General Image Transforms and Applications

Lecture 6, March 2nd, 2009

Lexing Xie

EE4830 Digital Image Processing
http://www.ee.columbia.edu/~xlx/ee4830/

announcements

- HW\#2 due today
- HW\#3 out
- Midterm next week, class time+location
- Monday March 9th (4:10-6:40, Mudd 1127)
- "Open-book"
- YES: text book(s), class notes, calculator
- NO: computer/cellphone/matlab/internet
- 5 analytical problems
- Coverage: lecture 1-6
- intro, representation, color, enhancement, transforms and filtering (until DFT and DCT)
- Additional instructor office hours
- 2-4pm Monday March 9th, Mudd 1312
- Grading breakdown
- HW-Midterm-Final: 30\%-30\%-40\%

outline

- Recap of DFT and DCT
- Unitary transforms
- KLT
- Other unitary transforms
- Multi-resolution and wavelets
- Applications
- Readings for today and last week: G\&W Chap 4, 7, Jain 5.1-5.11

recap: transform as basis expansion

$$
\begin{aligned}
& \begin{array}{l}
g(u)=\sum_{n=0}^{N-1} f(n) a_{N}^{u n} \\
f(n)=\sum_{u=0}^{N-1} g(u) \tilde{a}_{N}^{u n}
\end{array} \\
& \text { inverse } \\
& \text { transform } \\
& \tilde{a}_{N}^{u n}=a_{N}^{* u n}
\end{aligned}
$$

DFT: $a_{N}^{u n}=e^{-j 2 \pi \frac{u n}{N}}, \quad \widetilde{A}_{N}=A_{N}^{* T}$
DCT: $a_{N}^{\mathrm{O}_{n}}=\sqrt{\frac{1}{N}}$
$u=0$
$\tilde{a}_{N}^{u n}=a_{N}^{u n}$
$\tilde{A}_{N}=A_{N}^{T}$
$a_{N}^{u n}=\sqrt{\frac{2}{N}} \cos \frac{\pi(2 n+1) u}{2 N} u=1, \ldots, N-1$

recap: DFT and DCT basis

$$
\begin{aligned}
& \text { 1D-DCT } \\
& \begin{array}{l}
a_{N}^{\mathrm{On}}=\sqrt{\frac{1}{N}} \quad u=0 \\
a_{N}^{u n}=\sqrt{\frac{2}{N}} \cos \frac{\pi(2 n+1) u}{2 N} \\
u=1,2, \ldots, N-1
\end{array}
\end{aligned}
$$

$$
N=32
$$

A

1D-DFT

$$
\begin{aligned}
a_{N}^{u n} & =e^{-j 2 \pi \frac{u n}{N}} \\
& =\cos \left(2 \pi \frac{u n}{N}\right)-j \sin \left(2 \pi \frac{u n}{N}\right)
\end{aligned}
$$

real(A)

recap: 2-D transforms

$$
g(u, v)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) a_{u v}(m, n), \quad f(m, n)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} g(u, v) \tilde{a}_{u v}(m, n)
$$

for DFT, $a(u, v, m, n)=e^{-j 2 \pi\left(\frac{u m}{N}+\frac{v n}{N}\right)}=e^{-j 2 \pi \frac{u m}{N}} \cdot e^{-j 2 \pi \frac{v n}{N}}$

A transform is separable, when $a_{u v}(m, n)=a_{u}(m) b_{v}(n)$.

2D-DFT and 2D-DCT are separable transforms.

separable 2-D transforms

when $a=b, M=N$

$$
\begin{aligned}
& g(u, v)=\sum_{m=0}^{N-1} \sum_{n=0}^{N-1} a_{N}^{u m} f(m, n) a_{N}^{v n} \\
& f(m, n)=\sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \tilde{a}_{N}^{u m} g(u, v) \tilde{a}_{N}^{v n}
\end{aligned}
$$

Symmetric 2D separable transforms can be expressed with the notations of its corresponding 1D transform.

We only need to discuss 1D transforms

Exercise

- How do we decompose this picture?

