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Abstract

One of the ultiniate challenges of comnputer vision is
iJn video semiianitic understanding. Afany efforts at
dteecting events in video hmae f)cutsed on structured
sequences sulch as sports or news broadcasts.
Howvever even in seemninglv freeformi mnedlia such as
feature films, there exists inherent structuare and
established production codles. Over the last cenitutry,
film theorists have developed the principles of
continuityt editing. On1e teniet of continuity eclitinig is
know.rn as miatch framing: in order for a shot boundary
to appear seamless, the viewer's focus qf attentionl
Shouldlont have to mnove verv far froin one shot to the
le'xt. FilmmaAeris wvill generally adhere to the
continuitv' editing gUuidehines in order for au,diences to
mnaintain their suspension of disbelief Often tilm1es,
however, prudent violations of continuity can jar the
view.er, for example dclrinig action scenes or nioments
of high intensity. By detecting v iolations of the
continuIit' ecditinig principles, it is pos.sible to locate
portions of a filin that the filmmnaker is interested in
portrayin1g as dif,ferent from the rest ofthefilin.

11e have developed a niethod for automnatically
dt(h,ecting violations o?fihe mnalchframing principle that
cfuses film thleory, p,svchophy1VSical iiiodleliiig, iniage
morphologv alid patterni recognition. First, shot
detection is pelrformied on1 the entire film. Next, we
conipute the salienicv miiap on1 a frame before and after
t/he shot botIundarv.v We then tr-eat each saliency nitap as
a cdistributtioni, and estiiiiate a 3-comtiponient Gausssian
.1 fixture 1./c1el of the salient peaks. Finally, by
comparina d-isti iblutionis wve are able to estiniate how
active the iei erm's eve wvill need to befrom one shot to
the next. Experiunents den)Jionstrate a correlation?
betiiween miiatch framie violations and plot in a small
corpus Q(ffiull-eihgth iovie,s.

1. Introduction
One of the lmlost imiiportant aspects wlhen dealing with

thle manipulation of video is the extraction of
ilnformiation that would facilitate digital exploitation
suclh as indexing/retriev al, summarization,
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colmipression and transcodinig. Computer Vision looks
for structural aspects of an image in order to
incorporate an understandinig on the works of the
human visual system.
However, in recent years, m11ost of the existing

literature on video analysis deals with hiiglyh
standardized video sequences such as sports or news
broadcasts [4,13,15]. This is mostly due to the
immediate commuiercial needs of the above-mentioned
formats and also because their structure provides an
intuitive guide on the desired processing steps.
So far, there is a small specimen of work done onl

fill-length feature movies [5.8]. most of wlhiclh is only
in a very restricted framework [13] e.g. trailers.
portions of the movie. This is due to their extensi've
computational and storage requirements.
In this paper we work with full movies and

incorporate the knowledge from film theor,y in order to
extract features that represent the underlying structure
of narrative filmmnakinig as presented in the remaining
part of this section.
Since the Russian fonnalists beganimeeting in film

clubs at the tLrn of the 20' century, film theorists have
attempted to codify the principles of audiovisual
storytelling. In the 1920s. Lev Kuleslov [7.11]
demonstrated that editing, the juxtaposition of shots in
time, could create meaning in two othenrise disparate
shots. Over time, the rules of continuitv ecliting
evolved. Continuity editing are the guidelines with
wliich a filmimaker can place thie camnera and the editor
can splice two shots togetlher in order to mask the
effect of the camera. There are six important rLles [1]
that are paramount in acliieving the desired result: The
180-degree rule, the 30-degree rule, cutting-on-action.
match framiiing. matclhing eve lines and scnrpt
continuity. By adlhering to continuity, a filinuaker cani
maintain suspension of disbelief - the viewer will feel
that they are watchinig reality, wlhen in fact wlhat they
are witnessing is an extelnded stream of carefully
ordered shots. In this paper, we focus on the nile of
match framiing.
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Figure 1: A match frame, oii the boiundary between shots 54-
55 in Killinig Zoe. The celnter of focus (the actors' eyes) is in

the same location from shot 54 to shot 55.

