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Abstract—Based on the local keypoints extracted as salient
image patches, an image can be described as a “bag-of-visual-
words (BoW)” and this representation has appeared promising
for object and scene classification. The performance of BoW
features in semantic concept detection for large-scale multimedia
databases is subject to various representation choices. In this
paper, we conduct a comprehensive study on the representation
choices of BoW, including vocabulary size, weighting scheme,
stop word removal, feature selection, spatial information, and
visual bi-gram. We offer practical insights in how to optimize
the performance of BoW by choosing appropriate representation
choices. For the weighting scheme, we elaborate a soft-weighting
method to assess the significance of a visual word to an image.
We experimentally show that the soft-weighting outperforms
other popular weighting schemes such as TF-IDF with a large
margin. Our extensive experiments on TRECVID data sets also
indicate that BoW feature alone, with appropriate representation
choices, already produces highly competitive concept detection
performance. Based on our empirical findings, we further apply
our method to detect a large set of 374 semantic concepts. The
detectors, as well as the features and detection scores on several
recent benchmark data sets, are released to the multimedia
community.

Index Terms — Bag-of-visual-words, representation choice,
semantic concept detection.

I. I NTRODUCTION

Semantic concept detection is a research topic of great
interest as it provides semantic filters to help analysis and
search of multimedia data. It is essentially a classification task
that determines whether an image or a video shot is relevant
to a given semantic concept. The semantic concepts cover a
wide range of topics such as those related to objects (e.g.,
car, airplane), indoor/outdoor scenes (e.g.,meeting, desert),
events (e.g.,people marching), etc. Automatically detecting
these concepts is challenging especially in the presence of
within-class variation, occlusion, background clutter, pose and
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lighting changes in images and video shots. Global features are
known to be limited in face of these difficulties, which stim-
ulated the development of local invariant features (keypoints)
in recent years. Keypoints are salient patches that contain rich
local information about an image. The most popular keypoint-
based representation is bag-of-visual-words (BoW) [1]. In
BoW, a visual vocabulary is generated through grouping
similar keypoints into a large number of clusters and treating
each cluster as a visual word. By mapping the keypoints of
an image back into visual words of the vocabulary, we can
represent the image as a histogram of visual words and use it
as the feature for classification.

The BoW image representation is analogous to the bag-
of-words representation of text documents in terms of both
form and semantics. This makes techniques for text catego-
rization readily applicable to the problem of semantic concept
detection. As it is true with text categorization, where feature
representation has a large impact on its performance, the
performance of semantic concept detection is also sensitive
to various representation choices. In this paper, we conduct
a comprehensive study on the representation choices of BoW
feature and their impact to the performance of semantic con-
cept detection. Some of the representation choices are related
to text categorization techniques, including word weighting
scheme, stop word removal, feature selection, and visual bi-
gram, while the others are unique to concept detection in
images and videos, including vocabulary size (number of
keypoint clusters) and spatial information of the keypoints.
Particularly, for the visual word weighting scheme, we provide
in-depth analysis of a soft-weighting method, which was
initially proposed in our earlier work [2]. We generate BoW
features based on different representation choices and evaluate
their performance in large scale concept detection experiments.
Besides, we also study the choice of kernel functions used in
the classification of BoW features.

This study fills the gap in the existing works on image
classification based on local features, where most of the effort
focused on various keypoint detectors, keypoint descriptors
and clustering algorithms [1], [3], [4], [5], [6]. Few have
paid attention to various representation choices regarding this
visual-word feature (e.g., feature selection and weighting)
and studied their impacts on the classification performance.
Although some researchers adopted techniques like TF-IDF
weighting and stop word removal [1], the effectiveness of
these techniques have been taken for granted without empirical
evidence. In addition, most existing evaluations of methods
using local features have also been of small scale. This paper
provides the first comprehensive study on the representation
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choices of visual-word features in semantic concept detection.
By evaluating various representation choices, we intend to
answer the question of what BoW representation choices (w.r.t
dimension, weighting, selection, etc) are likely to produce the
best performance in terms of both accuracy and efficiency.

We evaluate semantic concept detection performance based
on various visual-word representations on TRECVID data
sets. Our experiments indicate that, with carefully chosen
representation choices, BoW feature offers very competitive
performance. Additionally, to stimulate innovation of new
techniques and reduce the re-implementation effort of our
approach, we apply our method to detect a large set of
374 LSCOM [7] semantic concepts, namely VIREO-374. We
release our features, classifier models, and detection scores
on several popular data sets. Compared to existing large-scale
concept detector sets [8], [9], VIREO-374 is better in terms
of scale and/or performance.

The remaining sections are organized as follows. Section II
reviews the existing works. Section III describes the generation
process of BoW image representation. Section IV outlines the
representation choices of BoW feature, including vocabulary
size, weighting scheme, stop word removal, feature selection,
spatial information and visual bi-gram. Section V introduces
the kernel choices of BoW classification. Section VI evaluates
the representation and kernel choices on TRECVID 2006 data
set. Section VII further discusses the generalizability of our
empirical findings to other popular data sets and extends
our method to detect a large set of 374 concepts. Finally,
Section VIII concludes this paper.

II. RELATED WORKS

Semantic concept detection aims to annotate images or
video shots with respect to a semantic concept. In exist-
ing works, this task is often conducted in a diverse setting
where the emphasis usually includes feature selection, multi-
modality fusion, and machine learning on huge multimedia
data sets [10]. Here we focus our review on feature-level
analysis which is related to our latter experimental comparison.
In [11], rich sets of features (visual, motion, text, face) and
classifiers were demonstrated to have excellent performance on
concept detection. Visual features, in particular, were extracted
simultaneously from global, grid, region and keypoints levels,
activating more than 100 SVM classifiers for learning a single
concept. While technically impressive, it becomes expensive
to scale up such a system, for instance, when thousands of
semantic concepts are considered for detection. Meanwhile,
the approaches in [6], [12], [13], [14], [15], [16] used less fea-
tures but still shown comparable performance to that of [11].
The features include color and texture (in global and grid
levels), motion, text, etc. BoW is also used in [2], [17],
[12], [14], [15]. Specifically, [12], [14] adopted single type
of keypoint and the SIFT descriptor [18], while [6], [15], [16]
used a combination of different keypoint sampling methods
(including sparse detectors such as Harris Laplace and Boosted
ColorHarris Laplace, as well as dense sampling) and keypoint
descriptors (SIFT, HueSIFT, and etc). The ColorHarris Laplace
and HueSIFT are constructed by integrating color information

into Harris Laplace and SIFT respectively [19]. Improvements
of the color boosted features over the traditional ones were
observed in [6], [15], [16].

