Lecture 8 (3.31.08)
Morphological Image Processing

Shahram Ebadollahi

"Morphological Image Analysis" by P. Soille

Outline

- What is Mathematical Morphology?
- Background Notions
- Introduction to Set Operations on Images
- Basic operation
- Erosion, Dilation, Opening, Closing, Hit-or-Miss
- Algorithms
- Morphological operations on gray-level images

Morphological Image Processing

- Started in 1960s by G. Matheron and J. Serra
- Analysis of form and structure of objects

Image-to-image transform

- Tools/Operations for describing/characterizing image regions and image filtering
- Images are treated as sets

(a) Grey tone image.
(b) Set representation of (a).

Applications - filtering

1. Removal of small blobs

2. Extraction and grouping of linear objects

Applications - segmentation

5. Extraction of grid lines

Applications - quantification

Pattern
spectrum or
granulometries

Background Notions:
 Image as a Set

Image as a set: Set of all white pixels

$$
f: D_{f} \subset \mathrm{Z}^{n} \rightarrow\left\{0,1, \ldots, t_{\max }\right\}
$$

(a) Grey tone image.

(b) Set representation of (a).

Image as Digital Elevation Map (DEM)

- How could the grey-level image be treated as a set?

$$
\begin{aligned}
\hline \text { Image Graph } & G(f) & =\left\{(x, t) \in \mathrm{Z}^{n} \times \mathrm{N}_{0} \mid t=f(x)\right\} \\
\hline \text { Image Sub-Graph } & S G(f) & =\left\{(x, t) \in \mathrm{Z}^{n} \times \mathrm{N}_{0} \mid 0 \leq t \leq f(x)\right\}
\end{aligned}
$$

Background Notions:
 Gray-level Image as a Set

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13
$f(x)$	0	0	1	3	2	2	4	4	0	5	5	3	0	0

(a) I-D discrete signal f
(b) Graph of the signal f dofined in (a).

Set Operations on Images Union \& Intersection

\square $(f \vee g)(x)=\max [f(x), g(x)] \quad S G(f \vee g)=S G(f) \cup S G(g)$

(a) 1-D signals f and g.

(b) Point-wise maximum v and point-wise minimum \wedge.

$$
\begin{aligned}
& \left(\Psi_{1} \vee \Psi_{2}\right)(f)=\Psi_{1}(f) \vee \Psi_{2}(f) \\
& \left(\Psi_{1} \wedge \Psi_{2}\right)(f)=\Psi_{1}(f) \wedge \Psi_{2}(f)
\end{aligned}
$$

Set Operations on Images

Morphological Image Operations

-All morphological image operations are the result of interaction between a set representing an image and a set representing a structuring element
-All interactions are based on combination of intersection, union, complementation and translation

Graphs

Graph is a pair of vertices and edges (V, E), where:

$$
\begin{aligned}
& V=\left(v_{1}, v_{2}, \cdots, v_{n}\right) \\
& E=\left(e_{1}, e_{2}, \cdots, e_{m}\right)
\end{aligned}
$$

- Planar graph
- Simple graph

(b) Hexagonal graph.

(e) 6-connected graph in the 3-D cubic grid by M.C. Escher (c)Cordon Art-Baarn-Holland.

Neighborhood of vertex v:
Path P in graph G :

$$
P_{G}^{h}
$$

$N_{G}(v)=\left\{v^{\prime} \in V \mid\left(v, v^{\prime}\right) \in E\right\}$
$P_{G}=\left(v_{0}, v_{1}, \cdots, v_{l}\right) \quad,\left(v_{i}, v_{i+1}\right) \quad$ neighbors

Grids \& Connectivity

Connectivity: a set is connected if each pair of its points can be joined by a path completely in the set
G^{h}-Connectivty:
2 pixel p and q of image f are $G^{\text {h. }}$ connected iff there exists a P_{G}^{h} path with end points p and q

(a) A 6×6 discrete binary image and its representation in the 4-connected graph.

(b) Same image as in (a) but represented in 8 -connectivity.

Structuring Element (SE):
 A Small Set for Probing Images

(a) A binary image.

(d) Shape of some common structuring elements.

(b) A grey scale image.

(e) Extraction of vertical structures of (a) using a vertical SE.

(c) Topographic representation of (b).

(f) Extraction of vertical structures of (b) using a vertical SE.

Erosion: "Does the SE fit the set?"

$$
\begin{array}{ll}
\mathcal{E}_{B}(X)=\left\{x \mid B_{x} \subseteq X\right\} & \text { : Eroding set } \mathrm{X} \text { with SE B } \\
\varepsilon_{B}(X)=\bigcap_{b \in B} X_{-b} \\
\varepsilon_{B}(X)=X \ominus B &
\end{array}
$$

a b c
d
e
FIGURE 9.6 (a) Set A. (b) Square structuring element. (c) Erosion of A by B, shown shaded. (d) Elongated structuring element. (e) Erosion of A using this element.

