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announcements

= HW#2 due today
= HW#3 out

= Midterm next week, class time+location
= Monday March 9t (4:10-6:40, Mudd 1127)
“Open-book”
= YES: text book(s), class notes, calculator
= NO: computer/cellphone/matlab/internet
5 analytical problems
Coverage: lecture 1-6

= intro, representation, color, enhancement,
transforms and filtering (until DFT and DCT)

Additional instructor office hours
= 2-4pm Monday March 9t Mudd 1312

= Grading breakdown
= HW-Midterm-Final: 30%-30%-40%



outline

Recap of DFT and DCT
Unitary transforms

KLT

Other unitary transforms
Multi-resolution and wavelets
Applications

Readings for today and last week: G&W Chap 4,
/7, Jain 5.1-5.11



recap: transform as basis expansion
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recap: DFT and DCT basis

1D-DCT 1D-DFT
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recap: 2-D transforms
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2D-DFT and 2D-DCT are separable transforms.

A transform is separable,
when ayy(m,n) = ay(m)by(n).



separable 2-D transforms

when a =b, M = N

N—-1N-1

glu,v) = . > ay" f(m,n) af

m=—0 n=0
N—1N-1

fm,n) = >, >, an" g(u,v) @y’

u=0 v=0
/

8 rEG

g=AnfAN = ¢ = An(ANS)

Symmetric 2D separable transforms can
be expressed with the notations of its
corresponding 1D transform.

We only need to discuss 1D
transforms



Exercise

= How do we decompose this picture?
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What if black=0, does the transform coefficients look similar?

=il 4

Four basis images
for 2D DCT




two properties of DFT and DCT

N—-1
g(u) = Z f(n) a}{,n AN — Ai';\?

=
fn) = > glu)ay’
u=0

= Orthonormal (Eq 5.5 in Jain)
: no two basis represent the same information in the image

Y aftay" = 6(u—v)
n

= Completeness (Eq 5.6 in Jain)
: all information in the image are represented in the set of basis

functions 3" aiMai™ = §(m — n)
u

for Q < N, let fo(n) = Y2 g(u)ap™

|:> ‘782 = Y21 lf(n) - fo(m)1? minimized when §(u) = g(u)
f—fQZO, ifF. Q:N




Unitary Transforms

A linear transform:

RN _, RN g=ANf, fF=A g

The Hermitian of matrix A is: Al = AT

This transform is called “unitary” when A is a unitary matrix,
“orthogonal” when A is unitary and real.

A7l = A0 AaH = A AT =1
= [wo properties implied by construction
= Orthonormality
> affai" = 6(u—v)
mn

= Completeness
> aftay"t = 6(m —n)
u



Exercise

= Are these transform matrixes unitary/orthogonal?

1
2 3 ﬁ ﬁ cos@ siné
1 2 1 _1 —sin@ cosé
V2 V2]

N

= Unitary/orthogonal checklist:
= determinant equals 1, |A|=1
= Uunit row/column vector
= orthogonal row/column vectors, AAR=I



properties of 1-D unitary transform

= energy conservation ||g||2 = || f||2

gl = |Af112 = (A TAf) = pTATAf =T =|f)?

= rotation invariance
= the angles between vectors are preserved

J1- /o
cost) = g1-92 =g = (Af1))TAfo=f1- >
| f1]l]] f2]]
= unitary transform: rotate a vector in R", S

e., rotate the basis coordinates

€o



observations about unitary transform

= Energy Compaction

= Many common unitary transforms tend to pack a large fraction of
signal energy into just a few transform coefficients

s De-correlation

= Highly correlated input elements - quite uncorrelated output
coefficients

= Use the covariance matrix to measure correlation
Ry = cov(g) = E{(g — E{g9})(g — E{g})*"}

f: columns of image pixels g = DCT(f)
f1, f2, -+, feo0 cov(f) 91,92, ---» geoo  cov(g)

linear dlsplay scale: g

display scale: log(1+abs(g))



one question and two more observations

= is there a transform with
= best energy compaction
= maximum de-correlation
= iS also unitary... ?

= transforms so far are data-independent

« transform basis/filters do not depend on the signal being
processed

= optimal” should be defined in a statistical sense so
that the transform works well with many images
= “optimal” for each signal is ill-defined

= signal statistics should play an important role



review: correlation after a linear transform

= X is a zero-mean random vector in RN
Elx] =0
= the covariance (autocorrelation) matrix of x
Ry = cov(x) = Elzz!]
= R(i,j) encodes the correlation between x; and x;

= R, is a diagonal matrix iff. all N random variables in x are
uncorrelated

= apply a linear transform: y = Ax
= What is the correlation matrix fory ?

