneans cluster- The IDF, which weighs visual words according to their
ing algorithm to generate visual vocabularies. To reduce tlgstribution among the images, is only slightly helpful in some
computational cost, we sample the training set and clustsfr our experiments. We observe that the impact of IDF is
550,000 SIFT features. While in the BoW representation thesensitive to the vocabulary size. This is not surprising because
is an issue of data dependent vocabulary versus univeradtequent visual word (cluster) may be split into several rare
vocabulary, we will not elaborate this challenging question dugords (clusters) when increasing the vocabulary size. Thus the
to space limitation. The parameted$ in the soft-weighting IDF weight of a certain keypoint is not stable at all.
scheme and the parametein the visual bi-gram generation Finally, let us examine the impact of different vocabulary
are empirically chosen as 4 and 40 respectively. sizes. When usingoinary weighting, we observe that an

The classification is conducted independently for each comppropriate size of vocabulary is 10,000 or larger. However,
cept. Using the SVM, we build 20 binary classifiers for theshen more sophisticated weighting schemes are employed,
20 semantic concepts, where each classifier is for determinig impact of vocabulary size turns to be less significant.
the presence of one specific concept. Less sensitive to vocabulary size is an important merit for a

3) Evaluation criteria: We use inferred average precisiorweighting scheme, since using small vocabulary size reduces
(infAP) for performance evaluation. The infAP is an approxithe computational time in both the vector quantization and the
mation of the conventional average precision (AP). The magassification processes. The MinfAP performance of the soft-
advantage of the infAP is that it can save significant judgingeighting scheme over different vocabulary sizes (500-10,000)
effort during the annotation of ground-truth for large testingaries just in a small range of 0.01, while the performance of
data set [36]. Following the TRECVID evaluation, the infARyinary weighting changes for almost 0.04. The small perfor-
is computed over the top 2,000 ranked shots according to #@nce fluctuation of the soft-weighting scheme is probably

outputs of the SVM classifiers. To aggregate the performangge to the use ok-means algorithm which is sensitive to the
of multiple semantic concepts, mean infAP (MinfAP) is usednitial selection of cluster centers.

B. Weighting Schemes and Vocabulary Sizes C. Stop Word Removal

In this section, we examine the keyword weighting schemes,Do the most frequent visual words behave like “stop
vocabulary sizes, and their impact on classification perforords”? We approach this question by examining the clas-
mance. We use thg? RBF kernel for SVM learning. The sification performance using pruned vocabularies with the
observations from the other kernel choices are similar. Theost frequent visual words removed. We use the 10,000-
results are summarized in Figure 3. d vocabulary, which produces the best performance in the
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last experiment. As shown in Figure 4, for soft-weighting,
removing up to 30% of the words basically does not hurt
the performance. But after that, the performance drops at a

Mean inferred average precision
o
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&
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faster rate. While for TF weighting, the performance always 004 DF _max \
decreases, and the degree of degradation is basically linear £ oo [ =<bkmin ;
to the proportion of removed words. From this experiment 0.00 m M

we have two observations. First, the most frequent words are 0% 10% 2 e e 80% 90%

indeed not that informative and we can remove some of them

without hurting the performance. However, it is still prematureig. 5. Concept detection performance on TRECVID 2006 using visual

to say that they are all stop words, as reserving them wiRcabularies pruned using various feature selection criteria. Under both TF
t hurt th f Il ’ hich is diff tf weighting and soft-weighting, as high as 50% of the visual words can be

no ur. € periormance as well, which 1s difrerent Trom,mqyed with very minor performance degradation when criteria sudf® as

text retrieval where stop words hurt performance. Second, theiCHI are used.

soft-weighting is more robust than TF when pruning more

words. This is probably due to the fact that soft-weighting

assigns a keypoint to multiple words, which can increase tbehers. This order is basically consistent with that in the text

discriminative power of the remaining words. categorization [27].