What if black=0, does the transform coefficients look similar?

two properties of DFT and DCT

$$
\begin{aligned}
& g(u)=\sum_{n=0}^{N-1} f(n) a_{N}^{u n} \quad \tilde{A}_{N}=A_{N}^{* T} \\
& f(n)=\sum_{u=0}^{N-1} g(u) \tilde{a}_{N}^{u n}
\end{aligned}
$$

- Orthonormal (Eq 5.5 in Jain)
: no two basis represent the same information in the image

$$
\sum_{n} a_{N}^{u n} a_{N}^{* v n}=\delta(u-v)
$$

- Completeness (Eq 5.6 in Jain)
: all information in the image are represented in the set of basis functions

$$
\sum_{u} a_{N}^{u m} a_{N}^{* u n}=\delta(m-n)
$$

for $Q<N$, let $f_{Q}(n)=\sum_{u=0}^{Q-1} \widehat{g}(u) a_{N}^{* u n}$
$\sigma_{Q}^{2}=\sum_{n=1}^{N-1}\left[f(n)-f_{Q}(n)\right]^{2}$ minimized when $\widehat{g}(u)=g(u)$
$f-f_{Q}=0$, iff. $Q=N$

Unitary Transforms

A linear transform:

$$
\mathcal{R}^{N} \rightarrow \mathcal{R}^{N} \quad g=A_{N} f, f=A_{N}^{* T} g
$$

The Hermitian of matrix A is: $\quad A^{H}=A^{* T}$
This transform is called "unitary" when A is a unitary matrix, "orthogonal" when A is unitary and real.

$$
A^{-1}=A^{H}, A A^{H}=A^{*} A^{T}=I
$$

- Two properties implied by construction
- Orthonormality

$$
\sum_{n} a_{N}^{u n} a_{N}^{* v n}=\delta(u-v)
$$

- Completeness

$$
\sum_{u} a_{N}^{u m} a_{N}^{* u n}=\delta(m-n)
$$

Exercise

- Are these transform matrixes unitary/orthogonal?

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]} & {\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]}
\end{array}\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

- Unitary/orthogonal checklist:
- determinant equals $1,|\mathrm{~A}|=1$
- unit row/column vector
- orthogonal row/column vectors, $\mathrm{AA}^{\mathrm{H}}=\mathrm{I}$

properties of 1-D unitary transform

- energy conservation $\|g\|^{2}=\|f\|^{2}$

$$
\|g\|^{2}=\|A f\|^{2}=(A f)^{* T}(A f)=f^{* T} A^{* T} A f=f^{* T} f=\|f\|^{2}
$$

- rotation invariance
- the angles between vectors are preserved

$$
\cos \theta=\frac{f_{1} \cdot f_{2}}{\left\|f_{1}\right\|\left\|f_{2}\right\|} \quad g_{1} \cdot g_{2}=g_{1}^{* T} g_{2}=\left(A f_{1}\right)^{* T} A f_{2}=f_{1} \cdot f_{2}
$$

- unitary transform: rotate a vector in R^{n}, i.e., rotate the basis coordinates

observations about unitary transform

- Energy Compaction
- Many common unitary transforms tend to pack a large fraction of signal energy into just a few transform coefficients
- De-correlation
- Highly correlated input elements \rightarrow quite uncorrelated output coefficients
- Use the covariance matrix to measure correlation

$$
\begin{aligned}
& R_{g}=\operatorname{cov}(g)=E\left\{(g-E\{g\})(g-E\{g\})^{* T}\right\} \\
& \text { let } \widehat{g}=g-E\{g\}, \text { then } R_{m n}=E\left\{\hat{g}_{m} \widehat{g}_{n}\right\}
\end{aligned}
$$

f: columns of image pixels

$$
\begin{equation*}
g=D C T(f) \tag{cov}
\end{equation*}
$$

$f_{1}, f_{2}, \ldots, f_{600}$
$g_{1}, g_{2}, \ldots, g_{600}$
$\operatorname{cov}(g)$

linear display scale: g

display scale: $\log (1+a b s(g))$

one question and two more observations

- is there a transform with
- best energy compaction
- maximum de-correlation
- is also unitary... ?
- transforms so far are data-independent
- transform basis/filters do not depend on the signal being processed
- "optimal" should be defined in a statistical sense so that the transform works well with many images
- "optimal" for each signal is ill-defined
- signal statistics should play an important role

review: correlation after a linear transform

- x is a zero-mean random vector in \mathcal{R}^{N}

$$
E[x]=0
$$

- the covariance (autocorrelation) matrix of x

$$
R_{x}=\operatorname{cov}(x)=E\left[x x^{H}\right]
$$

- $\mathrm{R}_{\mathrm{x}}(\mathrm{i}, \mathrm{j})$ encodes the correlation between x_{i} and x_{j}
- R_{x} is a diagonal matrix iff. all N random variables in x are uncorrelated
- apply a linear transform: $y=A x$
- What is the correlation matrix for y ?