Ry = cov(y) = Eyy"] = E[Az(Az)"]
= E[Azz AY] = AE[z2M)AY = AR AH



transform with maximum energy compaction

- /
y= Az a,p
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proof. maximum energy compaction
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Karhunen-Loeve Transform (KLT)

= a unitary transform with the basis vectors in A being
the “orthonormalized” eigenvectors of R,

y= Alz, == Ay,
with A € RVXN A = [ag,...,an_1]

Rxau:Auau, 'U/:O,,N_l

= assume real input, write AT instead of AH

o denote the inverse transform matrix as A, AAT=I

= R, is eymmetnc for real input, Hermitian for complex input
i e R, RH=R

X’ X

= R, nonnegatlve definite, i.e. has real non-negative eigen values

Attributions
= Kari Karhunen 1947, Michel Loeve 1948
= a.k.a Hotelling transform (Harold Hotelling, discrete formulation 1933)
= a.k.a. Principle Component Analysis (PCA, estimate R, from samples)



Properties of K-L Transform

= Decorrelation by construction

Ry = Elyy"] = AR, AT =| ™M

AN-1
= nhote: other matrices (unitary or nonunitary) may also de-correlate
the transformed sequence [Jain’s example 5.5 and 5.7]
= Minimizing MSE under basis restriction

= Basis restriction: Keep only a subset of m transform coefficients
and then perform inverse transform (1< m < N)

- Keep the coefficients w.r.t. the eigenvectors of the first m largest
eigenvalues

v=ATy w=Inv 2= Buw 1

u A v I w B z
— — o . SR
N XN 1=m=N NXN 0

Figure 5 16 KL transform basis restriction



discussions about KLT

= The good
= Minimum MSE for a “shortened” version
= De-correlating the transform coefficients
= The ugly
=« Data dependent
= Need a good estimate of the second-order statistics
= Increased computation complexity
data:  w1,...,zp € RY estimate R, O(MN)

o 3
linear transform: o(MN) compute eig R,:  ~ O(N?)

fast transform: O(Mlog N)

Is there a data-independent transform with similar performance?



DFT is the optimal transform when ...

= The signal x is periodic

x(m) =z(m+n), Ym

= The autocorrelation matrix R, is circulant

70 T ... Tp_1 |
T T ceoe To_
RmZE[CBCI?H]: n—1 O n—2
_7“1 T ... TQO

= The eigen vectors of R, are Fourier basis



energy compaction properties of DCT

s DCT is close to KLT when ...

= X is first-order stationary Markov  z,, = pz,,_1 + zn, 2n ~N(0,02), |p| < 1

— 2 — 2.2 — Aln
—  Elznz,_1] = po2, Elznz,_o] = p?c2, ... r(n) = p| |
1 »p p2 e
5 N 2 pn—l 1
R = R, and B2 R ! have the
a = TPPQ 1—-pa —a same eigen vectors
_ — 1 —a O :
—  B°R = “ “ = B2R;I~ Q.whenpis
0 —a 1-pa close to 1

= DCT basis vectors are eigenvectors of a symmetric tri-diagonal matrix Q.

l-a —a 0 ... ag = const.
—x 1l —«
Qe = w3u Tu(2N — 1) T
ay x |1, cos——, ..., cos
0 —a 1—« 2N 2N
— Qcau = A\uQuy verify with trigonometric identity:

cos(a+b)+cos(a-b)=2cos(a)cos(b)



DCT energy compaction

= DCT is close to KLT for
= highly-correlated first-order stationary Markov source

= DCT is a good replacement for KLT
= Close to optimal for highly correlated data

= Not depend on specific data
« Fast algorithm available



DCT/KLT example for vectors

fraction of
coefficient values in
the diagonal

X: columns of image pixels p* = 0.8786

L1,L2, ..., 00

J ' 0.0136
abs(DFT7p(x)) ; | RDFT(:I:). 0.1055
AR transform basis
RKLT(:I;) 1.0000
KLTp(x)

display scale: log(1+abs(g)), zero-mean



KL transform for images

= autocorrelation function 1D - 2D
z(1:n) Rz(n1,m2)
x(l:m, 1:n) Rz(m1, mo,n1,n5)
= KL basis images are the orthonormalized eigen-functions of R
= rewrite images into vector forms (N2x1)
= solve the eigen problem for N2xN2 matrix ~ O(N°)