D. Feature Selection ) )
) _ ) ) ) ~ E. Spatial Information
In this section we examine the five feature selection criteria

discussed in Section IV-D, which af@F-max DF-min, CHI, The importance of spatial information can be seen by
IG, and MI. We reduce the vocabulary size by removing theomparing the classification performance between the plain
most uninformative words determined by each criterion, anisual-word features (BoW) and the region-based ones. We
evaluate the concept detection performance. Results basedxamine four ways of partitioning images, includingc 1l
the 10,000-d vocabulary are shown in Figure 5. (whole image), 22 (4 regions), &3 (9 regions), and 44

We see that when effective criteria liH6& and CHI are (16 regions). Figure 6 shows the performance using different
used, there is only a minimum loss of performance whespatial partitions, vocabulary sizes, and weighting schemes.
the vocabulary is cut by 50%. It is interesting to see that We see that the 22 partition substantially improves the
even when the vocabulary is cut by as high as 90% (retajfassification performance. As the partition changes fon2
1,000 words), the performance drops 45% (soft-weightingp 4 x 4, the MinfAP drops for most of the vocabulary sizes.
However, as shown in Figure 3, using a small vocabulamhis can be explained based on our discussions in section
of 1,000 visual words without selection still achieves verfv-E that using more regions will make the representation less
good performance. Thus we conclude that a reduction of upgeneralizable and may cause the feature mismatch problem.
50% can be carried out using feature selection, but for larg&ten investigating the per-concept performance, we find that
reductions, the performance may not be better than direcdlyatial information is more useful for classifying scenes than
constructing a smaller vocabulary. As a comparison, in teir classifying objects, since the former usually occupy a
categorization a vocabulary can be reduced by 90% or ewghole keyframe, while the latter can appear anywhere in a
98% without loss of classification accuracy [27], which impliekeyframe. For large scale semantic detection in diversified data
that the percentage of uninformative (noisy) terms in text magt, using x 2 partition might be enough. Our conclusion is a
be larger than that in images. bit different from the results of scene and object categorization

Among different feature selection methodSHI and IG in [3] where8 x 8 regions are still useful. This is probably due
are obviously top performers, followed HPF_max while to the fact that the objects in the data set they used (Caltech-
the performances oDF_min and MI are lower than the 101) are centered, for which spatial information always helps.
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Fig. 7. Performance on TRECVID 2006 using fusion of visual bi-grams anglity different kernels RBF kernels with linear exponential decay?(and

visyal words. With go_od choice of fusion parameter, visual bi-grams are ak?_lﬁplacian) are the most suitable choices for BoW classification.
to improve the detection performance by 5%.

. Thus we may conclude that the visual bi-grams describing
F. Visual Bi-gram ! . ;

. ] ) ) ~ the geometric structure of an image are useful for semantic

In this section we examine the effectiveness of the visugktection. It can be used as a complement to the visual word

bi-gram. As introduced in section IV-F, there are in toteatures, but careful selection of the fusion parameter (e.g.,
K x K possible bi-grams in a vocabulary &f visual words. ysing cross validation) is necessary.

It is risky to concatenate the visual bi-grams with the original

BoW feature into a single feature vector, as the large number )

of bi-grams may overwhelm the visual words. Instead, w@- Kermel Choice

build a separate SVM model based on visual bi-grams. Theln this experiment, we investigate the impact of different
combination of visual bi-grams and visual words is done tkernels in SVM on BoW-based concept detection performance.
‘late fusion’, i.e., the final decision is made by fusing of th&/e use TF weighting on the vocabulary with five thousands
outputs of separate classifiers. While the raw output of SVMsual words. Figure 8 summarizes the performances of var-
in Egn 4 can be used as a detector response, we preferithes kernels. The results of other weighting schemes and
Platt's method [37], [38] to convert the raw output into aocabulary sizes are similar. For the generalized RBF kernels,
posterior probability. This is more reasonable especially for thee vary the parametes in a reasonable range and choose
fusion of multiple feature modalities, since the raw outputs ¢iie best one via cross validation. Overall, the generalized
SVM for different modalities may be in different scales, whicliRBF kernels perform better than Linear kernel and histogram
will make the feature with larger scale dominating the othermitersection kernel with non-trivial margin. This indicates that
In this experiment, we use linear weighted fusion defined #s semantic classes are correlated to each other in Bow
A X Pri—gram(z) + (1 — A) X puwora(x), Wherep(z) is the feature space and thus are not linearly separable.

