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Abstract

In this paper, we study the global robust stability of neural networks with time varying delays using the Lyapunov functional
method and matrix inequality technique. Several sufficient conditions are presented to show the existence of equilibrium and global
robust stability of neural networks, which is easy to apply. Then we give a simulation to justify the obtained results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, dynamical behaviors including stability, exponential stability, robust stability, periodic bifurcation
and chaos of neural networks [1–35] have been a hot topic. Many researchers focus their attentions on these. A lot
of works and efforts about dynamical characteristics have been made. Stability is a basic knowledge for dynamical
systems and the stability of neural networks have been studied by many papers [1–16,19,20,23–25,30,31]. There are
definitions such as stability, asymptotical stability, exponential stability, robust stability and so on. It is a complex
knowledge, but the phenomenon demonstrated in the dynamical systems is useful. There are many things for us to do
and we shall continue to study the stability of dynamical systems.

Recently, there has been extensive interest in studying the effect of time delay on the neural networks [20,12,9,6,5].
It is well known that time delay is ubiquitous in most physical, chemical, biological, neural, and other natural system
due to finite propagation speeds of signals, finite processing times in synapses, and finite reaction times. Therefore,
dynamical analysis of time-delay systems is an important topic in many fields [31,18,25–29,21,4,16,10,15,7,8,11,14].

In neural networks, there are some uncertainties. We cannot have a fixed neural network, it can be perturbed by
many factors. According to these, estimation errors are presented. We may study the deviations of coefficients of
neural networks which is more realistic. So we consider global robust stability of neural networks. There are some
existing works about robust stability [13,30,23,24,20,5–7]. In [24], global robust stability of a delayed interval Hopfield
neural network is investigated with respect to the bounded and strictly increasing activation functions. Recently, in
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[23,20], several criteria are presented for global robust stability of neural networks with and without delay such as LMI
approach and inequality method. In [13], Cao and Wang study the global asymptotic and robust stability of recurrent
neural networks with time delays by using the norm method which are easy to derive, and our paper is an improved
and extended work compared to this.

In this paper, we will study the existence of equilibrium point and global robust stability of equilibrium point.
The results we obtained improve and extend earlier works. Here, we just want to give some good conditions to ensure
the existence of equilibrium point and global robust stability of equilibrium point and these will lead to a clear view of
delayed neural network model which may finally lead us to design the real neural network.

The organization of this paper is as follows: in Section 2, we give model formulation and preliminaries for our main
results. We proposed a model and some provisions for further study. In Section 3, we give our main results. Several
sufficient conditions are presented for the existence of equilibrium point and global robust stability of neural networks.
In Section 4, numerical simulations aimed at justifying the theoretical analysis will be reported. In Section 5, we give
conclusions.

2. Model formulation and preliminaries

In this paper, we consider the following delayed neural network model:

ẋ(t) = −Cx(t) + Af (x(t)) + Bf (x(t − �(t))) + u (1)

or

ẋi (t) = −cixi(t) +
n∑

j=1

aij fj (xj (t)) +
n∑

j=1

bij fj (xj (t − �(t))) + ui, i = 1, 2, . . . , n, (2)

where n denotes the number of units in a neural network, �(t) is time varying delay, x(t)= (x1(t), x2(t), . . . , xn(t))
T ∈

Rn is the state vector associated with the neurons, u = (u1, u2, . . . , un)
T ∈ Rn is a constant external input vector,

f (x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))
T ∈ Rn corresponds to the activation functions of neurons, f (x(t −

�(t)))=(f1(x1(t−�(t))), f2(x2(t−�(t))), . . . , fn(xn(t−�(t))))T ∈ Rn, C=diag(c1, c2, . . . , cn) > 0 (positive definite
diagonal matrix), A = (aij )n×n and B = (bij )n×n are the connection weight matrix and the delayed connection weight
matrix, respectively.

In this paper, the activation functions and time varying delay are assumed to satisfy the following properties:
A1: fi(xi)(i = 1, 2, . . . , n) is bounded and monotonically nondecreasing on R;
A2: The activation function fi(xi)(i = 1, 2, . . . , n) is Lipschitz continues, that is, there exist constant �i > 0 such

that

|fi(�1) − fi(�2)|��i |�1 − �2|, ∀�1, �2 ∈ R; (3)

A3: �(t) is a bounded differential function of time t, and the following condition satisfied:

0� �̇(t)�h < 1.