$$
\begin{aligned}
& R_{y}=\operatorname{cov}(y)=E\left[y y^{H}\right]=E\left[A x(A x)^{H}\right] \\
& \quad=E\left[A x x^{H} A^{H}\right]=A E\left[x x^{H}\right] A^{H}=A R_{x} A^{H}
\end{aligned}
$$

transform with maximum energy compaction

$$
\begin{aligned}
& y=A^{\prime} x \\
& y(u)=a_{u}^{\prime} x \quad A^{\prime}=\left[\begin{array}{c}
a_{0}^{\prime} \\
a_{1}^{\prime} \\
\cdots \\
a_{N-1}
\end{array}\right] \quad \begin{array}{l}
a_{u}^{\prime} a_{u}^{*}=1 \\
a_{u}^{\prime} a_{v}^{*}=0 \quad \forall u \neq v \\
\|x\|^{2}=E\left[x^{H} x\right]=\sum_{u} R_{x}(u, u) \\
\|y\|^{2}=E\left[y^{H} y\right]=\|x\|^{2} \\
\left\|y_{Q}\right\|^{2}=\sum_{u=0}^{Q-1} y^{2}(u)
\end{array} . l
\end{aligned}
$$

$$
\max . E\left[y_{Q}^{H} y_{Q}\right]
$$

$$
\text { s.t. } y(u)=a_{u}^{\prime} x, \quad a_{u}^{\prime} a_{u}^{*}=1, a_{u}^{\prime} a_{v}^{*}=0 \quad \forall u \neq v
$$

proof. maximum energy compaction

$$
\begin{aligned}
\max . & E\left[y_{Q}^{H} y_{Q}\right]=E\left[\left(A_{Q} x\right)^{H} A_{Q} x\right] \\
& =E\left[x ^ { H } \left(a_{0}^{*} \ldots a_{Q-1}^{*}\right.\right. \\
& \left.\ldots 0)\left(\begin{array}{c}
a_{0}^{\prime} \\
\cdots \\
a_{Q-1}^{\prime} \\
\cdots \\
0
\end{array}\right) x\right]
\end{aligned}
$$

$$
A_{Q}=\left(\begin{array}{c}
a_{0}^{\prime} \\
\cdots \\
a_{Q-1}^{\prime} \\
\cdots \\
0
\end{array}\right)
$$

$$
\sim^{\text {matrix identity }}=\sum_{u=0}^{Q-1} a_{u}^{\prime} R_{x} a_{u}^{*}
$$

$$
a_{u}^{\prime} a_{u}^{*}=1^{\prime} \text { let } L=\sum_{u=0}^{Q-1} a_{u}^{\prime} R_{x} a_{u}^{*}-2 \sum_{u=0}^{Q-1} \lambda_{u}\left(1-a_{u}^{\prime} a_{u}^{*}\right)
$$

$$
\begin{aligned}
\frac{\partial L}{\partial a_{u}^{*}}=2 R_{x} a_{u}^{*}-2 \lambda_{u} a_{u}^{*}=0 \quad \square & a_{\mathrm{u}}^{*} \text { are the eigen vectors of } \mathrm{R}_{\mathrm{x}} \\
& R_{x} a_{u}^{*}=\lambda_{u} a_{u}^{*}
\end{aligned}
$$

Karhunen-Loève Transform (KLT)