probability output of SVM for test sample. Among all the generalized RBF kernels, th& RBF kernel,

We fuse the result of visual bi-gram with the best visudlaplacian RBF kernel, and sub-linear RBF kernel consistently
word based result (10,000 words with 30% of them removexlitperform the traditional Gaussian RBF kernel. This can
by CHI). Figure 7 shows the fusion performance with variouse attributed to the responses of the kernels to background
A. We see that the MinfAP of visual bi-gram alone is 0.08/ariance. Ideally, a kernel should only emphasize regions
and the fusion with visual word can improve the performanamntaining the target concept, while tolerating the background
by 5% whenA = 0.1. The improvement of using visual bi-variance without amplifying the effect. Take Figure 9 as an
grams is consistent with that in text categorization where Bxample. It is easier for us to perceive the common region
grams can improve the performance by about 10% or less [2@lag) when comparing their relevancy to the condigug-US



for Sound and Vision, where the training and test sets contains
43,616 and 35,766 shots respectively. There are 20 semantic
concepts evaluated in TRECVID 2008.

The PASCAL VOC 2007 data set was used for the PASCAL
Visual Object Classes Challenge 2007 [39]. In total, there are
9,963 images, which were divided evenly into training and
Fig. 9. Instances oflag-USwith different backgrounds in TRECVID data test sets. 20 semantic concepts are evaluated on this data
set. set, covering four major topics: person, animals, vehicles,

and indoor scenes. Note that the detection performance on
An ideal kernel should thus reduce the impact of background€*>CAL VOC 2007 is measured by the conventional AP
d mean AP (MAP) is used to aggregate the performance

With reference to Figure 9, suppose there is a bin (visual wo ) |
representing people. This bin should have a nonzero Waight0 multiple concepts. Compared with the TRECVID data sets,

for the keyframel; on the right hand side, but its weight isthe Pﬁ‘SCAL_ VOC_ dﬁta Sbet is ?lso smalller ang less dti,vers:ied.k
zero for the other keyframe. The responses of different kern%(}ée choose it as it as been requently used as a benchmar
at this particular bin are: or evaluating keypoint-based features.

For both data sets, two detectors, DoG and Hessian Affine

Ksub—tinear(I1,12) = e Plw=01"" _ o—puw®? [25], are used to extract local keypoints. The keypoints are then
K Laptacian(I1, I2) = o Plw=0| _ ,—pw described using SIFT. Here we choose two detectors because
e there is plenty of evidence in recent work which shows that
Ky2(I1,I3) = e PmoFo = ¥ the combination of various keypoint detectors leads to better

Kaussion(I1, I2) = e—P(w=0)% _ ,—pw® performance [5], [6], [40], [41]. For each keypoint detector,

we sample and cluster around 550,000 keypoints to generate

The sub-linear RBF kernel has a sub-linear exponential decayisual vocabulary of 500 visual words for each data set. The
while the Laplacian RBF ang®* RBF kernels have a linear ex-soft-weighting and the:> RBF kernel SVM are then adopted
ponential decay, and the Gaussian RBF kernel has a quadrégic constructing and classifying BoW features respectively.
exponential decay. An ideal distance function should givEhe classification outputs of features generated from different
small response (or equivalently a larger kernel response) to Kepoint detectors are combined using average fusion.
background variance. Thus the kernels with linear/sub-linearThe per-concept detection performances on both data sets
exponential decay appear as better choices than the Gausai@nshown in Figure 10. Based on our observations in Sec-
RBF kernel. This conclusion is consistent with the observatigion VI-E, relatively coarse spatial partition is preferred. Thus
of [34] using color histogram for image classification. in this experiment, we include one more spatial partitior3}1

