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Announcements

s Midterm results this week

= HW3 due next Monday

= question 1.4, plot energy distribution as
%energy included vs. #eigen dimensions
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Figure 5.18 Distribution of variances of the transform coefficients (in decreasing
order) of a stationary Markov sequence with N =16, p = 0.95 (see Example 5.9).



we have covered ...

Spatial Domain
processing

Image Transform
and Filtering

Image sensing

=)

Image Restoration




outline

What is image restoration

= Scope, history and applications

= A model for (linear) image degradation
Restoration from noise

= Different types of noise

= Examples of restoration operations
Restoration from linear degradation
= Inverse and pseudo-inverse filtering

= Wiener filters

= Blind de-convolution

Geometric distortion and its corrections



degraded images

ideal image Blurred image

. What Caused the |mage = Camera: translation, shake, out-of-focus ...

Environment: scattered and reflected light
to bI § r? = Device noise: CCD/CMQOS sensor and circuitry
Quantization noise

= Can we improve the image, or "undo” the
effects?




Original image Blurred image

= Image enhancement: “improve” an image subjectively.

= Image restoration: remove distortion from image in order
to go back to the “original” - objective process.



Image restoration

= started from the 1950s Exampié cFimage resforation

= application domains n
= Scientific explorations L :

= Legal investigations
=« Film making and archival
= Image and video (de-)coding

= Consumer photography

= related problem: image reconstruction in radio
astronomy, radar imaging and tomography

[Banham and Katsaggelos 97]



a model for image distortion

= Image enhancement: “improve” an image subjectively.
= Image restoration: remove distortion from image, to go

III

back to the “original” -- objective process

FIGURE 5.1 A
X model of the
flx.¥) image
degradation/
restoration
process.

Degradation
function
H

Restoration
filter(s)

flxy)

MNoise

‘ :-_.'(,t‘. _'1']

DEGRADATION RESTORATION

g(z,y) = H[f(z,y)] + n(z,y)



a model for image distortion

= Image restoration
=« Use a priori knowledge of the degradation
= Modeling the degradation and apply the inverse process
« Formulate and evaluate objective criteria of goodness

FIGURE 5.1 A
X model of the
flx.¥) image
degradation/
restoration
process.

Degradation
function
H

Restoration
filter(s)

flxy)

MNoise

‘ :-_.'(,t‘. _'1']

DEGRADATION

RESTORATION

g(z,y) = H[f(z,y)] + n(z,y)

— design restoration filters such that
f(z,y) is as close to f(x,y) as possible.



usual assumptions for the distortion model "~
= Noise S i e

= Independent of spatial location ®/ gﬁ%i
= Exception: periodic noise ... 7\
=« Uncorrelated with image
SPACE-INVARIENT RESPONSE - each point on image gives

= Deg radation function H e e

Blurred by Camera

. Input Image Rotation

= Linear N | o
- (CEET
N A7)

= Position-invariant 7(

i'LL

SPACE-VARIENT RESPONSE - each point on image gives
a different response

DEGRADATION

divide-and-conquer step #1: image degraded only by noise.



common noise models 11
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FIGURE 5.2 Some important probability density functions.

Gaussian

1 ()2 0_2
p@)= e

Rayleigh
p(2) = % (z—a)e " for z>a

Erlang, Gamma(a,b)

b_b-1
az

(b—a)!

Exponential

p(2)= e “, for 7220

p(z2) =ae ™, for z20

- additive noise

Salt-and-Pepper:
p(z) = Pyé(z —a) + P,6(z — b)

Speckle noise: a = apr + jay
9(z,y)|% ~ | f(z,y)|?|alz, ¥)|? + n(z, y)

ar,a; zero mean, independent Gaussian
- multiplicative noise on signal magnitude
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the visual effects of noise

Gamma Exponential Uniform Salt & Pepper

Rayleigh
o l
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FIGURE 5.4 (Continued)

noise to the image in Fig. 5.3.

Gaussian
Images and histograms resulting from adding exponential, uniform, and impulse

abec
il o
FIGURE 5.4 Images and histograms resulting from adding Gaussian. Rayleigh. and gamma noise to the image

in Fig. 5.3,



recovering from noise

= overall process
Observe and estimate noise type and parameters -
apply optimal (spatial) filtering (if known) - observe
result, adjust filter type/parameters ...