- a unitary transform with the basis vectors in A being the "orthonormalized" eigenvectors of R_{x}

$$
y=A^{T} x, x=A y
$$

$$
\text { with } A \in \mathcal{R}^{N \times N}, A=\left[a_{0}, \ldots, a_{N-1}\right]
$$

$$
R_{x} a_{u}=\lambda_{u} a_{u}, u=0, \ldots, N-1
$$

- assume real input, write A^{\top} instead of A^{H}
- denote the inverse transform matrix as $\mathrm{A}, \mathrm{AA}^{\top}=\mathrm{I}$
- R_{x} is symmetric for real input, Hermitian for complex input i.ê. $R_{x}{ }^{\top}=R_{x}, R_{x}{ }^{H}=R_{x}$
- R_{x} nonnegative definite, i.e. has real non-negative eigen values
- Attributions
- Kari Karhunen 1947, Michel Loève 1948
- a.k.a Hotelling transform (Harold Hotelling, discrete formulation 1933)
- a.k.a. Principle Component Analysis (PCA, estimate R_{x} from samples)

Properties of K-L Transform

- Decorrelation by construction

$$
R_{y}=E\left[y y^{T}\right]=A R_{x} A^{T}=\left(\begin{array}{cccc}
\lambda_{0} & & & \\
& \lambda_{1} & & \\
& & \cdots & \\
& & & \lambda_{N-1}
\end{array}\right)
$$

- note: other matrices (unitary or nonunitary) may also de-correlate the transformed sequence [Jain's example 5.5 and 5.7]
- Minimizing MSE under basis restriction
- Basis restriction: Keep only a subset of m transform coefficients and then perform inverse transform ($1 \leq \mathrm{m} \leq \mathrm{N}$)
\rightarrow Keep the coefficients w.r.t. the eigenvectors of the first m largest eigenvalues

$$
I_{m}=\left(\begin{array}{ccccc}
1 & & & & \\
& 1 & & & \\
& & \ldots & & \\
& & & 0 & \\
& & & & \ldots
\end{array}\right)
$$

Figure 516 KL transform basis restriction

discussions about KLT

- The good
- Minimum MSE for a "shortened" version
- De-correlating the transform coefficients
- The ugly
- Data dependent
- Need a good estimate of the second-order statistics
- Increased computation complexity

```
    data: }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{M}{}\in\mp@subsup{\mathcal{R}}{}{N}\quad\mathrm{ estimate R R
    linear transform: O(MN) compute eig R R
    fast transform: }O(M\operatorname{log}N
```

Is there a data-independent transform with similar performance?

DFT is the optimal transform when ...

- The signal x is periodic

$$
x(m)=x(m+n), \forall m
$$

- The autocorrelation matrix R_{x} is circulant

$$
R_{x}=E\left[x x^{H}\right]=\left[\begin{array}{llll}
r_{0} & r_{1} & \ldots & r_{n-1} \\
r_{n-1} & r_{0} & \ldots & r_{n-2} \\
\ldots & & \ldots & r_{0} \\
r_{1} & r_{2} & \ldots & r_{0}
\end{array}\right]
$$

- The eigen vectors of R_{x} are Fourier basis

$$
R_{x} W_{n}^{u}=\lambda_{u} W_{n}^{u}
$$

energy compaction properties of DCT

- DCT is close to KLT when
- x is first-order stationary Markov

$$
x_{n}=\rho x_{n-1}+z_{n}, \quad z_{n} \sim \mathcal{N}\left(0, \sigma_{z}^{2}\right),|\rho|<1
$$

$\rightarrow E\left[x_{n} x_{n-1}\right]=\rho \sigma_{x}^{2}, E\left[x_{n} x_{n-2}\right]=\rho^{2} \sigma_{x}^{2}, \ldots \quad r(n)=\rho^{|n|}$
$\longrightarrow \quad R_{x}=\left(\begin{array}{ccccc}1 & \rho & \rho^{2} & \ldots & \\ \rho & 1 & \rho & & \\ \cdots-1 & \cdots & & \\ \beta^{2} \triangleq \frac{\rho^{2}}{1+\rho^{2}}\end{array}\right)$
$\alpha \triangleq \frac{\rho}{1+\rho^{2}} \beta^{2} R_{x}^{-1}=\left(\begin{array}{ccccc}1-\rho \alpha & -\alpha & & & \\ -\alpha & 1 & -\alpha & 0 & \\ \cdots & & \cdots & & \\ & 0 & & -\alpha & 1-\rho \alpha\end{array}\right)$