In addition, [20] also used local feature for semantic concept
detection, but in a different way. They adopted geometric
blur features [21] as keypoint descriptor. The geometric blur
features were computed based on 200 randomly sampled
points with high edge energy from a keyframe. A total of
1291 training example keyframes are picked as references.
Given a test keyframe, online point-to-point matching was
performed between the keyframe and the exemplars. Each
keyframe was then represented as a 1291 dimensional vector
with each component indicating the distance of the keyframe
to a reference. The feature vectors were used directly for SVM
learning. In this representation, for each keypoint in the test
keyframe, the number of keypoint comparisons is as high as
1291×200. This is computationally more expensive than the
BoW representation where the number of comparison for each
test keypoint is equal to the number of visual words used
(usually a few thousands; cf. Section IV-A).

In computer vision, BoW has already exhibited surprisingly
good performance for object retrieval and categorization across
several data sets (e.g., [2], [3], [4], [5], [22], [23] among
others). In our recent work [2], a study on keypoint detectors,
feature weighting and vocabulary size was given. In [5], Zhang
et al. conducted a comprehensive study on the local feature
based object and texture classification. They provided compar-
isons on the choice of a few keypoint detectors and proposed
to use χ2 RBF kernel for SVM learning. In [4], Nowak
et al. studied the sampling strategies of BoW to compare
dense (grid-based local image patches) and sparse (keypoints)
representation. They claimed that sample size is critical for
building vocabularies and thus the randomly sampled image
patches could offer a more powerful representation than the
sparse keypoints. In [22], Grauman et al. proposed to use
pyramid matching kernel (PMK) for image comparison based
on local keypoint features. The orderless keypoint feature sets
were mapped to multi-resolution histograms and weighted
histogram intersection was used as kernel response. In [3],
Lazebnik et al. exploited the spatial location of keypoints and
proposed a spatial pyramid kernel, in which an image was
firstly divided into multi-level equal-sized grids and each grid
was described by a separate BoW. The BoWs from image
grids at each level were concatenated and finally, similar to
PMK, the weighted histogram intersection was used as kernel
response. Recently, in both [23] and [24], the effects of soft
and hard weighting schemes in generating BoW features for
object retrieval are contrasted.

In this paper, we assess and improve the performance of
BoW for semantic concept detection in large-scale multimedia
corpus, extending our previous works [2], [17] with results
on two more recent data sets, ample result analysis, and an
extension to detect 374 semantic concepts. Different from [3],
[4], [5], [6], [14], [15], [16], [22], [23], we first separately
and then jointly consider various representation choices such
as feature weighting, vocabulary size, feature selection and
visual bi-gram, which could govern the BoW performance but
have not yet been seriously studied in other works.
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Fig. 1. Image representation using bag-of-visual-words.

III. B AG-OF-V ISUAL-WORDS (BOW) FEATURE

Similar to terms in a text document, an image has local
interest points or keypoints defined as salient patches that
contain rich local information about the image. Shown as small
crosses in the images on the left of Figure 1, keypoints are
usually around the corners and edges of image objects, such
as the edges of the map and people’s faces, etc. Keypoints
can be automatically detected by various detectors [25] and
described by different descriptors [26].

Images can be represented by sets of keypoint descriptors,
but the sets vary in cardinality and lack meaningful ordering.
This creates difficulties for learning methods (e.g., classifiers)
which usually demand feature vectors of fixed dimension as
input. To address this problem, we adopt vector quantization
(VQ) technique to cluster the keypoint descriptors in their
feature space into a large number of clusters using thek-means
clustering algorithm, and then encodes each keypoint by the
index of the cluster to which it belongs. We conceive each
cluster as avisual wordthat represents a specific local pattern
shared by the keypoints in that cluster. The clustering process
generates avisual word vocabularydescribing different local
patterns. The number of clusters is the size of the vocabulary,
which usually varies from hundreds to over tens of thousands.
Mapping the keypoints to the visual words, we can represent
an image as a bag-of-visual-words (BoW). This representation
is analogous to the bag-of-words document representation in
terms of form and semantics. Both representations are sparse
and high-dimensional, and just as words convey meanings of
a document, visual words reveal local patterns characteristics
of the whole image.

The BoW representation can be converted into a visual word
vector, which is similar to the term vector of a document.
This visual word vector may contain the presence/absence
of each visual word in the image, the count of each visual
word (i.e., the number of keypoints in the corresponding
cluster), or weights of each visual word by other factors (see
section IV-B). This visual word vector is used in classifying
the semantic concepts. The process of generating visual word
representation is illustrated in Figure 1.

IV. REPRESENTATIONCHOICES

This section introduces various factors that can affect the
performance of BoW feature for semantic concept detection.
Some are widely used in text categorization, such as term
weighting, stop word removal, feature selection, and bi-grams
(word co-occurrence), while others are unique to images, such
as changing the vocabulary size and encoding the spatial
information. We discuss these techniques below.

A. Vocabulary Size

Since the visual words are generated by clustering local
keypoint features, the size of a visual vocabulary is controlled
by the number of keypoint clusters in the clustering process.
This is different from the vocabulary of a text corpus whose
size is relatively fixed. A small vocabulary may lack the
discriminative power since two keypoints may be assigned into
the same cluster even if they are not similar to each other. A
large vocabulary, on the other hand, is less generalizable, less
forgiving to noises, and incurs extra processing overhead.