It is known that bounded activation functions always guarantee the existence of an equilibrium point for system
(1). In the real neural networks, the values of weight coefficients depend on the resistance and capacitance which are
subject to the uncertainties. This may lead to some deviations in the values of ci , aij and bij . So it is useful for us to
study the global robust stability of neural network through such parameter deviations [13]. Since these deviations are
bounded in practice, the value of ci , aij and bij can be stated as follows:⎧⎪⎨

⎪⎩
CI = {C = diag(ci) : C�C�C, i.e., ci �ci �ci, i = 1, 2, . . . , n},
AI = {A = (aij )n×n : A�A�A, i.e., aij �aij �aij , i = 1, 2, . . . , n},
BI = {B = (bij )n×n : B �B �B, i.e., bij �bij �bij , i = 1, 2, . . . , n}.

(4)

We assume that the model (1) has an equilibrium x∗ = (x∗
1 , x∗

2 , . . . , x∗
n) for a given u. To simplify the proofs, we will

shift the equilibrium point x∗ of (1) to the origin by using the following transformation:

y(t) = x(t) − x∗, y(t − �(t)) = x(t − �(t)) − x∗.
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Then the model (1) can be transformed into the following form:

ẏ(t) = −Cy(t) + Ag(y(t)) + Bg(y(t − �(t))), (5)

namely,

ẏi (t) = −ciyi(t) +
n∑

j=1

aij gj (yj (t)) +
n∑

j=1

bij gj (yj (t − �(t))), i = 1, 2, . . . , n, (6)

where g(y(t)) = (g1(y1(t)), g2(y2(t)), . . . , gn(yn(t)))
T ∈ Rn with gi(yi(t)) = fi(yi(t) + x∗

i ) − fi(x
∗
i ) and g(0) = 0.

Moreover, from (3), we know that

|gi(yi)|��i |yi | ∀yi ∈ R, i = 1, 2, . . . , n. (7)

Let ‖ • ‖ denote the Euclidean norm in the Euclidean space Rn. If W is a symmetric matrix with �max(W) and �min(W)

as its largest and smallest eigenvalue, respectively. Then its norm is defined by

‖W‖2 = sup{‖Wx‖ : ‖x‖ = 1} =
√

�max(WTW).

For A∗, A∗, B∗, B∗ ∈ Rn × n, where A∗, B∗ are nonnegative matrices, we use the notations [A∗ ± A∗], [B∗ ± B∗]
to denote the interval matrices [A∗ − A∗, A∗ + A∗], [B∗ − B∗, B∗ + B∗], respectively. In fact, any interval matrices
[A, A], [B, B] have a unique representation of the form [A∗ −A∗, A∗ +A∗], [B∗ −B∗, B∗ +B∗], respectively, where
A∗ = (A+A)/2, A∗ = (A−A)/2, B∗ = (B +B)/2, B∗ = (B −B)/2. Thus, we denote A=A∗ +�A, B =B∗ +�B,
where �A ∈ [−A∗, A∗], �B ∈ [−B∗, B∗].

Definition. The neural network model given by (1) or (2) with the parameter ranges defined by (4) is globally robust
stable if the unique equilibrium point x∗ = (x∗

1 , x∗
2 , . . . , x∗

n) of the model is globally asymptotically stable for all
C ∈ CI , A ∈ AI , B ∈ BI .

Note that the robust stability actually becomes the classical Lyapunov stability if C =C =C, A=A=A, B =B =B.
To obtain our main results, we need the following three elementary lemmas:

Lemma 1. For any vectors x, y ∈ Rn and positive definite matrix G ∈ Rn×n, the following matrix inequality holds:

2xTy�xTGx + yTG−1y.

Lemma 2 (Cao and Wang [13]). If V, W ∈ Rn×n are two matrices with property that |V |=(|vij |n×n)�W =(wij )n×n,
i.e., |vij |�wij , then ‖V ‖2 �‖W‖2.

Lemma 3 (Cao and Wang [13]). For ∀A ∈ [A, A], B ∈ [B, B], we have

‖A‖2 �‖A∗‖2 + ‖A∗‖2, ‖B‖2 �‖B∗‖2 + ‖B∗‖2.

3. Global robust stability criteria

In this section, new criteria are presented for the global robust stability of the equilibrium point of the neural network
defined by (5). Its proof is based on a new Lyapunov functional method and matrix inequalities approach.