= Example noise-reduction filters [G&W 5.3]
= Mean/median filter family
= Adaptive filter family
= Other filter family

= e.g. Homomorphic filtering for multiplicative noise [G&W 4.9.6,
Jain 8.13]
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example: Gaussian noise

ab
cd

FIGURE 5.7

(a) X-ray image.
(b) Image
corrupted by
additive Gaussian
noise. (¢) Result
of filtering with
an arithmetic
mean filter of size
3 % 3.(d) Result
of filtering with a
geometric mean
filter of the same
size.

(Original image
courtesy of Mr.
Joseph E.
Pascente, Lixi,
Inc.)

R e

= 1HHHT
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example: salt-and-pepper noise

abc

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities P, = P, = 0.25. (b) Result of
filtering with a 7 X 7 median filter. (c¢) Result of adaptive median filtering with §, ., = 7.

15
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Homomorphic Filtering

Recall image formation model in Chapter 2: T

= Slow-changing illumination i(x,y) and fast-
changing reflectance r(x,y)

flz,y) =i(z,y)r(z,y)
2(z,y) = In flx,y) = Ini(z,y) + Inr(z,y)
Used to remove multiplicative noise, or
illumination variations

Also used in to separate excitation and
filtering effects in speech, e.qg. hearing aids

Output (digitized) image

H(u,v) FIGURE 4.32
Cross section of a
circularly
symmetric filter
function. D(x, )
is the distance
from the origin of
the centered

transform.
flxy) &2 j:> ﬂ:> ﬂ:bmm" I:> exp g(x, y)

Du.v)

developed in the 1960s by Thomas Stockham, Alan V. Oppenheim, and Ronald W. Schafer at MIT



Recovering from Periodic Noise Y
[G&W 5.4]
Recall: Butterworth LPF Butterworth bandreject filter

1

_ 1 H(u,v) =
H(u,v) = ’ U,V
) = L D, 0) /Dol L+ (o

]2n

H(uv)
p
1.0

—v 05

abc

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.
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FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject

filters.
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FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(c¢) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering.
(Original image
courtesy of
NASA.)

example of bandreject filter

18



notch filter

ab
cd

FIGURE 4.64

(a) Sampled
newspaper image
showing a

moiré pattern.
(b) Spectrum.

(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.

(d) Filtered
image.

19



outline

Scope, history and applications
A model for (linear) image degradation

Restoration from noise
» Different types of noise
» Examples of restoration operations

Restoration from linear degradation
= Inverse and pseudo-inverse filtering

= Wiener filters

=« Blind de-convolution

Geometric distortion and example corrections

20
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recover from linear degradation

= Degradation function
= Linear (eq 5.5-3, 5.5-4)
= Homogeneity
« Additivity
= Position-invariant (in cartesian coordinates, eq 5.5-5)
- linear filtering with H(u,v)
convolution with h(x,y) — point spread function

f(x.y)

DEGRADATION

RESTORATION ‘

Divide-and-conquer step #2: linear degradation, noise negligible.



point-spread function

- / e
PSF

[

ab

FIGURE 5.24
Degradation
estimation by
impulse
characterization.
(a) An impulse of
light (shown
magnified).

(b) Imaged
(degraded)
impulse.

22



point-spread functions

Spatial domain

23

h(x y)
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(a) One dimensional motion blur

h(x 0)

/0

y

(b) Incoherent diffraction limited system (lens cutoff)

hix, 0)

/o

y
(c) Average atmospheric turbulence

Figure 8.5 Examples of spatially invariant PSFs

Frequency
domain

(=) [11]

FIGURE 2  PSE of motion blur in the Foarier domain, showing | Da, v, for
2 L=75andé =&)L =T75and ¢ = w4

+11
1R 1

43
-

sldlbeaiiial

(@) (b}

FIGURE 3 (a) Fringe chements of discrete out-of-focus blur that ane calcu-
lated by integration: (b) PSF in the Fourier domain, shawing | Dis, ¥H, far
R =25



= assume h is known: low-pass filter H(u,v)

= inverse filter

= recovered image F'(u,v) = G(u,v)H (u,v)
H(u,v)__

6000

4000

2000

inverse filter
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[EE381K, UTexas]
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inverse filtering example

loss of \\
information

25
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the problem of noise amplification