The trade-off between discrimination and generalization
motivates the study of visual vocabulary size. Our survey
shows that previous works used a wide range of vocabulary
sizes, leading to difficulties in interpreting their findings. For
instance, Lazebnik et al. [3] adopted 200-400 visual words,
Zhang et al. [5] adopted 1,000, Sivic et al. [1] adopted 6,000
-10,000, Philbin et al. [23] adopted as high as 1 million, etc. In
our study, we experiment with vocabularies of various numbers
of visual words.

B. Weighting Schemes

Term weighting is known to have a critical impact on text
information retrieval (IR). Whether such impact extends to
visual keywords is an interesting question. A fundamental
difference is that: text words are natural entities in a language
context, while visual words are the outcomes of feature clus-
tering. The former carries semantic sense of natural language,
while the latter infers statistical information of repetitive local
image patterns. The existing work on BoW mostly adopted
conventional weighting schemes in IR, which are based on
term frequency (TF) and/or inverse document frequency (IDF).
In [1], Sivic et al. adopted TF-IDF, while most of the other
works chose TF directly [3], [5]. In [4], binary weighting,
which indicates the presence and absence of a visual word
with values 1 and 0 respectively, was used.

All these weighting schemes perform the nearest neighbor
search in the vocabulary in the sense that each keypoint is
mapped to the most similar visual word (i.e., the nearest
cluster centroid). For visual words, however, assigning a
keypoint only to its nearest neighbor is not an optimal choice,
given the fact that two similar points may be clustered into
different clusters when increasing the size of visual vocabulary.
Moreover, simply counting the votes (e.g., TF) is not optimal
as well. For instance, two keypoints assigned to the same
visual word are not necessarily equally similar to that visual
word, i.e., their distances to the cluster centroid are different.
Ignoring their similarity with the visual word during weight
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assignment causes the contribution of two keypoints equal, and
thus it becomes more difficult to assess the importance of a
visual word in an image.

In order to tackle the aforementioned problems, in our
earlier work [2], we proposed asoft-weightingscheme to
weight the significance of visual words. For each keypoint in
an image, instead of mapping it only to its nearest visual word,
in soft-weighting we select the top-N nearest visual words.
Suppose we have a visual vocabulary ofK visual words, we
use aK-dimensional vectorw = [w1, ..., wt, ..., wK ] with
each componentwt representing the weight of a visual word
t in an image such that

wt =
N∑

i=1

Mi∑

j=1

1
2i−1

sim(j, t), (1)

where Mi represents the number of keypoints whoseith
nearest neighbor is the visual wordt. The measuresim(j, t)
represents the Cosine similarity between keypointj and the
visual word t. Notice that in Eqn 1 the contribution of
a keypoint is its similarity to wordk weighted by 1

2i−1 ,
representing that the visual word is itsith nearest neighbor.

C. Stop Word Removal

Stop word removal is a standard technique in text catego-
rization. The question is, are there also “visual stop words” that
represent local patterns totally redundant for image retrieval
and classification? Sivic and Zisserman [1] claimed that the
most frequent visual words in images are also “stop words”
and need to be removed from the feature representation.
There is however no empirical evidence that shows doing that
improves image classification performance. Since it is very
difficult to judge whether a visual word is a stop word, we
focus on the relationship between frequent visual words as a
group and the classification performance.

D. Feature Selection

Feature selection is an important technique in text catego-
rization for reducing the vocabulary size and consequently the
feature dimension. It uses a specific criterion for measuring
the “informativeness” of each word and eliminates the non-
informative words. Yang et al. [27] found out that, when a
good criterion is used, over 90% of the unique words in the
vocabulary can be removed without loss of text categorization
accuracy. In semantic concept detection of images and videos,
feature selection is potentially important as the size of the
visual-word vocabulary is usually very high, but it has not been
seen in any existing work. We experiment with five feature
selection criteria used in text categorization [27]:

• document frequency (DF): DF is the number of images
(documents) in which a visual word (word) appears. In
text categorization, words with smallDF are removed
since rare words are usually non-informative for category
prediction. Not knowing whether frequent visual words or
rare ones are more informative, we adopt two opposite
selection criteria based onDF: DF max removes rare

words by choosing visual words withDF above a prede-
fined threshold, whileDF min removes frequent words
by choosing visual words withDF below a threshold.

• χ2 statistics (CHI): The χ2 statistics measures the level
of (in)dependence between two random variables [27].
Here we computeχ2(t, ci) between the presence/absence
of a specific visual wordt and the binary label of an
image classci. A large value ofχ2(t, ci) indicates a
strong correlation betweent and ci, and vice versa.
Sinceχ2(t, ci) depends on a specific class, we compute
the average statistics across all the image classes as
χ2

avg(t) = 1
C

∑C
i=1 χ2(t, ci), whereC is the number of

classes in the corpus. We then eliminate visual words with
χ2

avg(t) below a threshold.
• Information gain (IG): IG is another measure of the de-

pendence between two random variables. TheIG between
a visual wordt and a class labelci is computed as:

IG(t, ci) =
∑

t∈{0,1}

∑

ci∈{0,1}
P (t, ci) log

P (t, ci)
P (t)P (ci)

. (2)

We computeIGavg(t) = 1
C

∑C
i=1 IG(t, ci), and remove

visual words withIGavg(t) below a threshold.
• Mutual information (MI) : MI is related toIG. It uses

one term in the sum of Eqn 2 to measure the association
between a visual wordt and a class labelci:

MI(t, ci) = log
P (t = 1, ci = 1)

P (t = 1)P (ci = 1)
. (3)

Similar toCHI andIG, visual words with smallMIavg(t)
are eliminated from the vocabulary.