Among different kernels, the computational time of lineaand test three choicesx1 (whole keyframe), £3, and 2.
kernel and histogram intersection kernel is shorter than thEte choice k3 is also adopted in the best performing system
of the generalized RBF kernels. The sub-linear RBF kernef PASCAL VOC 2007 [39]. From Figure 10 we see that the
is the slowest since it contains a time-consuming square rawerall performances of each spatial partition are very close.
for nonzero components of every support vector. For the BoWis is consistent with the results on TRECVID 2006 data
representation, as shown in our experiments, we suggest to sise(Section VI-E). On TRECVID 2008 data set, some scene
kernels with linear exponential decay, i.e., the Laplace RBfoncepts such agtreetandmountainbenefit from using spatial
kernel or thex? RBF kernel. In the rest of our experimentsinformation, while the performances of object concepts such as

x? RBF kernel is employed. bridge and airplane are degraded by spatial partition. Similar
observations also hold for the PASCAL VOC 2007 data
VIl. DISCUSSION set. We further combine the detection outputs from different

In this section we further evaluate and discuss the eﬁe%QatiaI partition choices using average fusion. As can be seen

tiveness of our BoW representation using data sets other tﬁgr’: iglgur_e 10, the r(:ombir;ation of di{fgg/e nt Sgﬁ?&@?g'g%%z
the TRECVID 2006. We first evaluate the generalizability cﬁr%atsx/'mprogzgép\el_ Fi/e(r)g”ggg;e (Th o on its indi that
our empirical findings to two recent data sets. We then stu o on ). The results indicate tha

the degree of performance improvement when fusing the Bogy'0ugh different types of concepts favor different spatial
feature with global features such as color and texture. Final rtitions, the fusion of multiple partition choices is helpful for

we extend our method to detect a large set of 374 conce ’gst concepts, and thus should be used for better performance.
and discuss the detection performance Figure 11 and 12 further compare our results with the state-

of-the-art approaches on both data sets. Our submitted runs
S in TRECVID 2008 (dark blue bars) [41] are based on the

A. Generalizability to Other Data Sets BoW feature representation discussed in this paper, which
We use TRECVID 2008 and PASCAL VOC 2007 datachieve very competitive performance, ranking top-10 out of
sets to study the generalizability of our empirical findingsll the 200 official submissions. Among the top-20 runs, 15
Different from the TRECVID 2006 data set which is composedre based on BoW feature [6], [41]. More interestingly, all the
of broadcast news videos, the TRECVID 2008 data set mairtyp-14 runs used soft-weighting techniques (our soft-weighting
consists of documentary videos from the Netherlands Instituteethod and [24]). This indeed proves the effectiveness of soft-
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Fig. 11. Performance of the top-100 (out of 200) official runs in TRECVIDFig. 12. Performance comparison of our result (blue bar) with the 17 official
2008. Within the top-20 runs, 15 (circled) are based on BoW features. All séibmissions of PASCAL VOC 2007. All of the methods are based on local
our 6 submissions (dark blue bars) ranked top-10 [41]. features. Our result is shown in blue.

We|ght|ng in semantic Concept detection. On the other har@I,Obal features have been used for Concept detection in many
all the submissions in PASCAL VOC 2007 relied on local keyPrevious studies [2], [11], [13], [15]. It is interesting not only
point features, with emphasis ranging from keypoint detectofg, compare the performance of the two features, but also to see
descriptors, to advanced machine learning techniques. comhether their combination further improves the performance.
pared with the 17 official submissions, our result ranks the 7th.We experiment with two types of global features: color
It is also interesting to note that many of the runs in PASCAMoment (CM) and wavelet texture (WT). In CM, we calculate
VOC 2007 utilized not only sparse sampled keypoints (Harrige first 3 moments of 3 channels b color space oves x5
Laplace and Laplace of Gaussian), but also densely samplisifl partitions, and aggregate the features into a 225-d feature
image patches. Since the large number of densely samp¥&gtor. For WT, we us@x 3 grids and each grid is represented
local image patches demands heavy computation load for S|Py the variances in 9 Haar wavelet sub-bands to form a 81-d

calculation and vector quantization, our BowW representatiépature vector. We compare their performance with that of the
has the advantage of speed efﬁciency_ local features (BOW) on the TRECVID 2008 data set.