Erosion: Implementation

$$
\varepsilon_{B}(f)=\underset{b \in B}{\wedge} f_{-b}
$$

$$
\Rightarrow\left[\varepsilon_{B}(f)\right](x)=\min _{b \in B} f(x+b)
$$

$$
\varepsilon_{B}(f)
$$

Erosion: "Does the SE fit the set?"

 Grey-level image$$
\varepsilon_{B}[S G(f)]=\left\{(x, t) \mid B_{(x, t)} \subseteq S G(f)\right\}
$$

Dilation: "Does the SE hit the set?"

$$
\begin{aligned}
& \delta_{B}(X)=\left\{x \mid B_{x} \cap X \neq \phi\right\} \quad: \text { Dilating set } X \text { with SE B } \\
& \delta_{B}(X)=\bigcup_{b \in B} X_{-b} \\
& \delta_{B}(X)=X \oplus \stackrel{\vee}{B}
\end{aligned}
$$

Dilation: Implementation

$\delta_{B}(f)=\underset{b \in B}{\vee} f_{-b}$
$\Rightarrow\left[\delta_{B}(f)\right](x)=\max _{b \in B} f(x+b)$

$$
\delta_{B}(f)
$$

Dilation: "Does the SE hit the set?" Grey-level image

$$
\delta_{B}[S G(f)]=\left\{(x, t) \mid B_{(x, t)} \cap S G(f) \neq \phi\right\}
$$

(a) Dilation of Fig. 3.5a by u vertical tine segment.

(b) Dilation of Fig. 3.5c by a vertical line segment.

Erosion and Dilation: Examples

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using " 00 " as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

${ }^{\mathrm{a}} \mathrm{b}$
FIGURE 9.5
(a) Sample text of poor resolution with broken characters
(magnified view).
(b) Structuring
element.
(c) Dilation of (a)
by (b). Broken
segments were joined.

0	1	0
1	1	1
0	1	0

Erosion then Dilation

a b c
FIGURE 9.7 (a) Image of squares of size $1,3,5,7,9$ and 15 pixels on the side. (b) Erosion of (a) with a square structuring element of 1's, 13 pixels on the side. (c) Dilation of (b) with the same structuring element.

Erosion and Dilation:
 Example

FIGURE 9.29
(a) Original image. (b) Result of dilation. (c) Result of erosion. (Courtesy of Mr. A. Morris, Leica Cambridge, Ltd.)

Basic morphological operations in Matlab

Properties of Erosion and Dilation

$$
\begin{aligned}
\text { Duality } \quad \varepsilon_{B}=C \delta_{B} C \quad & \delta_{B}\left(f^{c}\right)=\vee_{b \in B}\left[t_{\max }-f_{-b}\right] \\
& =t_{\max }-\wedge_{b \in B}\left[f_{-b}\right] \\
& =t_{\max }-\varepsilon_{B}(f) \\
& =\left[\varepsilon_{B}(f)\right]^{c}
\end{aligned}
$$

- Erosion and Dilation are irreversible operations
- Homotopy is not preserved under either one

(b) A set Y and its homotopy tree

(c) A set Z and its homotopy tree

Properties of Erosion and Dilation

Increasingness

$$
f \leq g \Rightarrow\left\{\begin{array}{l}
\varepsilon(f) \leq \varepsilon(g) \\
\delta(f) \leq \delta(g)
\end{array}\right.
$$

Distributivity

$$
\begin{aligned}
& \delta\left(\vee_{i} f_{i}\right)=\vee_{i} \delta\left(f_{i}\right) \\
& \varepsilon\left(\wedge_{i} f_{i}\right)=\wedge_{i} \varepsilon\left(f_{i}\right)
\end{aligned}
$$

Properties of Erosion and Dilation

$$
\begin{aligned}
& \text { Composition } \\
& \delta_{B_{2}} \delta_{B_{1}}(f)=\delta_{\substack{\left.\delta_{B_{2}}\left(B_{1}\right)\right)}}(f) \\
& \varepsilon_{B_{2}} \varepsilon_{B_{1}}(f)=\varepsilon_{\substack{\left.\delta_{V_{2}}\left(B_{1}\right)\right)}}(f)
\end{aligned}
$$

Break down operations using large SE with multiple operations with small SE.

$$
\delta_{n B}=\delta_{B}^{(n)}
$$

$$
\begin{array}{cccc}
\bar{\circ} \circ & 0 & 0 & 00 \\
B & \grave{B} & 2 B=\delta_{\dot{B}}(B) & 3 B=\delta_{\dot{B}}(2 B)
\end{array}
$$

Opening -
 "If SE fits image then keep all SE!"

$$
\begin{aligned}
\gamma_{B}(f) & =\delta_{\dot{V}}\left[\varepsilon_{B}(f)\right] \\
\gamma_{B}(X) & =\bigcup_{x}\left\{B_{x} \mid B_{x} \subseteq X\right\}
\end{aligned}
$$

Opening -

"If SE fits the image then keep all SE!"