E. Spatial Information

Where within a text document a certain word appears is
usually not very relevant to the category of this document.
The spatial locations of keypoints in an image, however,
carry important information for classifying the image. For
example, an image showing a beach scene typically consists
of sky-like keypoints on the top and sands-like keypoints
at the bottom. The plain BoW representation described in
Section III ignores such spatial information and may result
in inferior classification performance. To integrate the spatial
information, we follow [3] to partition an image into equal-
sized rectangular regions, compute the visual-word feature
from each region, and concatenate the features of these regions
into a single feature vector. There can be many ways of
partitioning, e.g.,3×3 means cutting an image into 9 regions.

This region-based representation has its downside in terms
of cost and generalizability. First, if we divide each image
into m×n regions, and compute aK-dimensional feature on
each region, the concatenated feature vector is ofK ×m× n
dimension, which can be prohibitively expensive to deal
with. Besides, encoding spatial information can make the
representation less generalizable. Suppose an image class is
defined by the presence of a certain object, say,airplane,
which may appear anywhere in an image. Using region-based
representation can cause a feature mismatch if the objects
in the training images are in different regions from those in
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the testing images. Another risk is that many objects may
cross region boundaries. These considerations prefer relatively
coarse partitions of image regions to fine-grained partitions.

F. Visual Bi-gram

Besides the location of individual visual words, the spatial
proximity of different visual words is also important for
classification because it captures the geometrical structure
of an image. For example, visual words depictingface may
frequently co-occur with visual words characterizingnecktie.
The spatial co-occurrence of visual words is analogous to the
bi-grams orn-grams in text categorization [28], [29]. Because
the keypoints are sparsely distributed in an image and are not
necessarily adjacent to each other in our representation, we
name it as sparse visual bi-gram.

We use a two-dimensional co-occurrence histogram to rep-
resent an image based on the visual bi-grams. Suppose there
areK visual words, aK×K matrix (2-dimensional histogram)
Gr is constructed with each entryGr(s, t) indicating the
frequency of visual bi-gram{s, t} appearing withd(s, t) ≤ r,
whered(·) is the Euclidean distance of the two wordss and
t in the image andr is a threshold. Multiple histograms
with variousr can be used to capture the visual bi-grams of
different word distances.

The visual bi-gram offers a perspective of modeling the
spatial co-occurrence of visual words. Similar works include
recent studies of Lazebnik et al. [30] and Nowozin et al.
[31]. The former used semi-local parts (groups of neighboring
keypoints) for texture and object recognition, while the latter
attempted to mine significant spatial co-occurrent visual word
patterns for object categorization. By using the most informa-
tive visual word patterns, better categorization performance is
observed in [31].

V. K ERNEL CHOICES OFBOW CLASSIFICATION

Once images are represented by BoW features, we can
classify images in the same way we classify text documents.
The general approach is to build supervised classifiers from
labeled images based on BoW features and apply them to
predict the labels of other images.

In our experiments, we adopt Support Vector Machines
(SVM) for semantic concept detection. SVM has been one
of the most popular classifiers for BoW-based image classi-
fication [2], [3], [4], [5], [6], [11]. For two-class SVM, the
decision function for a test samplex has the following form:

g(x) =
∑

i

αiyiK(xi, x)− b, (4)

whereK(xi, x) is the response of a kernel function for the
training samplexi and the test samplex, which measures the
similarity between the two data samples;yi is the class label
of xi; αi is the learned weight of the training samplexi, and
b is a learned threshold parameter.

The choice of an appropriate kernel functionK(x,y) is
critical to the classification performance.K should be positive
definite and symmetric (a.k.a. Mercer’s condition), to guar-
antee the convergence of SVM training. Although there are

a number of general-purpose kernel functions, it is unclear
which one is the most effective for BoW features in the context
of semantic concept detection. In [22], histogram intersection
is implicitly used in the proposed pyramid match kernel. In [5],
Zhang et al. adopted theχ2 RBF kernel which has shown
good performance, while the authors of many other existing
works, to our knowledge, chose the traditional linear kernel
or Gaussian RBF kernel. In this paper, we will evaluate the
following kernels for BoW-based visual classification:

• Linear kernel:
K(x,y) = xT y, (5)

wherex andy are two input vectors.
• Histogram intersection kernel: The Histogram Intersec-

tion kernel was proposed and proven to be Mercer kernel
in [32]:

K(x,y) =
∑

i

min{xi, yi}, (6)

• Generalized forms of RBF kernels:

K(x,y) = e−ρd(x,y), (7)

whered(x,y) can be chosen to be any distance in the
feature space. Since BoW is a histogram of visual words
with discrete densities, theχ2 distance may be more
appropriate:

dχ2(x,y) =
∑

i

(xi − yi)2

xi + yi
, (8)

which gives aχ2 RBF kernel. Theχ2 RBF kernel satisfies
Mercer’s condition [33].
In addition toχ2, there are another series of generalized
RBF kernels with the distance function defined as:

db(x,y) =
∑

i

|xi − yi|b. (9)

With this distance function, Eqn 7 becomes the Laplacian
RBF kernel whenb = 1 and the sub-linear RBF kernel
whenb = 0.5. These kernels are popularly used in image
retrieval with color histogram as feature, and have shown
to generate better performance than Gaussian RBF kernel
(b = 2) [34]. The functionse−ρdb(x,y) satisfy Mercer’s
condition if and only if0 ≤ b ≤ 2 [35].

VI. EMPIRICAL STUDY

In this section we conduct extensive experiments to evaluate
the choices of BoW representations and classification kernels.