Average fusion is used to combine different features. Ta-
) ) ble | shows the results on the TRECVID 2008 data set. We
B. Fusion with Color/Texture Features can see that Bow (with soft-weighting and RBF kernel)
Global features such as color and texture are extensivelgnificantly outperforms CM, WT and their combination. This
used in image and video classification. While keypoint fe&deed proves the effectiveness of local features for semantic
tures describe the local structures in an image and do moincept detection, even though they contain no color infor-
contain color information, global features are statistics abounation. By fusing BoW with global features, the performance
the overall distribution of color, texture, or edge informations slightly improved by 3-4%. The degree of improvement,
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TABLE |
MINFAP PERFORMANCE OF FUSINABBOW WITH COLOR MOMENT (CM) AND/OR WAVELET TEXTURE (WT) ON TRECVID 2008DATA SET. THE
PERCENTAGE IN THE PARENTHESIS SHOWS THE DEGREE OF IMPROVEMENT OVER TBBW ONLY PERFORMANCE(THE 5TH COLUMN).

CM | WT | CM+WT | Bow | BOW+CM | BoW+WT | BoW+CM+WT
MinfAP | 0.050 | 0.031 | 0.060 | 0.154 | 0.159 (3%)| 0.154 (0%)| 0.160 (4%)

however, is not as apparent as that on the TRECVID 20@e computational time especially when detecting thousands
data set, which is as high as 50% [2]. This is due to th# concepts in large-scale multimedia databases.
fact that TRECVID 2006 data set is composed of broadcastCurrently our works are grounded on keyframes and thus
news videos which contain plenty commercial advertisementsmporal information within a video shot is not considered.
The repetitive commercials result in many near-duplicate vid&shen extending to multiple frames or the whole frame se-
shots on which global features work very well. For PASCAlguence per shot, the detection performance may be further
VOC 2007 data set which does not contain near-duplicataproved, but with additional computational cost of feature
images, similar observation is also noted where fusion witxtraction and classification. Nevertheless, the temporal infor-
global features does not lead to apparent improvement. mation has been shown to be effective particularly for the
detection of event-type concepts in [45], [46]. Whether there

C. VIREO-374: LSCOM Semantic Concept Detectors is a more efficient way of utilizing the temporal information

We further apply our method to detect a large set of 37S lll deserves future research.
semantic concept detectors, namely VIREO-374. With the goal
of stimulating innovation in concept detection technique and
providing better large scale concept detectors for video seard] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
the detectors as well as features and detection scores on refﬁ'l biect matching in videos,” ifCCV, 2003.

. G. Jiang, C. W. Ngo, and J. Yang, “Towards optimal bag-of-features
years’ TRECVID data sets (2005-2009) have been reléase for object categorization and semantic video retrieval, A@M CIVR

The VIREO-374 detectors are trained on TRECVID 2005 2007.
development set using three features (BOW CM. and WTj?’] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial

. ; ramid matching for recognizing natural scene categoriesC\iti®
On a leave-out validation set (a subset of the TRECVID 2005 %oe. 9 gnizing goresCuPR

development set), the mean performances of the 374 concepts E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-of-

are 0.150 for Bow and 0.174 for the fusion of Bow and _ features image classification,” ECCV, 2006. .
] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local features

the global features (CM and WT). The fusion with global™ a4 kemels for classification of texture and object categories: A com-
features improves the performance by 16%. This is probably prehensive studyJCV, vol. 73, no. 2, pp. 213-238, 2007.