A shot boundary is a drastic change in the visual
content of the film. If a spectator witnesses a jarring
cut. the fact that they are watching a film will instantly
call attention to itself. The principle of match fram/nintg
Ill serves to minimize this effect, as seen in Fig. 1. It
states that a fluid slhot boundary will take place if the
center of attention in the first shot will be at or near the
center of attention in the second frane. When a human
is speaking in the frame. the viewer will focus their
attention on the speaker's eyes. Note that the salient
focal point can move during the course of a single shot.
Filmmakers often clhoose to violate continuity in

order to create a brash visual effect. Violations of the
match framing principle, for example, can engage the
viewer to be a more active participant in the film, as
their focus of attention will need to shift frequently.
This is appropriate, for example during action
sequences. or periods of harsh and intense emotions.
Automatically detecting match-framinig violations will
lead to the uncovering of these types of sequences
within a produced motion picture. which would be
uLseful for automatic summarization.
The remainder of this paper will proceed as follows.

First, we detail our method for detecting match
framing. We present a qualitative analysis of our
mnethod in Section 4. 'and concluding remarks in
Section 5.

2. Automatic Detection of Match Framing
As mentioned above, continuitv editing defines the

principles of masking edits. We defined a match frame
as the process when the center of attention betveen
tWo adjacent shots is in the same area of the frame. In
the remaining section. we will detail our system for
automatically detecting match frames and violations of
the miatclh framting principle.

2.1 System Ovell-iew
Our system for detecting match frames is as seen in

Fig. 2. First, we perform shot detection on the entire
film. Second. we create a saliency map on slhots tvo
frames before and two frames after the shot boundary.
By treating each saliency map as a distribtttion, we can
estimate a GMM on the distribution. Finally, we can
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Figure 2: System Overview

obtain an estimate of the distance the viewers' eve
must travel on the cut by comparing distributions.
Each component of the svstem will IIow be described.

2.2 Shot Boundary Detection
We detect slhot boundaries using the edge iietlhod [9].

Although edges are computationallv intensive to
compute on an entire film, we believe that this metlhod
is appropriate because it is robust to real-world shots.
which often do not vary mucch in color histogram. and
to slow transitions.

2.2.1 Pre-processing
First the individual frames of the film are pre-

processed to remove the black border on the top and
bottom of the frames that are inserted because of
letterboxing as seen in Fig. 3. This is because the
borders introduce unintended edges and color gradients
that "confuse" the shot and salience detectors. We can
find the frame borders by suming the intensities of
N=40 randomly selected frames. For each row of this
sum, we compute the number of pixels that are in the
top 1.5% of the intensity range (e.g. 256*40. wlhere
black=l, white=256). The first row with lhalf the pixels
above tlhreslhold is the top border, and the next row
with half the pixels above the threslhold is the bottom
border. The above is shown in Eq. 1.

N

S(x, V) = E IO(x, vt)

D)(X,y) = S(x,,)>th

nlin s2t E d)(x, y) > ! max
(1)

,S(x,y) is the superimposed image of the A'==40
random frames, 0(x.y) is an indicator matrix and v.y=
is the nutnber of columns in the frame. The tlireshold

29

.. 1. i. ... I... .--- ...... t'. -, -... ..

I.

f.
I

1, k, -I1-1

II



Figure 3: Framiie border compu.tation. 1O
superimposed ranidomi frames fromi The Tivnian Show.

tli is 4*40, whiere 4 is approximatelv 1.5% of the
grayscale. The samie procedure can be imnplemnented to
extrct the right left borders if tiev exist.

2.2.2 Shot Boundary Detection
Our shiot boundary detection system follows [9].

Edges are computed for twi,o adjacent frames i, j using
the Cannv miethiod [21. Framiej is dilated by a 7-point
smnicturing element, and inverted. We compute ECRo',
the numiiber of edges leavinig the framie, as the sum of
the logical anid of the edges of frame i and the
dilated/iniverted edges of frame j. normalized by the
niumiber of edge pixels in fram-e i. ECR1" is likewise
computed as the logical anid of framiefjs edges and the
dilated/iniverted edges of frame i, normalized by the
number of edge pixels in frame]. The likelihood that
thfis is a shot boundarv is taken as ,niin(ECRin, ECR01t9.
The above is seen in Eq. 2-4.