A. Experimental Setup

1) Data set:We use TRECVID 2006 data set to empirically
study the choices described in the previous sections. The data
set was used for TREC Video Retrieval Evaluation 2006 [36],
where the training and testing sets consist of 61,901 and
79,484 video shots respectively. One video frame is extracted
from each shot as its keyframe. In the experiments, we use
the 20 semantic concepts which were officially evaluated in
TRECVID 2006. The labels of these concepts in the training
set are provided by LSCOM [7]. Figure 2 shows keyframe
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Fig. 2. Keyframe examples of 20 semantic categories in TRECVID 2006
data set.

examples of the 20 semantic concepts. These concepts cover
a wide variety of topics, including objects, indoor/outdoor
scenes, people, events, etc. The goal of concept detection is to
rank the 79,484 video keyframes according to the presence of
each of the 20 semantic concepts. Note that this data set is a
multi-label data set, which means each keyframe may belong
to multiple classes or none of the classes (concepts), e.g., the
example ofweatherin Figure 2 also belongs to conceptmap.

2) BoW generation:The keypoints are detected by DoG
(Difference of Gaussian) detector [18] and described by SIFT
descriptor [18]. This results in an average of 235 keypoints
per keyframe. In the experiments, we usek-means cluster-
ing algorithm to generate visual vocabularies. To reduce the
computational cost, we sample the training set and cluster
550,000 SIFT features. While in the BoW representation there
is an issue of data dependent vocabulary versus universal
vocabulary, we will not elaborate this challenging question due
to space limitation. The parametersN in the soft-weighting
scheme and the parameterr in the visual bi-gram generation
are empirically chosen as 4 and 40 respectively.

The classification is conducted independently for each con-
cept. Using the SVM, we build 20 binary classifiers for the
20 semantic concepts, where each classifier is for determining
the presence of one specific concept.

3) Evaluation criteria: We use inferred average precision
(infAP) for performance evaluation. The infAP is an approxi-
mation of the conventional average precision (AP). The main
advantage of the infAP is that it can save significant judging
effort during the annotation of ground-truth for large testing
data set [36]. Following the TRECVID evaluation, the infAP
is computed over the top 2,000 ranked shots according to the
outputs of the SVM classifiers. To aggregate the performance
of multiple semantic concepts, mean infAP (MinfAP) is used.

B. Weighting Schemes and Vocabulary Sizes

In this section, we examine the keyword weighting schemes,
vocabulary sizes, and their impact on classification perfor-
mance. We use theχ2 RBF kernel for SVM learning. The
observations from the other kernel choices are similar. The
results are summarized in Figure 3.

0 . 1 4 T R E C V I D 2 0 0 60 . 0 60 . 0 80 . 1 00 . 1 2ed a veragepreci si on b i n a r y T F T F % I D F s o f t % w e i g h t i n g
0 . 0 00 . 0 20 . 0 4 5 0 0 1 0 0 0 5 0 0 0 1 0 0 0 0Meani nf erre V o c a b u l a r y s i z ey

Fig. 3. The MinfAP of concept detection on TRECVID 2006 using different
weighting schemes and vocabulary sizes. It can be clearly seen that soft-
weighting produces consistently better performance than the other weighting
schemes for all the vocabulary sizes.

First, let us evaluate the influence of different weighting
schemes. Our soft-weighting outperforms the other popular
weighting schemes across different vocabulary sizes. This
indicates that the visual words are indeed correlated to each
other and such correlation needs to be considered in feature
representation. For that reason, our soft-weighting method
which is tailored for the weighting of visual words performs
much better. Next, we move on the see the relationship
betweenbinary and TF. We see that TF outperformsbinary by
a large margin only when the vocabulary size is small. This
is due to the fact that, with a larger vocabulary size, the count
of most visual keywords is either 0 or 1 and thus TF features
are similar withbinary features.

The IDF, which weighs visual words according to their
distribution among the images, is only slightly helpful in some
of our experiments. We observe that the impact of IDF is
sensitive to the vocabulary size. This is not surprising because
a frequent visual word (cluster) may be split into several rare
words (clusters) when increasing the vocabulary size. Thus the
IDF weight of a certain keypoint is not stable at all.

Finally, let us examine the impact of different vocabulary
sizes. When usingbinary weighting, we observe that an
appropriate size of vocabulary is 10,000 or larger. However,
when more sophisticated weighting schemes are employed,
the impact of vocabulary size turns to be less significant.
Less sensitive to vocabulary size is an important merit for a
weighting scheme, since using small vocabulary size reduces
the computational time in both the vector quantization and the
classification processes. The MinfAP performance of the soft-
weighting scheme over different vocabulary sizes (500-10,000)
varies just in a small range of 0.01, while the performance of
binary weighting changes for almost 0.04. The small perfor-
mance fluctuation of the soft-weighting scheme is probably
due to the use ofk-means algorithm which is sensitive to the
initial selection of cluster centers.

C. Stop Word Removal

Do the most frequent visual words behave like “stop
words”? We approach this question by examining the clas-
sification performance using pruned vocabularies with the
most frequent visual words removed. We use the 10,000-
d vocabulary, which produces the best performance in the
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Fig. 4. Concept detection performance on TRECVID 2006 with stop word
removal. For soft-weighting, removing a moderate amount of frequent words
(30%) does not hurt the performance. The smaller figure on the right enlarges
the part within the dotted bounding box.

last experiment. As shown in Figure 4, for soft-weighting,
removing up to 30% of the words basically does not hurt
the performance. But after that, the performance drops at a
faster rate. While for TF weighting, the performance always
decreases, and the degree of degradation is basically linear
to the proportion of removed words. From this experiment
we have two observations. First, the most frequent words are
indeed not that informative and we can remove some of them
without hurting the performance. However, it is still premature
to say that they are all stop words, as reserving them will
not hurt the performance as well, which is different from
text retrieval where stop words hurt performance. Second, the
soft-weighting is more robust than TF when pruning more
words. This is probably due to the fact that soft-weighting
assigns a keypoint to multiple words, which can increase the
discriminative power of the remaining words.

D. Feature Selection

In this section we examine the five feature selection criteria
discussed in Section IV-D, which areDF-max, DF-min, CHI,
IG, andMI. We reduce the vocabulary size by removing the
most uninformative words determined by each criterion, and
evaluate the concept detection performance. Results based on
the 10,000-d vocabulary are shown in Figure 5.