Theorem 1. Under the assumptions A1–A3, the equilibrium point of model (5) is globally robust stable if there are
positive definite diagonal matrix P = diag(p1, p2, . . . , pn) and positive definite matrix H = (hij )n×n such that

2PC�−1 − F̄ − ‖Â‖2I − H − 1

1 − h
‖P ‖2‖H−1‖(‖B∗‖2 + ‖B∗‖2)

2I > 0, (8)
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where I is the identity matrix, B∗ = (B +B)/2, B∗ = (B −B)/2, �= diag(�1, �2, . . . , �n), F̄ = diag(2p1ā11, 2p2ā22,

. . . , 2pnānn), C = diag(c1, c2, . . . , cn) and

Â =
{

0, i = j,

max(|piāij + pj āji |, |piaij + pjaji |)�âij , i �= j.
(9)

Proof. We shall prove this theorem in two steps. First, we prove the uniqueness of the equilibrium point, and then we
establish its global robust stability.

Step 1: We will prove the uniqueness of the equilibrium point using the method of contradiction. Consider the
equilibrium equation of (5)

Cy∗ − Ag(y∗) − Bg(y∗) = 0. (10)

It is evident to see that if g(y∗) = 0, then y∗ = 0. Now let g(y∗) �= 0. Multiplying both sides of (10) by 2gT(y∗)P ,
yields

2gT(y∗)PCy∗ − 2gT(y∗)PAg(y∗) − 2gT(y∗)PBg(y∗) = 0. (11)

Eq. (11) can be rewritten as

2gT(y∗)PCy∗ − gT(y∗)PAg(y∗) − gT(y∗)ATPg(y∗) − 2gT(y∗)PBg(y∗) = 0. (12)

From (7) and the assumptions A1 and A2, we get

yigi(yi)�0 ∀yi ∈ R, i = 1, 2, . . . , n (13)

and

g2
i (yi)��iyigi(yi) ∀yi ∈ R, i = 1, 2, . . . , n. (14)

According to (13) and (14), we can obtain the following inequality

gT(y∗)PCy∗ =
n∑

i=1

gi(y
∗
i )piciy

∗
i

�
n∑

i=1

pici

�i

g2
i (y

∗
i )

�
n∑

i=1

pici

�i

g2
i (y

∗
i )

= gT(y∗)PC�−1g(y∗), (15)

where � = diag(�1, �2, . . . , �n).
We know that

PA + ATP =
{

2piaii , i = j,

piaij + pjaji�ãij , i �= j.
(16)

Let

F = diag(2p1a11, 2p2a22, . . . , 2pnann), (17)

F̄ = diag(2p1ā11, 2p2ā22, . . . , 2pnānn), (18)
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Ã =
{

0, i = j,

piaij + pjaji�ãij , i �= j,
(19)

Â =
{

0, i = j,

max(|piāij + pj āji |, |piaij + pjaji |)�âij , i �= j.
(20)

It is easy to see that

|̃aij |� âij , i �= j . (21)

From (21), according to Lemma 2, we obtain that

‖Ã‖2 �‖Â‖2, (22)

then we obtain

PA + ATP

= F + Ã

= F + ‖Ã‖2I − (‖Ã‖2I − Ã)

= F + ‖Â‖2I − (‖Â‖2 − ‖Ã‖2)I − (‖Ã‖2I − Ã)

= F̄ − (F̄ − F) + ‖Â‖2I − (‖Â‖2 − ‖Ã‖2)I − (‖Ã‖2I − Ã)

� F̄ + ‖Â‖2I . (23)

According to Lemma 1, we have

2gT(y∗)PBg(y∗)�gT(y∗)Hg(y∗) + gT(y∗)PBH−1BTPg(y∗)

�gT(y∗)Hg(y∗) + 1

1 − h
gT(y∗)PBH−1BTPg(y∗). (24)

Also, with Lemma 3, we obtain

PBH−1BTP

= ‖P ‖2‖H−1‖‖B‖2
2I − [‖P ‖2‖H−1‖‖B‖2

2I − PBH−1BTP ]
�‖P ‖2‖H−1‖(‖B∗‖2 + ‖B∗‖2)

2I − [‖P ‖2‖H−1‖‖B‖2
2I − PBH−1BTP ]

�‖P ‖2‖H−1‖(‖B∗‖2 + ‖B∗‖2)
2I . (25)

Substituting (15), (23), (24) and (25) into (12), we get

0 = 2gT(y∗)PCy∗ − gT(y∗)PAg(y∗) − gT(y∗)ATPg(y∗) − 2gT(y∗)PBg(y∗)