Fi^r 3:~Fra ebodrcnptin.1

-v)rillll)osenrIomfrmsfx)nB (2)

Eli (XhIv

ECRtEIhis v4we 4 Eis ximtl 13

( i(ECR' .. EC'R0 )(4)

Peak picking proved to be the most difficult part of
the algoritlhm. In order to remove false minina and
siooth out fluctuations within sots withm a lot of
movement, we subtrct the mean of each point around
an L=15 point nonnalized Hajisming window,wbk7 .

This corresponds to approxinately 0.5 sec of screen
tliiie. Before sulbtractiing the mean,we add a small
constant,e to it (our eopirical study led to a value oft

0. 12) in order to remove local miiaximoa originatindg
from noise that lie above the average, Eq. 5. The

resultant curve is half-wave rectified, and only peaks
whose original shot boundary likelihood was greater
than a global threslhold of 0.4 are kept.

max(0, P[ni] -
11+LL/ 2

-EZ[k]w[k] + 4)k=II-LL/ 2
(5)

In our evaluation, we properly detected all 889 shot
boundaries in Killing Zoe, however we also had 87
false positives. The false positives generally arise from
rapid camera movemiient. False positives whiclh would
have arisen from camera panming are neutralized by
automatically aligning frames before dilation. As our
final results depend only on global values as opposed
to individual shots, a nonzero error in shot boundary
computation can be tolerated.
For each shot boundary, we need to compare a frame

from the end of the previous shot and the beginning of
the next shot in order to detennine if frlame matcling
has been met. We choose two frames before and two
frames after the slhot boundary, because the DVD
MPEG-2 stream sometimes has interlacing errors
around shot boundaries. The saliency map is described
in the next section.

2.2.3 Saliency Map
Now that we have the shot boundary estimations. we

can compare frames from both sides of the shot
boundaries. In order to highight perceptually salient
features of the frames in question, we create a saliency
map. The saliency map was developed by Itti and
Koch [6]. anid fuses saliency calculations in color.
intensity and orientation at various scales. The process
of creating a saliency map is illustrated in Figure 5.
The operating theory behind the saliency map is to

extract the foreground from the background by down-
samnpling the region of the image. then Up sampling it
to the original resolution in order to compare the image
with its down-sampled version. The idea behind this is
that the fine details will be left out in the lower levels
of the pyramid, and if they exist. differences betveen
foreground and background can be considered
"salient."
The first area of processing is the color/intensity. We

take the original full-size movie frames and create
color maps using broadly tuned channels, Eq. 6-10:

I= (r+g+b)/3
R = r - (g+b)/2
G = g - (r+b)/2
B = b - (r+g)/2

Y = (r+g)/2 - Ir-gj/2 - b

(6)
(7)
(8)
(9)

(10)

For each color/intensity map, we create a Gaussian
pyramid by blurring each map with a Gaussian filter
and then down-sampling by a factor of tvo. We look
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Figurec 4. Extraction of Saliency Maps

for salient features using center-surroundpaps.
Cen-ter-surrounid miaps sinmulate color gradient cells in
thie visual cortex. whiichi look for clashes between
colors that are perceptuallv different (red/gr-een,
bluie/vellow. light/dark). We create 6 center-surround
miaps forinitensity and 12 forcoloruEq. 11-13:

I(c.s) = II(c)OI(s)l
RG(c.s) = I(R(c)-G(c))E(G(s)-R(s))J
BY(c.s) = I(B(c)-Y(c))G(B(s)-Y(s))

(I 1)
(12)
(13)

Where 0 defines a point-to-point difference and c, s
are scales suclh that c={2,3,4}. 6=(3,4, s=c+o. Each
map is nonnalized by multiplying it with (A<f-m)2 where
.I = global max of the map, and mn be the mnean of the
map's local maxima without the global max.

In order to create orientation maps, we first create a
Gabor pvramid. by utilizing 2-D Gabor filters [3]. In
order to create center-surround maps, we use Eq. 14:

O(cs,0) = JO(c.O3)®O(s.0)J (14)

Where c and s are defined as above, and 0={O0. 450,
9'). l35°} is the orientation of the filter. Additionally,
each orientation map is nonnalized as above. Since we
have 6 maps per orientation and 4 orientations, this
gives us 24 maps for orientation.
We aggregate all of the maps for color, intensity and

orientation respectively by creating three "conspicuity
maps." These are simply re-sampling each normalized
center-surround map to pyramid level 4 and summing.
Adding together all 3 conspicuity maps creates the
final saliency map. Fig. 4.
The saliency map provides an indication of where the

viewer's focus of attention is expected to be. In
general. tlhis occurs at places where the foreground
differs from the background in color or intensity, and
in areas of high textual detail.