- R_{x} and $\beta^{2} R_{x}{ }^{-1}$ have the same eigen vectors
- $\beta^{2} R_{x}{ }^{-1} \sim Q_{c}$ when ρ is close to 1
- DCT basis vectors are eigenvectors of a symmetric tri-diagonal matrix Q_{C}

$$
Q_{c}=\left(\begin{array}{ccccc}
1-\alpha & -\alpha & 0 & \ldots & \\
-\alpha & 1 & -\alpha & & \\
\cdots & & \cdots & & \\
0 & & & -\alpha & 1-\alpha
\end{array}\right) \quad \begin{aligned}
& a_{0}=\text { const. } \\
& a_{u} \propto\left[1, \cos \frac{\pi 3 u}{2 N}, \ldots, \cos \frac{\pi u(2 N-1)}{2 N}\right]^{T}
\end{aligned}
$$

$$
\rightarrow \quad Q_{c} a_{u}=\lambda_{u} a_{u}
$$

DCT energy compaction

- DCT is close to KLT for
- highly-correlated first-order stationary Markov source
- DCT is a good replacement for KLT
- Close to optimal for highly correlated data
- Not depend on specific data
- Fast algorithm available

DCT/KLT example for vectors

x : columns of image pixels $\rho^{*}=0.8786$
fraction of coefficient values in the diagonal

$$
x_{1}, x_{2}, \ldots, x_{600}
$$

display scale: $\log (1+a b s(g))$, zero-mean

KL transform for images

- autocorrelation function $1 \mathrm{D} \rightarrow 2 \mathrm{D}$

$$
\begin{array}{ll}
x(1: n) & R_{x}\left(n_{1}, n_{2}\right) \\
x(1: m, 1: n) & R_{x}\left(m_{1}, m_{2}, n_{1}, n_{2}\right)
\end{array}
$$

- KL basis images are the orthonormalized eigen-functions of R
- rewrite images into vector forms ($\mathrm{N}^{2} \times 1$)
- solve the eigen problem for $\mathrm{N}^{2} \mathrm{x} \mathrm{N}^{2}$ matrix $\sim \mathrm{O}\left(\mathrm{N}^{6}\right)$
- or, make R_{x} "separable"

$$
R_{x}\left(m_{1}, m_{2}, n_{1}, n_{2}\right) \rightarrow r\left(m_{1}, m_{2}\right) \cdot r\left(n_{1}, n_{2}\right)
$$

- perform separate KLT on the rows and columns
- transform complexity $\mathrm{O}\left(\mathrm{N}^{3}\right)$

KLT on hand-written digits ...

1100 vectors of size 256×1

The Desirables for Image Transforms

- Theory
- Inverse transform available
- Energy conservation (Parsevell)
- Good for compacting energy
- Orthonormal, complete basis
- (sort of) shift- and rotation invariant
- Transform basis signal-independent
- Implementation
- Real-valued
- Separable
- Fast to compute w. butterfly-like structure
- Same implementation for forward and inverse transform

DFT DCT KLT

Walsh-Hadamard Transform

$$
\begin{aligned}
& H_{0}=+1 \\
& H_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \\
& H_{2}=\frac{1}{2}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \\
& H_{3}=\frac{1}{2^{3 / 2}}\left(\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) .
\end{aligned}
$$

$$
H_{m}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
H_{m-1} & H_{m-1} \\
H_{m-1} & -H_{m-1}
\end{array}\right)
$$

$$
\left(H_{m}\right)_{k, n}=\frac{1}{2^{m / 2}}(-1)^{\sum_{j} k_{j} n_{j}}
$$

slant transform

$\left[\begin{array}{cccccccc}0.3536 & 0.3536 & 0.3536 & 0.3536 & 0.3536 & 0.3536 & 0.3536 & 0.3536 \\ 0.5401 & 0.3858 & 0.2315 & 0.0772 & -0.0772 & -0.2315 & -0.3858 & -0.5401 \\ 0.3536 & -0.3536 & -0.3536 & 0.3536 & 0.3536 & -0.3536 & -0.3536 & 0.3536 \\ 0.1581 & -0.4743 & 0.4743 & -0.1581 & 0.1581 & -0.4743 & 0.4743 & -0.1581 \\ 0.4743 & 0.1581 & -0.1581 & -0.4743 & -0.4743 & -0.1581 & 0.1581 & 0.4743 \\ 0.2415 & -0.0345 & -0.3105 & -0.5866 & 0.5866 & 0.3105 & 0.0345 & -0.2415 \\ 0.3536 & -0.3536 & -0.3536 & 0.3536 & -0.3536 & 0.3536 & 0.3536 & -0.3536 \\ 0.1581 & -0.4743 & 0.4743 & -0.1581 & -0.1581 & 0.4743 & -0.4743 & 0.1581\end{array}\right]$