= Or, make R, “separable”
Rg(my,mo,n1,n2) — r(my,mp) - r(ng,no)
= perform separate KLT on the rows and columns
= transform complexity O(N3)



igits ...
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The Desirables for Image Transforms

. Theory DFT DCT KLT

= Inverse transform available

= Energy conservation (Parsevell)

= Good for compacting energy

= Orthonormal, complete basis

= (sort of) shift- and rotation invariant
= Transform basis signal-independent

= Implementation
= Real-valued
= Separable
= Fast to compute w. butterfly-like structure

= Same implementation for forward and
inverse transform

RSN
ENRNEIENEN
ENENEN

SNANE N
SNENE N
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Walsh-Hadamard Transform
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slant transform
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Nassiri et. al, “Texture Feature Extraction using Slant-Hadamard Transform”



Variance ¢?

energy compaction comparison
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Figure 5.18 Distribution of variances of the transform coefficients (in decreasing
order) of a stationary Markov sequence with N =16, p= 0.95 (see Example 5.9).
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implementation note: block transform

= Similar to STFT (short-time Fourier transform)
= partition a NxN image into mxn sub-images
= save computation: O(N) instead of O(NlogN)
= lose long-range correlation




applications of transforms

enhancement

(non-universal) compression
feature extraction and representation
pattern recognition, e.g., eigen faces

dimensionality reduction
= analyze the principal ("dominating”) components



Image Compression

Measure compression quality with signal distortion:

, A
SNR({:IB) — ].{] lﬂglﬂ (?m) — 2{] lﬂglﬂ ( l.g;ﬂﬂ-l)

where P is average power and A is RMS amplitude.



Gabor filters

= Gaussian windowed Fourier Transform

= Make convolution kernels from product of Fourier
basis images and Gaussians

Frequency

Odd
(sin)

Even
(cos)




Example: Filter Responses

Filter
bank

from Forsyth & Ponce



outline

Recap of DFT and DCT
Unitary transforms

KLT

Other unitary transforms
Multi-resolution and wavelets
Applications




1807: Fourier upsets the French Academy....

f(t) A

=/\/\/+/\/\/+’\/\/

Fourier Series: Harmonic series, frequency changes, f, 2f,, 3f;, ...

sampling (dirac) FT

Frequency

Time Time

STFT

frequency
A

time



FT does not capture discontinuities well

But... 1898: Gibbs’ paper 1899: Gibbs’ correction

11 M

Orthogonality, convergence, complexity
\
&.\

!'?’ mff ,
7 /) ¢ b ‘_! _._' 1‘-.
: A5 >
.
A
-




1910: Alfred Haar discovers the Haar wavelet
“dual” to the Fourier construction

f(t)

Haar series:

» Scale changes S, 2S5, 45, 85, ...
» orthogonality

frequency
A

>
time



one step forward from dirac ...

= Split the frequency in half means we can downsample by 2 to
reconstruct upsample by 2.

= Filter to remove unwanted parts of the images and add

= Basic building block: Two-channel filter bank .

analysis processing synthesis Time
T2 fi
h |k
X ) X
070
H




orthogonal filter banks

~ (87

g v 4 g

B
R v 4 h

1. Start from the reconstructed signal

Trec = Ty tITw = Z Qkgn—2k + Z Brhpn—2k

kel kel
..+ go ho 0 0 0 0o ... a0
. gir hy 0 0 0 O ... || B
= ... g2 ho go hg 0O O ... a1 = X
.93 ha g1 h1 O O ... b1
. 94 ha g2 ho go ho ... ap

= Read off the basis functions

® = {prtrez = {v2k 2k+1}tkecz = {92k b2k ke



orthogonal filter banks

2. We want the expansion to be orthonormal o7 = ;
= The output of the analysis bank is
X = &'z = o
3. Then
= The rows of ®T are the basis functions 19-2&h-—2kirez
= The rows of ®T are the reversed versions of the filters

ap = (g._2k %) = (g—n*Tn)2k & a = Pz,
B = (h_opg,x) = (h_pn*zn)y & B = dfz

= The analysis filters are

gn = G-—n, hn - h—n



orthogonal filter banks

2. Since & is unitary, basis functions are orthonormal

(9.—2k,9) = O,
(h._op,h) = &,
<h-—2kag> - 0.
5. Final filter bank
gd—n { t g



orthogonal filter banks: Haar basis

Solve for the filter h explicitly.
1

gn = ﬁ (On 4+ dp—1) -

Given that h, must be of norm 1 and of same
the length as gn,

hn = (cosa)dn + (sina)d,,_1.
Computing the inner product (h._o;,g) = O:

1 ) The solution to the above is:
—Q(COSa +sina) = O.