The filmmaker's job is to guide the viewer to what is
important in a given frame. Thus it is assumed that the
filmnmaker will compose each shot in such a way that
the most perceptually salient regions of the frame are
where the filmmakers would want the viewers'
attention to focus. Thus, the saliency maps provide a
good approximation to the intentions in the
composition of the shot.
The last stage is to compute the distance between

frames on both sides of the shot boundaries.

2.2.4 Estimating Shot Dissonance
Once we have the saliency map, we are able to

estimate the dissonance (distance) between frames of
the prior and current shot. We begin by computing the
saliency maps for the frames two ahead and behiind a
shot boundary estimate.
Invariably, there are between one and four distinct

regions of importance in the saliency map. In general.
one or two of these are "true" peaks in salience, while
the remaining peaks are "false positives." The natural
thing to do is to model the saliency maps as Gaussian
Mixture Models, and compare the frames by
comparing the distributions of the two models.
We estimate a 3-component GMM for each of the

two frames using EM. From there. we choose the two
higlhest weighted Gaussians from each frame. and
compute the Euclidean distances between the two
components in each framue. Supposing we have two
means p,e, tL,2 from the previous saliency map and nl
p2 of the current saliency map, the dissonance
estimate of shot i is, Eq. 15-17:

(15)d, = J,ul, - u,7nI + l1A,2 - A,
d, = JP12 - Aln] + LAu11 - Aln'

min(d1.d2)
(16)
(17)

A large number means a high degree of dissonance
between shots. A small number means it is likely that
we have a matched frame.

2.2.5 Post-Processing
Film directors can create a feeling of intensity by

tension-relaxation, a teclnique of altemating between
two extremes of an audiovisual featLre. Within the
high-inten-sity segments, it makes sense that match
framing violations would not be continuous, as
excitement can be created by varying the distance
between shots within a scene. This suggests that
patterns can be found by lowpass filtering the shot
assonance/dissonance curve.
Figure 5A tracks the shot assonance/dissonance in

Killing Zoe. The peaks that rise above the noise floor
correspond to violations of match framing. Figure 5B
shows this curve witlh the mean subtracted, smoothed
with a 21-point moving average filter, and half-wave
rectified. This is the MFVC - match frame violation
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Figure 5: Shot Assonance/Dissonance (A, top) and Match Frame Violation Cturve (B, bottom)

curve. Note the correspondences between scenes and
their predicted shot assonance/dissonance values.
3. Qualitative Analysis

In order to assess the effectiveness of this algorithmn.
we must perfonr qualitative analysis. This method
was never meant to discover all intense scenes in a
film. but instead to work in tanidem with a battery of
other tests. Thus a quantitative analysis of this method
w ill only be able to be performed within the confines
of a featLre selection experiment.
The film Killing Zoe has five main sections:
I) The arrival: Zed anives in Paris. meets Zoe.

Thev fall in love (lA. shots 1-132). Eric arrives
and throws Zoe out of the hotel room (1B, shots
132-164).

2) T'he plan: Zed and Eric meet up with the gang
(2A. shots 165-206). They plan the big bank
heist (2B. shots 207-242), wllich seems like a
good idea except that the job is tomorrow.

3) The part: The gang goes out to party, which is
crazy (3A, shots 243-330) to overwhelming (3B,
shots 330-377). to a sickening haze (3C. shots
378-409).

4) The heist: Eric. Zed and the others attempt to
rob a bank. At first, they are in control (4A,
shots 410-575). but then evervthing goes wrong
(4B, shots 576-790).

5) 7'lTe resolution: Zed, Zoe and Eric have a final
confrontation (5A. shots 791-878). Zoe saves
Zed and they leave together (5B. shots 878-
889).