Nassiri et. al, "Texture Feature Extraction using Slant-Hadamard Transform"

energy compaction comparison

Figure 5.18 Distribution of variances of the transform coefficients (in decreasing order) of a stationary Markov sequence with $N=16, \rho=0.95$ (see Example 5.9).

implementation note: block transform

- similar to STFT (short-time Fourier transform)
- partition a NxN image into mxn sub-images
- save computation: $\mathrm{O}(\mathrm{N})$ instead of $\mathrm{O}(\mathrm{NlogN})$
- lose long-range correlation

applications of transforms

- enhancement
- (non-universal) compression
- feature extraction and representation
- pattern recognition, e.g., eigen faces
- dimensionality reduction
- analyze the principal ("dominating") components

Image Compression

Measure compression quality with signal distortion:

$$
\mathrm{SNR}(\mathrm{~dB})=10 \log _{10}\left(\frac{P_{\text {signal }}}{P_{\text {noise }}}\right)=20 \log _{10}\left(\frac{A_{\text {signal }}}{A_{\text {noise }}}\right)
$$

where P is average power and A is RMS amplitude.

Gabor filters

- Gaussian windowed Fourier Transform
- Make convolution kernels from product of Fourier basis images and Gaussians

Example: Filter Responses

outline

- Recap of DFT and DCT
- Unitary transforms
- KLT
- Other unitary transforms
- Multi-resolution and wavelets
- Applications

1807: Fourier upsets the French Academy....

Fourier Series: Harmonic series, frequency changes, $f_{0}, 2 f_{0}, 3 f_{0}, \ldots$

FT does not capture discontinuities well

But... 1898: Gibbs' paper

Orthogonality, convergence, complexity
1899: Gibbs' correction

1910: Alfred Haar discovers the Haar wavelet
"dual" to the Fourier construction

Haar series:

- Scale changes $\mathrm{S}_{0}, 2 \mathrm{~S}_{0}, 4 \mathrm{~S}_{0}, 8 \mathrm{~S}_{0} \ldots$
- orthogonality

one step forward from dirac ...

- Split the frequency in half means we can downsample by 2 to reconstruct upsample by 2.
- Filter to remove unwanted parts of the images and add
- Basic building block: Two-channel filter bank

orthogonal filter banks

1. Start from the reconstructed signal

$$
\begin{aligned}
x_{r e c} & =x_{V}+x_{W}=\sum_{k \in \mathbb{Z}} \alpha_{k} g_{n-2 k}+\sum_{k \in \mathbb{Z}} \beta_{k} h_{n-2 k} \\
& =\left[\begin{array}{ccccccc}
\cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\cdots \\
\cdots & g_{0} & h_{0} & 0 & 0 & 0 & 0 \\
\cdots \\
\cdots & g_{1} & h_{1} & 0 & 0 & 0 & 0 \\
\cdots & \cdots \\
\cdots & g_{2} & h_{2} & g_{0} & h_{0} & 0 & 0 \\
\cdots & g_{3} & h_{3} & g_{1} & h_{1} & 0 & 0 \\
\cdots \\
\cdots & g_{4} & h_{4} & g_{2} & h_{2} & g_{0} & h_{0} \\
\cdots & \cdots \\
\cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\cdots
\end{array}\right]\left[\begin{array}{c}
\vdots \\
\alpha_{0} \\
\beta_{0} \\
\alpha_{1} \\
\beta_{1} \\
\alpha_{2} \\
\vdots
\end{array}\right]=\Phi X
\end{aligned}
$$