G(u,v) = F(u,v)H(u,v)+ N(u,v) H(u,v) = 1/H(u,v)
N (u,v)
F(u,v) = G(u,v)H(u,v) = F(u,v) + T luo)
.......--a“\\\\\ F(u, 1!) 1 Hiwv) \\} e F(u 1) }'\'{(H,V)
\\\ X - \
o — H(u_,l))f (u 1}) ﬂ
> > >
0 wy 0 u,v 0 u,v 0 l u,v
"‘m\\\ . I/H(u,v) _m\\\\\ G(u,v)
E . Fu,v) — X kY
> > —>




noise amplification example

G(u,v) = F(u,v)H(u,v)+ N(u,v)

F(u,v) = G(u,v)H (u,v) = F(u,v) +

Guassian Noise (zero mean, o = 1)

80

100

120

140

GOk

160

H(u,v) = 1/H(u,v)

N(u,v)
H(u,v)

Restored Image

20

408

50 100 150
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cd

FIGURE 5.25
Tllustration of the
atmospheric
turbulence model.
(a) Negligible
turbulence.

(b) Severe
turbulence,

k = 0.0025.

(c) Mild
turbulence,

k = 0.001.

(d) Low
turbulence,

k = 0.00025.
(Original image
courtesy of
NASA.)

F(u,v) = G(u,v)H (u,v)

H(u,v) =

H(u,v) = e ku?+v?)

ab

flcd

[

- -

g i FIGURE 5.27

Restoring

Fig. 5.25(b) with
Eq.(5.7-1).

(a) Result of
using the full
filter. (b) Result
with H cut off

J outside a radius of

40; (c) outside a
radius of 70; and
(d) outside a
radius of 85.

1/H(uv), 2 +02] <7
u 4+ 02| > 7

28

inverse filtering with cutoff
(lowpass) to suppress noise.




pseudo-inverse filtering

= in reality, we often have
= H(u,v) =0, for some u, v. e.g. motion blur
= noise N(u,v) #0
To mitigate the effect of zeros in the degradation function, we have:

[ — 1/H(u,v), |H(’U,,U)| > €
H(u,v) = { 0. H (u,0)] < c

[Jain, Fig 8.10]
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back to the original problem

FIGURE 5.1 A
model of the

Degradation

Restoration

e e )T o
restoration
1(x, ¥) process.
X,
DEGRADATION RESTORATION
2 2| <«
Inverse filter with H(u,v) = 1/H(u,v), |[u®+v7[<n
| 0 [u® +v?) >
cut-off: ; n

Pseudo-inverse filter: _ | 1/H(u,v), |H(u,v)|>e¢
H(u,v) = { 0, |H(u,v)| < e

= Can the filter take values between 1/H(u,v) and zero?
= Can we model noise directly?

30
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Wiener filter

FIGURE 5.1 A
n model of the
flx.¥)  image
degradation/
restoration
process

Degradation
function
H

Restoration

F(x, y) filter(s)

MNoise
n(x, v)

RESTORATION ‘

W(u,v) _
g(z,y) = f(z,y)*h(z,y)+ n(z,y) flz,y) =w(z,y) * g(x,y)

= goal: restoration with expected minimum mean-square error (MSE)

min ¢ = B{(f - D%} = % [ (2.y) — (@) 2dady

= optimal solution (nonlinear):
f(z,y) = E{f(x,y)|g(m,n),¥(m,n)}
= restrict to linear space-invariant filter
flx,y) = w(z,y) * g(z,y)

DEGRADATION

= find “optimal” linear filter W(u,v) with min. MSE ...

Derived by Norbert Wiener ~1942, published in 1949
Wiener, Norbert (1949), Extrapolation, Interpolation, and Smoothing of Stationary Time Series. New York: Wiley



Wiener filter defined

u,v) =
|H(u7 U)|2 =+ Sn’ﬂ(ua U)/Sff(ua U)
H*
W(u,v) = (u,v)
H (u, v)[2 + K (u, v)
If no noise, S, >0 | e, H(u,v) #0
" Wil lsy—0 = { g,( v H(u,v) =0

- Pseudo inverse filter

If no blur, H(u,v)=1 (Wiener smoothing filter)
W (u,0)! . 1 _ SNR(u,v)
HPIH=1 =1 + Syn(u,v)/S¢r(u,v) ~ SNR(u,v) +1

- More suppression on noisier frequency bands

If K(u,v)>>|H(u,v)| for large u,v = suppress high-freq.