due to the fact that there are also many near-duplicates in tig C- G M. Snoek, K. E. A. van de Sande, O. de Rooij, B. Huurnink,
TRECVID 2005 d Th fecti f the d J. van Gemert, and et al., “The MediaMill TRECVID 2008 semantic
ata set. e efiectiveness of the detectors video search engine,” iTRECVID workshop2008.

is also evidenced in other works [42], [43], [44] which [7] “LSCOM lexicon definitions and annotations,” BiTO Challenge Work-

adopted VIREO-374 detectors for semantic video indexing. Shop on Large Scale Concept Ontology for Multimedia, Columbia
Th ks h d . . h f University ADVENT Technical Report #217-20062806.
ese works have reported promising search performance A. Yanagawa, S.-F. Chang, L. Kennedy, and W. Hsu, “Columbia uni-

utilizing the 374 detectors to perform query by text keywords versity's baseline detectors for 374 LSCOM semantic visual concepts,”
[42], [43] and query by multimedia examples [44]_ Columbia University, Tech. Rep., March 2007.
[9] C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M. Geusebroek, and
A. W. M. Smeulders, “The challenge problem for automated detection
VIII. CONCLUSION of 101 semantic concepts in multimedia,” ACM Multimedia 2006.
. . . . . . [\l/\(}] A. F. Smeaton, P. Over, and W. Kraaij, “Evaluation campaigns and
We have investigated various representation choices in BOW Trecvid,” in ACM MIR, 2006.
feature for semantic concept detection. By jointly consideririgt] J. Cao, Y. Lan, J. Li, Q. Li, X. Li, and et al., “Intelligent multimedia

the Vocabulary size Welghtlng scheme StOp-Word removal. 9rouP of Tsinghua university at TRECVID 2006,” FRECVID work-
’ ! ’  shop 2006.

feature selection, spatial information and visual bi-gram, the s.-F chang, W. Hsu, W. Jiang, L. Kennedy, D. Xu, and et al., “Columbia
BoW shows surprisingly strong performance regardless the university trecvid-2006 video search and high-level feature extraction,”

in TRECVID workshop2006.
colorless and essentially orderless representation. M. Campbell, S. Ebadollahi, D. Joshi, M. Naphade, A. Natsev, and et al.,

[13]
We have shown that all the six investigated representation” «gm research TRECVID-2006 video retrieval system,” TRECVID
choices, together with the kernel choice in SVM classifier, workshop 2006.

; ; 4] A. G. Hauptmann, M.-Y. Chen, M. Christel, W.-H. Lin, R. Yan, and
are influential to the performance of BoW. The Vocabmar%]/ et al., “Multi-lingual broadcast news retrieval,” IFRECVID workshop

size, however, exhibits less or even insignificant impact when g6,
our soft-weighting scheme is in use. This indeed motivaté$] C. G. M. Snoek, J. C. van Gemert, T. Gevers, B. Huurnink, D. C.

ig ; ; s Koelma, and et al., “The Mediamill TRECVID 2006 semantic video
and verifies the need of a weighting scheme specifically for search engine” ITRECVID workshop2006,

visual words to alleviate the impact of clustering on vocabulafys] k. E. van de Sande, T. Gevers, and C. G. M. Snoek, “A comparison of
generation. In addition, we show that using appropriate feature color features for visual concept classification,”AGM CIVR 2008.

selection methodd@ andCHI) can remove half of vocabulary [7] g'f_t?;%l_\(v;lgaii?gg'rg e(?]'t ;%lﬁgmaggéﬁgdcﬁsgﬁgi% ni‘g‘&la,\t/'l?g bag-
without hurting the performance, this will significantly reduce  5qg7.
[18] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
1Download site: http://vireo.cs.cityu.edu.hk/research/vireo374/ 1JCV, vol. 60, no. 2, pp. 91-110, 2004.
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