- Read off the basis functions

$$
\Phi=\left\{\varphi_{k}\right\}_{k \in \mathbb{Z}}=\left\{\varphi_{2 k}, \varphi_{2 k+1}\right\}_{k \in \mathbb{Z}}=\left\{g_{-2 k}, h_{.-2 k}\right\}_{k \in \mathbb{Z}}
$$

orthogonal filter banks

2. We want the expansion to be orthonormal ${ }_{\Phi \Phi^{T}}=I$

- The output of the analysis bank is

$$
X=\tilde{\Phi}^{T} x=\Phi^{T}
$$

3. Then

- The rows of Φ^{\top} are the basis functions $\left\{g_{--2 k}, h_{.-2 k}\right\}_{k \in \mathbb{Z}}$
- The rows of Φ^{\top} are the reversed versions of the filters

$$
\begin{array}{lll}
\alpha_{k}=\langle g .-2 k, x\rangle=\left(g_{-n} * x_{n}\right)_{2 k} & \Leftrightarrow & \alpha=\Phi_{g}^{T} x, \\
\beta_{k}=\langle h .-2 k, x\rangle=\left(h_{-n} * x_{n}\right)_{2 k} & \Leftrightarrow & \beta=\Phi_{h}^{T} x .
\end{array}
$$

- The analysis filters are

$$
\tilde{g}_{n}=g_{-n}, \quad \tilde{h}_{n}=h_{-n}
$$

orthogonal filter banks

4. Since Φ is unitary, basis functions are orthonormal

$$
\begin{aligned}
\langle g .-2 k, g\rangle & =\delta_{k}, \\
\langle h .-2 k, h\rangle & =\delta_{k}, \\
\langle h .-2 k, g\rangle & =0 .
\end{aligned}
$$

5. Final filter bank

orthogonal filter banks: Haar basis

Solve for the filter h explicitly.

$$
g_{n}=\frac{1}{\sqrt{2}}\left(\delta_{n}+\delta_{n-1}\right)
$$

Given that h_{n} must be of norm 1 and of same the length as g_{n},

$$
h_{n}=(\cos \alpha) \delta_{n}+(\sin \alpha) \delta_{n-1}
$$

Computing the inner product $\left\langle h_{-2 k}, g\right\rangle=0$:

$$
\frac{1}{\sqrt{2}}(\cos \alpha+\sin \alpha)=0
$$

The solution to the above is:

$$
\sin \alpha=-\cos \alpha \quad \Rightarrow \quad \alpha=k \pi-\frac{\pi}{4}
$$

For $k=0$, a solution to h_{n} is:

$$
h_{n}=\frac{1}{\sqrt{2}}\left(\delta_{n}-\delta_{n-1}\right)
$$

Goal: efficient representation of signals like

Lowpass filters and scaling functions reproduce polynomials

where:

- Wavelet act as singularity detectors
- Scaling functions catch smooth parts
- "Noise" is circularly symmetric

Note: Fourier gets all Gibbs-ed up!

- Iterate of Daubechies L=4 lowpass filter reproduces linear ramp

linear ramp

Scaling functions catch "trends" in signals

DWT

- Iterate only on the lowpass channel

wavelet packet

- Iterate on both the low pass and (selected) high-pass channels

wavelet packet

- First stage: full decomposition

wavelet packet

- Second stage: pruning

wavelet packet: why it works

- One of the grand challenges in signal analysis and processing is in understanding "blob"-like structures of the energy distribution in the time-frequency space, and designing a representation to reflect those.

- are we solving $x=x$?
- sort of: find matrices such that $x=I x=\Phi \tilde{\Phi}^{*} x$
- after finding those
- Decomposition $\quad X=\tilde{\Phi}^{*} x$
- Reconstruction $x=\Phi X=\Phi \tilde{\Phi}^{*} x$
- in a nutshell
- if Φ is square and nonsingular, Φ is a basis and $\widetilde{\Phi}$ is its dual basis
- if Φ is unitary, that is, $\Phi \Phi^{*}=$ I, Φ is an orthonormal basis and $\tilde{\Phi}=\Phi$
- if Φ is rectangular and full rank, Φ is a frame and $\tilde{\Phi}$ is its dual frame
- if Φ is rectangular and $\Phi \Phi^{*}=\mathrm{I}, \Phi$ is a tight frame and $\widetilde{\Phi}=\Phi$