(a) Opening of a binary image by a square B

Closing -
 "If SE fits the background then all points in SE belong to the complement of closing!"

$$
\begin{gathered}
\phi_{B}(f)=\varepsilon_{B}\left[\delta_{B}(f)\right] \\
\phi_{B}(X)=\bigcap_{x}\left\{B_{x}^{c} \mid X \subseteq B_{x}^{c}\right\}
\end{gathered}
$$

FIGURE 9.9 (a) Structuring element B "rolling" on the outer boundary of set A.(b) Heavy

Closing

(a) Closing of a binary image by a square B.

Original image /
Dilation $\delta_{A}(f)$
Closing $\phi_{R}(f)=E_{B} \mid \delta_{B}(f)$

Properties of Opening and Closing

Duality

$$
\gamma_{B}=C \phi_{B} C
$$

Increasingness

$$
f \leq g \Rightarrow\left\{\begin{array}{l}
\gamma(f) \leq \gamma(g) \\
\phi(f) \leq \phi(g)
\end{array}\right.
$$

Idempotence

$$
\begin{aligned}
& \gamma^{(n)}=\gamma \\
& \phi^{(n)}=\phi
\end{aligned}
$$

Sieving process: same sieve is not
helpful using it more than once

Opening and Closing: Example

FIGURE 9.10 Morphological opening and closing. The structuring element is the small circle shown in various positions in (b). The dark dot is the center of the structuring element.

Opening and Closing: Example

FIGURE 9.11
(a) Noisy image.
(c) Eroded image.
(d) Opening of A.
(d) Dilation of the
opening.
(e) Closing of the
opening. (Original
image for this
example courtesy
of the National
Institute of
Standards and
Technology.)

Top Hat transform

Top Hat transform

Fig. 4.18. Use of top-hat for mitigating inhomegencous illumination. The performance of this technique is illustrated by the thresholds on the original and top-hat

Hit-or-Miss

$$
\begin{aligned}
& \operatorname{HMT}_{B}(X)=\left\{x \mid\left(B_{F G}\right)_{x} \subseteq X,\left(B_{B G}\right)_{x} \subseteq X^{c}\right\} \\
& H M T_{B}(X)=\varepsilon_{B_{F G}}(X) \bigcap \varepsilon_{B_{B G}}\left(X^{c}\right)
\end{aligned}
$$

- Property:

$$
H M T_{B}(X)=H M T_{B^{c}}\left(X^{c}\right)
$$

$$
\text { where, } \begin{aligned}
B & =\left(B_{1}, B_{2}\right) \\
B^{c} & =\left(B_{2}, B_{1}\right)
\end{aligned}
$$

Thinning and Thickening

$$
\begin{aligned}
\operatorname{THIN}_{B}(f) & =f-\operatorname{HMT}_{B}(f) \\
\operatorname{THICK}_{B}(f) & =f+\operatorname{HMT}_{B}(f)
\end{aligned}
$$

FIGURE 9.21 (a) Sequence of rotated structuring elements used for thinning. (b) Set A. (c) Result of thinning with the first element. (d)-(i) Results of thinning with the next seven elements (there was no change between the seventh and eighth elements). (j) Result of using the first element again (there were no changes for the next two elements).

Example Applications: Boundary Extraction

a b
 c d

FIGURE 9.13 (a) Set A. (b) Structuring element B. (c) A eroded by B.
(d) Boundary, given by the set difference between A and its erosion.

a b
FIGURE 9.14
(a) A simple
binary image, with 1's represented in white. (b) Result of using
Eq. (9.5-1) with the structuring element in Fig. 9.13(b).

Example Applications:

 Region Filling$$
X_{k}=\delta_{B}\left(X_{k-1}\right) \cap A^{c} \quad k=1,2,3, \cdots
$$

- start with $\mathrm{X}_{0}=\mathrm{p}$
- stop when $X_{k}=X_{k-1}$

FIGURE 9.15
Region filling.
(a) $\operatorname{Set} A$.
(b) Complement
of A.
(c) Structuring
element B.
(d) Initial point inside the
boundary.
(e)-(h) Various
steps of
Eq. (9.5-2).
(i) Final result
[union of (a) and
(h)].

a b c

Example Applications:
 Connected component extraction

$$
X_{k}=\delta_{B}\left(X_{k-1}\right) \cap A \quad k=1,2,3, \cdots
$$

FIGURE 9.17 (a) Set A showing initial point p (all shaded points are valued 1, but are shown different from p to indicate that they have not yet been found by the algorithm). (b) Structuring element. (c) Result of first iterative step. (d) Result of second step.
(e) Final result.