�gT(y∗)[2PC�−1 − F̄ − ‖Â‖2I − H − 1

1 − h
‖P ‖2‖H−1‖(‖B∗‖2 + ‖B∗‖2)

2I ]g(y∗). (26)

From condition (8), we have

gT(y∗)[2PC�−1 − F̄ − ‖Â‖2I − H − 1

1 − h
‖P ‖2‖H−1‖(‖B∗‖2 + ‖B∗‖2)

2I ]g(y∗) > 0. (27)

Obviously, (26) contradicts with (27) which in turn implies that at the equilibrium point g(y∗) = 0, as well as y∗ = 0.
Thus, we proved that the origin of model (5) is a unique equilibrium point.

Step 2: We now prove that the condition given in (8) also imply the global stability of the origin of (5). Consider the
Lyapunov functional

V (y(t)) = 2
n∑

i=1

pi

∫ yi (t)

0
gi(s)ds +

∫ t

t−�(t)
gT(y(s))Hg(y(s)), (28)

where P = diag(p1, p2, . . . , pn) is a positive definite diagonal matrix and H = (hij )n×n is a positive definite matrix.
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Taking the derivative of V (y) along the trajectories of (5), we obtain

V̇ (y(t))|(5) = 2gT(y(t))P ẏ(t) + gT(y(t))Hg(y(t)) − (1 − �̇(t))gT(y(t − �(t)))Hg(y(t − �(t)))

= − 2gT(y(t))PCy(t) + 2gT(y(t))PAg(y(t)) + 2gT(y(t))PBg(y(t − �(t)))

+ gT(y(t))Hg(y(t)) − (1 − �̇(t))gT(y(t − �(t)))Hg(y(t − �(t)))

= − 2gT(y(t))PCy(t) + gT(y(t))PAg(y(t)) + gT(y(t))ATPg(y(t))

+ 2gT(y(t))PBg(y(t − �(t))) + gT(y(t))Hg(y(t))

− (1 − �̇(t))gT(y(t − �(t)))Hg(y(t − �(t))). (29)

Applying Lemma 1, we get

2gT(y(t))PBg(y(t − �(t)))�(1 − �̇(t))gT(y(t − �(t)))Hg(y(t − �(t)))

+ 1

(1 − �̇(t))
gT(y(t))PBH−1BTPg(y(t)), (30)

then similarly using (15) and (30), we obtain

V̇ (y(t))|(5) � − 2gT(y(t))PC�−1g(y(t)) + gT(y(t))PAg(y(t)) + gT(y(t))ATPg(y(t))

+ 1

(1 − �̇(t))
gT(y(t))PBH−1BTPg(y(t)) + gT(y(t))Hg(y(t))

� − gT(y(t))[2PC�−1 − PA − ATP − 1

1 − h
PBH−1BTP − H ]g(y(t)). (31)

Similarly to (26), we have

2PC�−1 − PA − ATP − PBH−1BTP − H

�2PC�−1 − F̄ − ‖Â‖2I − H − 1

1 − h
‖P ‖2‖H−1‖(‖B∗‖2 + ‖B∗‖2)

2I > 0. (32)

Therefore, under the given condition (8), V̇ (y(t)) = 0 if and only if y(t) = g(y(t)) = g(y(t − �(t))) = 0, otherwise
V̇ (y(t))�0. Moreover, on the other hand, V (y) is radially unbounded since V (y(t)) → ∞ as ‖y(t)‖ → ∞. We have
proved that the equilibrium of (5) is globally asymptotically stable. This completes the proof. �

Corollary 1. Under the assumptions A1–A3, the equilibrium point of model (5) is globally robust stable if there is
positive definite matrix H = (hij )n×n such that

2C�−1 − F̄ − ‖Â‖2I − H − 1

1 − h
‖H−1‖(‖B∗‖2 + ‖B∗‖2)

2I > 0,

where I is the identity matrix,B∗=(B+B)/2, B∗=(B−B)/2,�=diag(�1, �2, . . . , �n), F̄=diag(2ā11, 2ā22, . . . , 2ānn),
C = diag(c1, c2, . . . , cn) and

Â =
{

0, i = j,

max(|āij + āj i |, |aij + aji |)�âij , i �= j.