It would make sense that in section IA. 2A and 4A
and 5B would have a high shot assonance. Theory
would dictate that there would be a high incidence of
match frame violations in lB. 3A/B. 4B and 5A.
In the "boy-meets-girl" scene in 1A, the MIFVC is

near zero. When Eric arrives and throws her out in lB,
the MFVC will peak to show the heightened action.
The MFVC is high during 2A? which matches the

enthusiasm that Zed has when meeting the gang of
thieves. In 2B, the MVC starts at zero, possibly to
symbolize the "coolness" involved in the plalning of
the lheist, but then it rises when it is evident that they
are in over their heads. We have alternating highs and
lows during the party, which closely mirrors its
tumultuous nature.
In 4A, the bank robbers are in control - everythinlg is

goinlg smootl-ly. Thus, we have a lot of match frames.
There are a few peaks present in the
assonance/dissonance curve that are not present in the
MFVC. These are either tnme peaks that are flattened
by the smoothinig, or outliers arising from errors in
computation.
The heist goes bad in 4B, when hostages fight back, a

security guard is firebombed and it is evident that Eric
the ringleader is insane. Thus we have strong peaks
during 4B. During the final coniflict in 5A. we have
erratic match framning. which shows up as a lower
peak. When Zed and Zoe finally ride off into Paris, we
have match framing.
In Killing Zoe, match framing is used as an

audiovisual feature that reinforces the stor,. The
viewers' eyes stay fixed across shot boundaries during
scenes where everything is happy or "in control." wvhile
the gaze must move quickly to follow the action when
things are out of control. Note that there are some
violent/intense scenes, such as 4A, which have a low
MFVC because there are some violent scenes where

]l i, ~,,I .
Figure 6: MFVC for theLf.6 s

Figure 6: MFVC for the first 67(0 shiots ofAflinotitvlRepot-t
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everything is still under control. Like any filmiiiaking
techlique. match framing serves to reinforce the
storvline, and its meaning varies from film to film. In
.tflnoritv Report. for examiiple. peaks/troughs in the
MFVC mav mean somethinig else enitirely, Fig. 6.
More results are given in Fig. 7-11 for examiiples of

match frame violation/non-violation.
4. Conclusions and Future Work
There are thlree limitations that are apparent with this

approach to match frame detection. First anid most
importantly, salience maps as described in [6] do not
tlake motion salience into account. Motion is an
imiiportant perceptual cue in detennining focus of
attecntion. Rapantzikos anid Tsapatsoulis [12] are
currenitly attemipting to infuse motion inlto saliency
imiaps. Their efforts. as of vet, have not borne fruit and
the authors' own attempts are undergoing prelinminary
study as part of a larger project. In [12] the authors do
lhowever include maps that detect center-surround for
lLuman skin. For the purpose of visual attention in
film, this is counter-productive as filmmakers put a
great deal of effort into ensurinig that their intenided
ceniter of attention is alwavs visually salient in a scene.
The next problem we encounter is in the rigidity of

the 3-component GMM. as salient points are not
always accurately modeled by a fixed number of
components. In future work. we will attempt to model
the saliency map as a distribution with a variable
numiiber of componenits usinig an algorithm such as
quLasi-GMM [10]. The downside to this approach is
that it leads to more comiiplicated distance metrics.

Finally, the limitations are with the different stages of
the svstem itself. False positives in shot detectioni will
not be detrimental to the algorithm. as framnes of the
samiie slhot will tend to hav!e simiilar saliency maps,
lhowever false negatives can cause false alanns in
detection of match frame violations, as the centers of
attenition often imove witluin a slhot. The next stage of
the system. the saliency map. is not guaranteed to agree
wvith the viewer's subjective focus. This can again lead
to false positives/negativ7es. Finally, evaluation milust be
donie with different distance metrcs, such as the Eartlh-
miover's distance [ 14].
We believe that wvitlh the aforementionied deficiencies

rectified. the match frame detection system will miake a
powerful feature for detection of imiiportant moments iin
motion pictures.
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Figure 7: A Match Frame (shots 32-33). where
everything is "Supercool"

Figure 8: An approximate match (shots 161-162) in
a friendly but antagonistic scene

Figure 10: Match framing in Alflinoritv Report. where
Tom Cmnise is hulnting down a killer

Figure 11: Match frame violation while Tom Cruise
is being chased in MIinoritv Report

Figure 9: A match violation during the bank robbery
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