Example Applications: Convex Hull

$$
X_{k}^{i}=H M T_{B^{i}}\left(X_{k-1}\right) \cup A \quad i=1,2,3,4 \quad k=1,2,3, \cdots
$$

$$
X_{0}^{i}=A
$$

$$
D^{i}=X_{k}^{i}
$$

$$
C(A)=\bigcup_{i=1}^{4} D^{i}
$$

b c d
 ef g
 h

FIGURE 9.19

(a) Structuring elements. (b) Set A. (c)-(f) Results of convergence with the structuring elements shown in (a). (g) Convex hull. (h) Convex hull showing the contribution of each structuring element.

Skeletonization

$$
\begin{aligned}
& S(A)=\bigcup_{k=0}^{K} S_{k}(A) \\
& S_{k}(A)=\varepsilon_{k B}(A)-\phi_{B}\left(\varepsilon_{k B}(A)\right) \\
& K=\max \left\{k \mid \varepsilon_{k B}(A) \neq n u l l\right\} \\
& A=\bigcup_{k=0}^{K}\left(\delta_{k B}\left(S_{k}(A)\right)\right)
\end{aligned}
$$

FIGURE 9.24 Implementation of Eqs. (9.5-11) through (9.5-15). The original set is at the top left, and its morphological skeleton is at the bottom of the fourth column. The reconstructed set is at the bottom of the sixth column.

Skeletonization (Medial Axis Transform)

B is a "Maximal Disc" in set X if there are no other discs included in X and containing B

Skeleton is the loci of the centers of all "maximal discs"

$$
S(X)=\bigcup_{k \geq 0}\left\{\varepsilon_{k B}(X) \backslash \gamma_{B}\left[\varepsilon_{k B}(X)\right]\right\}
$$

Skeletonization

$$
\begin{aligned}
& S(X)=\bigcup_{k=0}^{K} S_{k}(X) \\
& S_{k}(X)=\varepsilon_{k B}(X)-\gamma_{B}\left(\varepsilon_{k B}(X)\right) \\
& \varepsilon_{k B}(X)=\varepsilon_{B}\left(\varepsilon_{B}\left(\cdots\left(\varepsilon_{B}(X)\right)\right)\right. \\
& K=\max \left\{k \mid \varepsilon_{k B}(X) \neq \phi\right\}
\end{aligned}
$$

Reconstruction

$$
\begin{aligned}
& X=\bigcup_{k=0}^{K} \delta_{k B}\left(S_{k}(X)\right) \\
& \delta_{k B}(X)=\delta_{B}\left(\delta_{B}\left(\cdots\left(\delta_{B}\left(S_{k}(X)\right)\right)\right)\right.
\end{aligned}
$$

Notion of "Maximal Disc"

Skeleton is the loci of the centers of all "maximal discs"

Matlab examples - dilation

originalBW = imread('text.png');
se = strel('line',11,90);
dilatedBW = imdilate(originalBW,se);
figure, imshow(originalBW), figure, imshow(dilatedBW)
originall = imread('cameraman.tif');
se = strel('ball',5,5);
dilatedl = imdilate(originall,se);
figure, imshow(originall), figure, imshow(dilatedl)
se1 = strel('line',3,0);
se2 = strel('line',3,90);
composition = imdilate(1,[se1 se2],'full')

Matlab examples - erosion

originalBW = imread('text.png');
se = strel('line',11,90);
erodedBW = imerode(originalBW,se);
figure, imshow(originalBW)
figure, imshow(erodedBW)
originall = imread('cameraman.tif');
se = strel('ball',5,5);
erodedl = imerode(originall,se);
figure, imshow(originall), figure, imshow(erodedl)

Matlab examples - closing

originalBW = imread('circles.png');
figure, imshow(originalBW);
se = strel('disk',10);
closeBW = imclose(originalBW,se);
figure, imshow(closeBW);

Matlab examples - opening

```
original = imread('snowflakes.png');
se = strel('disk',5);
afterOpening = imopen(original,se);
figure, imshow(original), figure, imshow(afterOpening)
```


Matlab examples - HMT

001100
011110
011110
001100
001000 0]
interval = [0-1-1
1 1-1
01 0];
bw2 = bwhitmiss(bw,interval)