Proof. In Theorem 1, let P = I , its proof is obvious and here we omitted. �

Corollary 2. Under the assumptions A1–A3, the equilibrium point of model (5) is globally robust stable if

2C�−1 − F̄ − ‖Â‖2I − I − 1

1 − h
(‖B∗‖2 + ‖B∗‖2)

2I > 0,
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where I is the identity matrix,B∗=(B+B)/2, B∗=(B−B)/2,�=diag(�1, �2, . . . , �n), F̄=diag(2ā11, 2ā22, . . . , 2ānn),
C = diag(c1, c2, . . . , cn) and

Â =
{

0, i = j,

max(|āij + āj i |, |aij + aji |)�âij , i �= j.

Proof. In Theorem 1, let P = H = I , Corollary 2 is a direct result of Theorem 1, here we omitted. �

Corollary 3. Under the assumptions A1–A3, the equilibrium of model (5) is globally robust stable if there is positive
definite matrix H = (hij )n×n such that

(‖B∗‖2 + ‖B∗‖2)
2 < (1 − h)�min[2C�−1 − F̄ − ‖Â‖2I − H ]/‖H−1‖,

where I is the identity matrix,B∗=(B+B)/2, B∗=(B−B)/2,�=diag(�1, �2, . . . , �n), F̄=diag(2ā11, 2ā22, . . . , 2ānn),
C = diag(c1, c2, . . . , cn) and

Â =
{

0, i = j,

max(|āij + āj i |, |aij + aji |)�âij , i �= j.

Proof. Corollary 3 is a direct result of Corollary 1, here we omitted. �

Remark. First, we give a theorem studied in [13]:

Theorem 2. Under the assumptions A1 and A2, the equilibrium point of model (5) is globally robust stable if there
are positive definite diagonal matrix P = diag(p1, p2, . . . , pn) and positive definite matrix H = (hij )n×n such that the
following conditions hold:

(i) The symmetric matrix S = (sij )n×n is positive definite.
(ii)

2r − ‖H‖2 − ‖P ‖2‖H−1‖(‖B∗‖2 + ‖B∗‖2)
2 > 0,

where r = mini[pici/�i], B∗ = (B + B)/2, B∗ = (B − B)/2, and

sij =
{−2piāii , i = j,

− max(|piāij + pj āji |, |piaij + pjaji |)�âij , i �= j.

In this paper, we do not need the two condition (i) and (ii) are both satisfied, we only have one condition (8). Also,
we have considered time varying delays in this paper, if �̇(t) = 0, i.e. h = 0, it is constant time delay in [13]. We will
show our merit of this paper through an example stated below.

4. Numerical example

In this section, we will give an example to justify Theorem 1 obtained above.
Consider a delayed neural network (5) with the connection weight matrices

A = A =
(

0.2 0.1

0.1 0.15

)
, B = B =

(
0.1 0.2

0.2 0.1

)
, C = C = I ,

where fi(x) = (|x + 1| − |x − 1|)/2 (i = 1, 2), this implies that � = I . Now let P = H = I in Corollary 2,

2C�−1 − F̄ − ‖Â‖2I − I − (‖B∗‖2 + ‖B∗‖2)
2I =

(
0.04 0

0 0.14

)
> 0,

according to Theorem 1, the equilibrium of model (5) is globally robust stable. But in Theorem 2, we have

S =
(−0.4 −0.2

−0.2 −0.3

)
.
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Fig. 1. Trajectories of the state variables of neural networks.

It is not a positive definite matrix, thus the condition (i) is not satisfied. So we cannot use Theorem 2 to solve this
problem, but Theorem 1 in this paper can work. Next, we give a simulation to justify Theorem 1, which is shown in
Fig. 1. We can know that the equilibrium of model (5) is globally robust stable.

5. Conclusions

In this paper, we have studied global robust stability of neural networks with time varying delays. Due to uncertainties
of neural networks, we study the robust stability of neural networks and it is more realistic in the neural network allowing
deviations of coefficients. We use Lyapunov method and matrices inequality technique to solve this problem. Several
sufficient conditions have been derived to ensure the existence of unique equilibrium point and global robust stability
for the delayed neural networks. The obtained results improve and extend the earlier works. It is easy to apply these
sufficient conditions to the real networks. Finally, we give a simulation to show the effectiveness of the obtained results.

Dynamical behaviors, such as stability, bifurcation and chaos have been studied by many researchers. Neural networks
with time delays have been a hot topic in recent years. There are still many things for us to do, which are studied by
investigating the essence of dynamical systems.
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