We see that when effective criteria likeIG and CHI are
used, there is only a minimum loss of performance when
the vocabulary is cut by 50%. It is interesting to see that
even when the vocabulary is cut by as high as 90% (retain
1,000 words), the performance drops 45% (soft-weighting).
However, as shown in Figure 3, using a small vocabulary
of 1,000 visual words without selection still achieves very
good performance. Thus we conclude that a reduction of up to
50% can be carried out using feature selection, but for larger
reductions, the performance may not be better than directly
constructing a smaller vocabulary. As a comparison, in text
categorization a vocabulary can be reduced by 90% or even
98% without loss of classification accuracy [27], which implies
that the percentage of uninformative (noisy) terms in text may
be larger than that in images.

Among different feature selection methods,CHI and IG
are obviously top performers, followed byDF max, while
the performances ofDF min and MI are lower than the
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Fig. 5. Concept detection performance on TRECVID 2006 using visual
vocabularies pruned using various feature selection criteria. Under both TF
weighting and soft-weighting, as high as 50% of the visual words can be
removed with very minor performance degradation when criteria such asIG
andCHI are used.

others. This order is basically consistent with that in the text
categorization [27].

E. Spatial Information

The importance of spatial information can be seen by
comparing the classification performance between the plain
visual-word features (BoW) and the region-based ones. We
examine four ways of partitioning images, including 1×1
(whole image), 2×2 (4 regions), 3×3 (9 regions), and 4×4
(16 regions). Figure 6 shows the performance using different
spatial partitions, vocabulary sizes, and weighting schemes.

We see that the 2×2 partition substantially improves the
classification performance. As the partition changes from2×2
to 4× 4, the MinfAP drops for most of the vocabulary sizes.
This can be explained based on our discussions in section
IV-E that using more regions will make the representation less
generalizable and may cause the feature mismatch problem.
When investigating the per-concept performance, we find that
spatial information is more useful for classifying scenes than
for classifying objects, since the former usually occupy a
whole keyframe, while the latter can appear anywhere in a
keyframe. For large scale semantic detection in diversified data
set, using2×2 partition might be enough. Our conclusion is a
bit different from the results of scene and object categorization
in [3] where8×8 regions are still useful. This is probably due
to the fact that the objects in the data set they used (Caltech-
101) are centered, for which spatial information always helps.
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Fig. 6. Concept detection performance on TRECVID 2006 using region-based features computed from different spatial partitions. Due to the feature mismatch
problem caused by spatial partition, relatively coarse region partition such as 2×2 is preferred.0 . 1 4n T R E C V I D 2 0 0 6
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Fig. 7. Performance on TRECVID 2006 using fusion of visual bi-grams and
visual words. With good choice of fusion parameter, visual bi-grams are able
to improve the detection performance by 5%.

F. Visual Bi-gram

In this section we examine the effectiveness of the visual
bi-gram. As introduced in section IV-F, there are in total
K ×K possible bi-grams in a vocabulary ofK visual words.
It is risky to concatenate the visual bi-grams with the original
BoW feature into a single feature vector, as the large number
of bi-grams may overwhelm the visual words. Instead, we
build a separate SVM model based on visual bi-grams. The
combination of visual bi-grams and visual words is done by
‘late fusion’, i.e., the final decision is made by fusing of the
outputs of separate classifiers. While the raw output of SVM
in Eqn 4 can be used as a detector response, we prefer the
Platt’s method [37], [38] to convert the raw output into a
posterior probability. This is more reasonable especially for the
fusion of multiple feature modalities, since the raw outputs of
SVM for different modalities may be in different scales, which
will make the feature with larger scale dominating the others.
In this experiment, we use linear weighted fusion defined as
λ × pbi−gram(x) + (1 − λ) × pword(x), where p(x) is the
probability output of SVM for test samplex.

We fuse the result of visual bi-gram with the best visual
word based result (10,000 words with 30% of them removed
by CHI). Figure 7 shows the fusion performance with various
λ. We see that the MinfAP of visual bi-gram alone is 0.06,
and the fusion with visual word can improve the performance
by 5% whenλ = 0.1. The improvement of using visual bi-
grams is consistent with that in text categorization where bi-
grams can improve the performance by about 10% or less [29].

0 . 1 4i si on T R E C V I D 2 0 0 60 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2ni nf erred averageprec 0 . 0 0M ean
Fig. 8. Concept detection performance on TRECVID 2006 using SVM
with different kernels. RBF kernels with linear exponential decay (χ2 and
Laplacian) are the most suitable choices for BoW classification.

Thus we may conclude that the visual bi-grams describing
the geometric structure of an image are useful for semantic
detection. It can be used as a complement to the visual word
features, but careful selection of the fusion parameter (e.g.,
using cross validation) is necessary.

G. Kernel Choice

In this experiment, we investigate the impact of different
kernels in SVM on BoW-based concept detection performance.
We use TF weighting on the vocabulary with five thousands
visual words. Figure 8 summarizes the performances of var-
ious kernels. The results of other weighting schemes and
vocabulary sizes are similar. For the generalized RBF kernels,
we vary the parameterρ in a reasonable range and choose
the best one via cross validation. Overall, the generalized
RBF kernels perform better than Linear kernel and histogram
intersection kernel with non-trivial margin. This indicates that
the semantic classes are correlated to each other in BoW
feature space and thus are not linearly separable.

Among all the generalized RBF kernels, theχ2 RBF kernel,
Laplacian RBF kernel, and sub-linear RBF kernel consistently
outperform the traditional Gaussian RBF kernel. This can
be attributed to the responses of the kernels to background
variance. Ideally, a kernel should only emphasize regions
containing the target concept, while tolerating the background
variance without amplifying the effect. Take Figure 9 as an
example. It is easier for us to perceive the common region
(flag) when comparing their relevancy to the conceptflag-US.
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Fig. 9. Instances offlag-USwith different backgrounds in TRECVID data
set.