overview of multi-resolution techniques

applications of wavelets

- enhancement and denoising
- compression and MR approximation
- fingerprint representation with wavelet packets
- bio-medical image classification
- subdivision surfaces "Geri's Game", "A Bug's Life", "Toy Story 2"

fingerprint feature extraction

- MR system
- Introduces adaptivity
- Template matching performed on different space-frequency regions
- Builds a different decomposition for each class

$$
F(\text { parent })>F(\text { child } 1)+F(\text { child } 2)+F(\text { child } 3)+F(\text { child } 4), \quad F=\frac{1}{E}
$$

fingerprint identification results

NIST 24 fingerprint database
10 people (5 male \& 5 female), 2 fingers
20 classes, 100 images/class

references for multiresolution

- Light reading
- "Wavelets: Seeing the Forest -- and the Trees", D. Mackenzie, Beyond Discovery, December 2001.
- Overviews
- D.Donoho, M.Vetterli, R.DeVore and I.Daubechies, Data Compression and Harmonic Analysis, IEEE Tr. on IT, Oct. 1998.
- M. Vetterli, Wavelets, approximation and compression, IEEE Signal Processing Magazine, Sept. 2001
- Books
- "Wavelets and Subband Coding", M. Vetterli and J. Kovacevic, Prentice Hall, 1995.
- "A Wavelet Tour of Signal Processing", S. Mallat, Academic Press, 1999.
- "Ten Lectures on Wavelets", I. Daubechies, SIAM, 1992.
- "Wavelets and Filter Banks", G. Strang and T. Nguyen, Wells. Cambr. Press, 1996.

ELEN E6860 Advanced Digital Signal Processing

summary

- unitary transforms
- theory revisited
- the quest for optimal transform
- example transforms DFT, DCT, KLT, Hadamard, Slant, Haar, ...
- multi-resolution analysis and wavelets
- applications
- compression
- feature extraction and representation
- image matching (digits, faces, fingerprints)

Timeline

Wavelets have had an unusual scientific history, marked by many independent discoveries and rediscoveries.
The most rapid progress has come since the early 1980 s, when a coherent mathematical theory of wavelets finally emerged.

1807
Jean Baptiste Joseph Fourier claims that any periodic function or wave, can be expressed as an infinite sum of sine and cosine waves of various frequencies Because of serious doubts over the correctness of his arguments his paper is not published until 15 years later.

1930
John Littlewood and R.A.E.C. Paley, of Cambridge University, show that local information abou a wave, such as the timing of a pulse of energy, can be retrieved by grouping the terms of its by grouping the terms of its

1976
IBM physicists Claude Galand and Danie I Esteban discover subban coding, a way of encoding digital transmissions for the telephone.

1984

Joint paper by Morlet Joint paper by Morlet the word "wavelet" into the word "wavele" into the mathematical lexico for the tirst time.

Petroleum engineer Jean Morlet ot Eli-Aquitaine finds a way to decompose seismic signals into what he calls "wavelets of constant shape." He turns to quantum physicist Alex Grossmann for help in proving that the method works.

1946

Dennis (Denes) Gabor, a British-Hungarian physicist who invented holography, decomposes signals into "time-frequency packets" or "Gabor chirps."

1995

Pixar Studios releases the movie Toy Story, the first fully computeranimated cartoon. In the sequel, Toy Story 2, some shapes are rendered by subdivision surfaces, a technique mathematically related to wavelets

1986
Stéphane Mallat, then at the University of Pennsyluania, shows that the Haar basis, the LittlewoodPaley octaves, the Gabor chirps, and the subband filters of Galan and Esteban are all related
wavelet-based algorithms.

1990
David Donoho and lain Johnstone, at Stanford University, use wavelet to "denoise" images, making them even sharpe than the originals

992
The FBI chooses a wavelet method developed by Tom Hopper of the FBI's Criminal Justice Information Services Division and Jonathan Bradley and Chris Brislawn from Los Alamos National Laboratory. to compress its enormous database of fingerprints.

1999
The International Standards Organization approves a new standard for digital picture compression, called JPEG-2000 The new standard uses wavelets to compress image files by 1:200 ratios with no visible loss in image quality. Web browsers are expected to support the new standard by 2001.