V2 Sina = —COS« = a = Imr—%.

hop = ¥(x) For k = 0, a solution to hy is:

ﬂ l { hn = i(571_571—1)-
1 V2

o = ¥(22) f=d2x-1) The above pair and their even translates trans-

| : lates constitute an ONB for ¢2(Z) and are called

gL ‘ 1 { the Haar filter pair.

rp = P x) b =da-l) g =da-d) =)

1 U -1 -1 -1 a
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Goal: efficient representation of signals like

f(t) Scaling functions

time
_——+— Noise

IVAVANLY e
\Y% / Vo JU (B\)

Wavelets Lowpass filters and scaling functions reproduce polynomials

where: + |terate of Daubechies L=4 lowpass filter reproduces linear ramp
e Wavelet act as singularity detectors

« Scaling functions catch smooth parts .
NI g o P o1 /\ 1 scaling
* “Noise” is circularly symmetric \

s ] function
Note: Fourier gets all Gibbs-ed up! o5/ \\ |

o M= //\\k

-0.05& -
0

0.2F a

500 .
0ol , linear

300+ b ram p
200 >/ |

100 X

-100 \/ g

_200 I 1 I 1 I I
0 50 100 150 200 250 300 350 400 450

Scaling functions catch “trends” in signals



DWT

= Iterate only on the lowpass channel

f 4
— I




wavelet packet

= [terate on both the low pass and (selected)
high-pass channels




wavelet packet

= First stage: full decomposition




wavelet packet

= Second stage: pruning




wavelet packet: why it works

One of the grand challenges in
signal analysis and processing is in

understanding “blob”-like ‘
structures of the energy <>
distribution in the time-frequency d
space, and designing a
representation to reflect those.

v



] 0



= are we solving x=x?
= sort of: find matrices suchthat z = Iz = $d*x

« after finding those
= Decomposition X = d*p
= Reconstruction r = dX = OP*y

= in a nutshell
« if ® is square and nonsingular, ® is a basis and & is its dual basis
= if ® is unitary, that is, ® &* = I, ® is an orthonormal basis and
=
= if @ is rectangular and full rank, ® is a frame and & is its dual
frame
= if @ is rectangular and ® ®* =1, & is a tight frameand & = @



overview of multi-resolution techniques

Property Orthonormal Biorthogonal Tight General

Basis Basis Frame Frame
Expansion O ={pi}i, ¢ ={pi}} ¢ = {pi}], ¢ ={p:}*,
Set o ={a:} 4 @ ={gi}i",

p; € C™ p; € C™ p; € C™ p;, €eC*, m>n p, €C* 0, eC*, m>n
Self-Dual Yes No Yes No
Linearly Yes Yes No No
Independent
Orthogonality (ps,05) = 05— (i, Pj) = 6i—j None None
Relations
Expansion © =251 (pir ) T =351 (Pi, L) pi € =21 (pis ) x =230 (Pi, x)ps
Matrix P of size n X n P of size n X n P of size n x m P of size n X m
Representation @ unitary @ full rank rows of @ orthogonal $ full rank

T =T =1 T =1, 0= (¢T)"t o7 =1 T =1
Norm Yes No Yes No
Preservation z||* = > i I, ©i)|? » orthonormal bases (e.g. Fourier series, wavelet series)

. e biorthogonal bases
Successive Yes No e overcomplete systems or frames
Approximation &%) = £(k=1) 4 (x 0 )y R ¢ = @
! Po @1 1 €
Redundant No No -
e € = @o €0 = Po
Py (7)0 L2
oB BOB UTF




applications of wavelets

enhancement and denoising

compression and MR approximation

fingerprint representation with wavelet packets
bio-medical image classification

subdivision surfaces “Geri's Game”, “A Bug’s Life’
“Toy Story 2"

(4

-



fingerprint feature extraction

= MR system
= Introduces adaptivity

= Template matching
performed on different
space-frequency regions

= Builds a different
decomposition for each
class




fingerprint identification results

Identification Error Rate (%)

100
)
80
70
60
50
40

30 1

20

B Wavelet Correlation Filters

Standard C lation.Fill

|51 o | R0 | B o

6 7 8 9

10

11

12 13 14 15 16 17 18 19

O SCF
B WDCF

35.90(33.70(89.96 | 6.52
543 | 0 0 0

9.78
0

0
0

3.26 [66.30|15.22| 8.70 |121.74|33.70|14.13| O
0 [1522 O 0 |13.04| O 0

SCF Average IER = 18.41%

WDCF Average IER = 1.68%

NIST 24 fingerprint database

10 people (5 male & 5 female), 2 fingers
20 classes, 100 images/class




references for multiresolution

= Light reading
= Wavelets: Seeing the Forest -- and the Trees”, D. Mackenzie, Beyond Discovery,
December 2001.