32



Sketch derivation of Wiener Filter

Aim is to find filter which minimizes

e=[" [ (flay) - :I:y)) dady

=" 7 |fa,y) - flay)| dody
— f f W‘F w,v) — Fu,v ‘ dudv Parseval’s Theorem

F=WG=WHF+WN
F-F=(Q1-WHF-WN
£ = / [ (1 — WH)F — WN|” dudv
= f_mf_mﬂ (1 —-WH)F|*+ |WN|* } dudv since f{x,y) and n(x,y) uncorrelated

» Note, integrand is sum of two squares

33
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Sketch derivation of Wiener Filter (contd)

Minimize integral if integrand minimum for all (u,v)
Q. w as
NB E(zz ) =2z

9 (—(1—=W*H")H|F|* + W*|N|*) =0

0z
e HIFP
|H|?|F|? + | N2
H'*

W =
[H|? + [N/ |F[?

Note: filter is defined in the Fourier domain



Alternative derivation of Wiener filter

35

= goal: restoration with minimum mean-square error (MSE)
min e = E{(f - /)*}

w

f(z,y) = w(z,y) = g(z,y)

= find “optimal” linear filter W(u,v) with min. MSE

> orthogonal condition  E{g(f — f)} =0
- wide-sense-stationary (WSS) signals

WSS

Rpg(z1,91,22,92) = E{f(z1,y1)9(%2,y2)} — Rjpe(x1 — 72,91 — y2)

- correlation function Ryg(z,y) = w(z,y) * Rgg(z,y)

-> Fourier Transform: from correlation to spectrum
ng(u’ U) — f{ng(x7 y)}7 Sgg(u7 ’U) — f{Rgg(CUa y)}

:> W(u,v) =

Srg(u,v) H*(u,v)Srr(u,v)

Sgg(ua U) - |H(’LL, ’U)|25ff(u, U) _I_ Snn(U, U)

S¢rand Sy, are the power spectra of the signal
and noise, respectively



1-D Wiener Filter Shape Wiener Filter implementation »

H*(u,v)S¢p(u,v)

W —
(U7v) |H(U,’U)|25ff(u,’l)) + 57777(“7”)
_ H*(u,v)
o S
_.' : [H (u,0) |2 + G
{a) rnus:;mhlng-:;-ﬂ — H* (u7 U)
 JHw,v)[2+ K

|F(u,v)| and |N(u,v)| are known
approximately, or

K is a constant (w.r.t. u and v)
chosen empirically to our knowledge
of the noise level.

T Wy ——

ibl Deblurring
Figure 8,11  Wiener filter characteristics.

[Jain, Fig 8.11]



Schematic effect of Wiener filter

H(wv)

37

G(u,v) = H(u,v) F(u,v) + N(u,v)

e

\\\}\

N\ & Fluv)

H(u,v)H(u,v) - x
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\\\\\ X
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Wiener Filter example

H (u,v)
H(u, V)\2 +K

W(u, V) =

G(u,v), K=0.02

K=0.02

e
e
3 40
TR
!ﬂlﬂj\\\\\\\\\\\t‘t:‘“%wﬁm:%m
e A mmr*.n.:,,%,i,, .
gl
100
100 o
100 |
140
° 0 160

20
3 2

1'” . 40

O B

i

IR atatan

s
i 60
80

il

120

140

160

[EE381K, UTexas]



Wiener filter example

abc

FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(h).

(b) Radially limited inverse filter result. (¢) Wiener filter result.

= Wiener filter is more robust to noise, and
preserves high-frequency details.

39
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Wiener filter example

Ringing effect visible, too many high
frequency components?

(a) Blurry image (b) restored w. regularized pseudo inverse
(c) restored with wiener filter

[UMD EE631]
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Another example: reading licence plates

"""‘“

Algorithm

Rotate image so that blur is horizontal
Estimate length of blur

Construct a bar modelling the convolution
Compute and apply a Wiener filter

@ R =

Optimize over values of K fx,y) h(x,y) fixy)

blur = 30 pixels




Wiener filter: when does it not work?