An ideal kernel should thus reduce the impact of backgrounds.
With reference to Figure 9, suppose there is a bin (visual word)
representing people. This bin should have a nonzero weightw
for the keyframeI1 on the right hand side, but its weight is
zero for the other keyframe. The responses of different kernels
at this particular bin are:

Ksub−linear(I1, I2) = e−ρ|w−0|0.5
= e−ρw0.5

KLaplacian(I1, I2) = e−ρ|w−0| = e−ρw

Kχ2(I1, I2) = e−ρ
(w−0)2

w+0 = e−ρw

KGaussian(I1, I2) = e−ρ(w−0)2 = e−ρw2
.

The sub-linear RBF kernel has a sub-linear exponential decay,
while the Laplacian RBF andχ2 RBF kernels have a linear ex-
ponential decay, and the Gaussian RBF kernel has a quadratic
exponential decay. An ideal distance function should give
small response (or equivalently a larger kernel response) to the
background variance. Thus the kernels with linear/sub-linear
exponential decay appear as better choices than the Gaussian
RBF kernel. This conclusion is consistent with the observation
of [34] using color histogram for image classification.

Among different kernels, the computational time of linear
kernel and histogram intersection kernel is shorter than that
of the generalized RBF kernels. The sub-linear RBF kernel
is the slowest since it contains a time-consuming square root
for nonzero components of every support vector. For the BoW
representation, as shown in our experiments, we suggest to use
kernels with linear exponential decay, i.e., the Laplace RBF
kernel or theχ2 RBF kernel. In the rest of our experiments,
χ2 RBF kernel is employed.

VII. D ISCUSSION

In this section we further evaluate and discuss the effec-
tiveness of our BoW representation using data sets other than
the TRECVID 2006. We first evaluate the generalizability of
our empirical findings to two recent data sets. We then study
the degree of performance improvement when fusing the BoW
feature with global features such as color and texture. Finally,
we extend our method to detect a large set of 374 concepts
and discuss the detection performance.

A. Generalizability to Other Data Sets

We use TRECVID 2008 and PASCAL VOC 2007 data
sets to study the generalizability of our empirical findings.
Different from the TRECVID 2006 data set which is composed
of broadcast news videos, the TRECVID 2008 data set mainly
consists of documentary videos from the Netherlands Institute

for Sound and Vision, where the training and test sets contains
43,616 and 35,766 shots respectively. There are 20 semantic
concepts evaluated in TRECVID 2008.

The PASCAL VOC 2007 data set was used for the PASCAL
Visual Object Classes Challenge 2007 [39]. In total, there are
9,963 images, which were divided evenly into training and
test sets. 20 semantic concepts are evaluated on this data
set, covering four major topics: person, animals, vehicles,
and indoor scenes. Note that the detection performance on
PASCAL VOC 2007 is measured by the conventional AP
and mean AP (MAP) is used to aggregate the performance
of multiple concepts. Compared with the TRECVID data sets,
the PASCAL VOC data set is also smaller and less diversified.
We choose it as it has been frequently used as a benchmark
for evaluating keypoint-based features.

For both data sets, two detectors, DoG and Hessian Affine
[25], are used to extract local keypoints. The keypoints are then
described using SIFT. Here we choose two detectors because
there is plenty of evidence in recent work which shows that
the combination of various keypoint detectors leads to better
performance [5], [6], [40], [41]. For each keypoint detector,
we sample and cluster around 550,000 keypoints to generate
a visual vocabulary of 500 visual words for each data set. The
soft-weighting and theχ2 RBF kernel SVM are then adopted
for constructing and classifying BoW features respectively.
The classification outputs of features generated from different
keypoint detectors are combined using average fusion.

The per-concept detection performances on both data sets
are shown in Figure 10. Based on our observations in Sec-
tion VI-E, relatively coarse spatial partition is preferred. Thus
in this experiment, we include one more spatial partition (1×3)
and test three choices, 1×1 (whole keyframe), 1×3, and 2×2.
The choice 1×3 is also adopted in the best performing system
of PASCAL VOC 2007 [39]. From Figure 10 we see that the
overall performances of each spatial partition are very close.
This is consistent with the results on TRECVID 2006 data
set (Section VI-E). On TRECVID 2008 data set, some scene
concepts such asstreetandmountainbenefit from using spatial
information, while the performances of object concepts such as
bridge andairplane are degraded by spatial partition. Similar
observations also hold for the PASCAL VOC 2007 data
set. We further combine the detection outputs from different
spatial partition choices using average fusion. As can be seen
in Figure 10, the combination of different spatial partitions
greatly improves the performance (16% on TRECVID 2008
and 8% on PASCAL VOC 2007). The results indicate that
although different types of concepts favor different spatial
partitions, the fusion of multiple partition choices is helpful for
most concepts, and thus should be used for better performance.

Figure 11 and 12 further compare our results with the state-
of-the-art approaches on both data sets. Our submitted runs
in TRECVID 2008 (dark blue bars) [41] are based on the
BoW feature representation discussed in this paper, which
achieve very competitive performance, ranking top-10 out of
all the 200 official submissions. Among the top-20 runs, 15
are based on BoW feature [6], [41]. More interestingly, all the
top-14 runs used soft-weighting techniques (our soft-weighting
method and [24]). This indeed proves the effectiveness of soft-
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Fig. 10. Concept detection performance on TRECVID 2008 and PASCAL VOC 2007 data sets using BoW features computed from different spatial
partitions. At each single partition choice, the MinfAP/MAP performances are similar. However, the fusion of different spatial partition choices shows
noticeable performance improvement (16% and 8% MinfAP/MAP improvements for TRECVID 2008 and PASCAL VOC 2007 respectively).0 . 2 0i on T R E C V I D 2 0 0 8B o W0 . 0 80 . 1 20 . 1 6f erred a veragepreci s B o W
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Fig. 11. Performance of the top-100 (out of 200) official runs in TRECVID
2008. Within the top-20 runs, 15 (circled) are based on BoW features. All of
our 6 submissions (dark blue bars) ranked top-10 [41].

weighting in semantic concept detection. On the other hand,
all the submissions in PASCAL VOC 2007 relied on local key-
point features, with emphasis ranging from keypoint detectors,
descriptors, to advanced machine learning techniques. Com-
pared with the 17 official submissions, our result ranks the 7th.
It is also interesting to note that many of the runs in PASCAL
VOC 2007 utilized not only sparse sampled keypoints (Harris
Laplace and Laplace of Gaussian), but also densely sampled
image patches. Since the large number of densely sampled
local image patches demands heavy computation load for SIFT
calculation and vector quantization, our BoW representation
has the advantage of speed efficiency.