= Overviews « D.Donoho, M.Vetterli, R.DeVore and |.Daubechies, Data
Compression and Harmonic Analysis, IEEE Tr. on IT, Oct.1998.
« M. Vetterli, Wavelets, approximation and compression, IEEE
Signal Processing Magazine, Sept. 2001

= Books
= “Wavelets and Subband Coding”, M. Vetterli and J. Kovacevic, Prentice Hall, 1995.

= A Wavelet Tour of Signal Processing”, S. Mallat, Academic Press, 1999.
= Ten Lectures on Wavelets”, I. Daubechies, SIAM, 1992.
“Wavelets and Filter Banks”, G. Strang and T. Nguyen, Wells. Cambr. Press, 1996.

WAVELETS

SUBBAND CODING

THE WORLD OF
7 FOURIER AND WAVELETS

%,
4‘{// X
& Yy
- Lo
Y ‘avy

, >

ELEN E6860 Advanced Digital Signal Processing




summary

= unitary transforms
= theory revisited
= the quest for optimal transform

= example transforms
DFT, DCT, KLT, Hadamard, Slant, Haar, ...

= multi-resolution analysis and wavelets
= applications
= compression

= feature extraction and representation
= image matching (digits, faces, fingerprints)



Timeline

Wavelets have had an unusual scientific history, marked by many independent discoveries and rediscoveries.
The most rapid progress has come since the early 1980s, when a cohierent mathematical theory of wavelets finally emerged.

1807 1930

Jean Baptiste Joseph Fourier John Littlewood and R.A.E.C. 1984

claims that any periodic function, Paley, of Cambridge Universily, 1976 » Joint paper by Morlet

or wave, can be expressed as an show thal local information about IBM physicists Claude and Grossmann brings
infinite sum of sine and cosine awave, such as the liming of a Galand and Daniel the word “wavelet” into
waves of various frequencies. pulse of energy, can be retrieved Fachanliliscoverubband the mathematical lexicon
Because of serious doubts over by grouping the lerms of ils coding. a way of encoding for the first time.

the correctness of his arguments, Fourier series into “octaves.” digital transmissions for

his paper is not published until the telephone.

15 years later.

1981

Petroleum engineer Jean Morlet of
Elf-Aquitaine finds a way to decom-
pose seismic signals into what he
calls “wavelets of constant shape.”
He turns to quantum physicist Alex
Grossmann for help in proving that
the method works.

1909 1946

Alfred Haar, a Hungarian Dennis (Denes) Gabor, a
mathematician, discovers a British-Hungarian physicist
“hasis” of functions that are who invented holography,
now recognized as the first decomposes signals into
wavelels. They consist of a “time-frequency packets”
short positive pulse followed or “Gabor chirps.”

by a short negative pulse.

10 yrs

1995

Pixar Studios releases the movie
Toy Story, the first fully computer-
animated cartoon. In the sequel,
Toy Story 2, some shapes are
rendered by subdivision surfaces,
a technigue mathematically
related to wavelets.

1086 1990 .
Stéphane Mallat, then at the David Donoho and lain
University of Pennsylvania, shows Jnlynstope, il SHEDT
that the Haar basis, the Littlewaod- WY, TRe BRECEE
Paley ottaves, the Gahor chirps, to “denoise” images,

and the subband filters of Galand making the_m_ EVTED ERETED
and Esteban are all related to than the originals.
wavelet-hased algorithms.

1999

1985

Yves Meyer of the
University of Paris
discovers the first
smooth orthogonal
wavelets.

—o ]_yr

1987

Ingrid Daubechies constructs
the first smooth orthogonal
wavelets with compact support.
Her wavelets turn the theory
into a practical tool that can be
easily programmed and used
hy any scientist with a mini-
mum of mathematical training.

1992

The FEI chooses a wavelet
method developed by Tom
Hopper of the FBI's Criminal
Justice Information Services
Division and Jonathan Bradley
and Chris Brislawn from Los
Alamos National Lahoratory,
to compress its enormous
database of fingerprints.

The International Standards
Organization approves a new
standard for digital picture
compression, called JPEG-2000.
The new standard uses wavelets
to compress image files by
1:200 ratios with no visible loss
in image quality. Web browsers
are expected to support the new
standard by 2001.