How much de-blurring is just enough?

image ‘blurrl’ wiener filter restored license plate

[Image Analysis Course, TU-Delft]
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Variations of Wiener filters

= geometric mean filters

- l—«
H*(u,v)]a H*(u,v)
W(u,v) =
) LH(%UVI H u,)[2 + pEmE)

= Constrained Least Squares

= Wiener filter emphasizes high-frequency components,
while images tend to be smooth

min |g - Hf|? 4 alCf|?

f: the estimate for undegraded image
C'f: a high-passed version of f



degraded inverse-filtered Wiener-filtered 44
N .

motion blur
+ noise

noise*10-!

noise*10>

abc

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (¢) with the Wiener filtering
results in Figs. 5.29(c), (f), and (i), respectively.
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Improve Wiener Filter

= Blind deconvolution

Wiener filter assumes both the image and noise
spectrum are know (or can be easily estimated), in
practice this becomes trial-and-error since noise and
signal parameters are often hard to obtain.

Sm=~0 C—) log|H|~ ﬁZ{c‘illlogleI — log|Fy]



Maximum-Likelihood (ML) Estimation

= h(x,y) H(u,v) unknown

= Assume parametric models for the blur function,
original image, and/or noise

= Parameter set @is estimated by

6, =argimax p(y | 0)}

= Solution is difficult in general

= Expectation-Maximization algorithm
= Guess an initial set of parameters 6
= Restore image via Wiener filtering using 6

= Use restored image to estimate refined parameters 6
= ... iterate until local optimum

46
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geometric distortions

M .f th t- I FIGURE 5.32
u Od I y e Spa Ia /Y\ Corresponding
Liepoints in two

rEIatiOnShipS between image segments.
pixels in an image

= a. k. a. “rubber-sheet w
transformations

= Two basic steps
/_\\

= Spatial transformation T v
u GraY'Ievel interpOIatlon .\ / Nearest neighbor to (x', ¥)

, -~
\_//

Gray-level assignment g(x’,y)

!/ — v
' =r(z,y) e

/ FIGURE 5.33 Gray-level interpolation based on the nearest neighbor concept.
y = s(z,y)
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geometric/spatial distortion examples

l

i

(a) Original (&) Pincushion distortion {c) Barrel distortion

FIGURE 14.2-1. Example of geometric distortion.



recovery from geometric distortion

ab

cd

e f

FIGURE 5.34 (a) Image showing tiepoints. (b) Tiepoints after geometric distortion.
(c) Geometrically distorted image, using nearest neighbor interpolation. (d) Restored
result. (e) Image distorted using bilinear interpolation. (f) Restored image.

49
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recovery from geometric distortion

:
i
]
|
]

)

(@) (b)

Fig. 5. (c) Image produced by a Computar 2.5mm lens and a Computar 1/3” CCD board camera. ( b) Distortion parameters recovered via the minimization of & are used
to map (a) to perspective image. Notice that straight lines in the scene, such as door edges, map to straight lines in the undistorted images.

Rahul Swaminathan, Shree K. Nayar: Nonmetric Calibration of Wide-Angle Lenses and Polycameras. IEEE Trans.
Pattern Anal. Mach. Intell. 22(10): 1172-1178 (2000)
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estimating distortions

= calibrate
= use flat/edge areas
= ... Oongoing work

a. Original - b. Out-of-focus
BlurExtent = 0.0104 BlurExtent = 0.4015

c. Oigina d. Linear-motion
BlurExtent = 0.0462 BlurExtent = 0.2095

http://photo.net/learn/dark_noise/ [Tong et. al. ICME2004]



High-quality Motion Deblurring from a Single Image *
[Shan, Jia, and Agarwala, SIGGRAPH 2008]

“Our method computes a deblurred image using a unified probabilistic model of both blur kernel estimation and unblurred
image restoration. ... include a model of the spatial randomness of noise in the blurred image, as well a new local
smoothness prior that reduces ringing artifacts by constraining contrast in the unblurred image wherever the blurred image
exhibits low contrast. Finally, we describe an efficient optimization scheme that alternates between blur kernel estimation

and unblurred image restoration until convergence. As a result of these steps, we are able to produce high quality
deblurred results in low computation time. ™



summary

a image degradation model
restoration from noise

restoration from linear degradation

= Inverse and pseudo-inverse filters, Wiener filter, constrained
least squares

geometric distortions

readings
= G&W Chapter 5.1 — 5.10, Jain 8.1-8.4 (at courseworks)
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who said distortion is a bad thing?

blur ...

geometric ...
© Declan Mccullagh Photography, mccullagh.org

noise ...