B. Fusion with Color/Texture Features

Global features such as color and texture are extensively
used in image and video classification. While keypoint fea-
tures describe the local structures in an image and do not
contain color information, global features are statistics about
the overall distribution of color, texture, or edge information.

0 . 3 00 . 4 00 . 5 00 . 6 00 . 7 0averagepreci si on P A S C A L V O C 2 0 0 7
0 . 0 00 . 1 00 . 2 0M ean R u n

Fig. 12. Performance comparison of our result (blue bar) with the 17 official
submissions of PASCAL VOC 2007. All of the methods are based on local
features. Our result is shown in blue.

Global features have been used for concept detection in many
previous studies [2], [11], [13], [15]. It is interesting not only
to compare the performance of the two features, but also to see
whether their combination further improves the performance.

We experiment with two types of global features: color
moment (CM) and wavelet texture (WT). In CM, we calculate
the first 3 moments of 3 channels inLab color space over5×5
grid partitions, and aggregate the features into a 225-d feature
vector. For WT, we use3×3 grids and each grid is represented
by the variances in 9 Haar wavelet sub-bands to form a 81-d
feature vector. We compare their performance with that of the
local features (BoW) on the TRECVID 2008 data set.

Average fusion is used to combine different features. Ta-
ble I shows the results on the TRECVID 2008 data set. We
can see that BoW (with soft-weighting andχ2 RBF kernel)
significantly outperforms CM, WT and their combination. This
indeed proves the effectiveness of local features for semantic
concept detection, even though they contain no color infor-
mation. By fusing BoW with global features, the performance
is slightly improved by 3-4%. The degree of improvement,
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TABLE I
M INFAP PERFORMANCE OF FUSINGBOW WITH COLOR MOMENT (CM) AND /OR WAVELET TEXTURE (WT) ON TRECVID 2008DATA SET. THE

PERCENTAGE IN THE PARENTHESIS SHOWS THE DEGREE OF IMPROVEMENT OVER THEBOW ONLY PERFORMANCE(THE 5TH COLUMN).

CM WT CM+WT BoW BoW+CM BoW+WT BoW+CM+WT
MinfAP 0.050 0.031 0.060 0.154 0.159 (3%) 0.154 (0%) 0.160 (4%)

however, is not as apparent as that on the TRECVID 2006
data set, which is as high as 50% [2]. This is due to the
fact that TRECVID 2006 data set is composed of broadcast
news videos which contain plenty commercial advertisements.
The repetitive commercials result in many near-duplicate video
shots on which global features work very well. For PASCAL
VOC 2007 data set which does not contain near-duplicate
images, similar observation is also noted where fusion with
global features does not lead to apparent improvement.

C. VIREO-374: LSCOM Semantic Concept Detectors

We further apply our method to detect a large set of 374
semantic concept detectors, namely VIREO-374. With the goal
of stimulating innovation in concept detection technique and
providing better large scale concept detectors for video search,
the detectors as well as features and detection scores on recent
years’ TRECVID data sets (2005–2009) have been released1.

The VIREO-374 detectors are trained on TRECVID 2005
development set using three features (BoW, CM, and WT).
On a leave-out validation set (a subset of the TRECVID 2005
development set), the mean performances of the 374 concepts
are 0.150 for BoW and 0.174 for the fusion of BoW and
the global features (CM and WT). The fusion with global
features improves the performance by 16%. This is probably
due to the fact that there are also many near-duplicates in the
TRECVID 2005 data set. The effectiveness of the detectors
is also evidenced in other works [42], [43], [44] which
adopted VIREO-374 detectors for semantic video indexing.
These works have reported promising search performance by
utilizing the 374 detectors to perform query by text keywords
[42], [43] and query by multimedia examples [44].

VIII. C ONCLUSION

We have investigated various representation choices in BoW
feature for semantic concept detection. By jointly considering
the vocabulary size, weighting scheme, stop-word removal,
feature selection, spatial information and visual bi-gram, the
BoW shows surprisingly strong performance regardless the
colorless and essentially orderless representation.

We have shown that all the six investigated representation
choices, together with the kernel choice in SVM classifier,
are influential to the performance of BoW. The vocabulary
size, however, exhibits less or even insignificant impact when
our soft-weighting scheme is in use. This indeed motivates
and verifies the need of a weighting scheme specifically for
visual words to alleviate the impact of clustering on vocabulary
generation. In addition, we show that using appropriate feature
selection methods (IG andCHI) can remove half of vocabulary
without hurting the performance, this will significantly reduce

1Download site: http://vireo.cs.cityu.edu.hk/research/vireo374/

the computational time especially when detecting thousands
of concepts in large-scale multimedia databases.

Currently our works are grounded on keyframes and thus
temporal information within a video shot is not considered.
When extending to multiple frames or the whole frame se-
quence per shot, the detection performance may be further
improved, but with additional computational cost of feature
extraction and classification. Nevertheless, the temporal infor-
mation has been shown to be effective particularly for the
detection of event-type concepts in [45], [46]. Whether there
is a more efficient way of utilizing the temporal information
still deserves future research.
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