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Abstract In this paper, the asymptotic stability of neu-
ral networks with time varying delay is studied by using
the nonsmooth analysis, Lyapunov functional method
and linear matrix inequality (LMI) technique. It is noted
that the proposed results do not require smoothness of
the behaved function and activation function as well as
boundedness of the activation function. Several suffi-
cient conditions are presented to show the uniqueness
and the global asymptotical stability of the equilib-
rium point. Also, a high-dimensional matrix condition
to ensure the uniqueness and the global asymptotical
stability of equilibrium point can be reduced to a low-
dimensional condition. The obtained results are easy
to apply and improve some earlier works. Finally, we
give two simulations to justify the theoretical analysis
in this paper.
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1 Introduction

The dynamical behaviors including stability [1–5, 10–
21, 25–29], periodic bifurcation and chaos [6–9, 30–32]
of neural networks have become a focal topic. Many
researchers have made a lot of contributions to these
subjects. Stability is a basic knowledge for dynami-
cal systems and is useful in the application of the real
systems.

Recently, there has been extensive interest in study-
ing the effect of time delay on the collective dynamics
of coupled models. It is well known that time delay is
ubiquitous in most physical, chemical, biological, neu-
ral, and other natural system due to finite propagation
speeds of signals, finite processing times in synapses,
and finite reaction times.

It is well known that neural networks are complex
and large-scale nonlinear systems, neural networks
under study today have been dramatically simplified
[6–9]. These investigations of simplified models are
still very useful, since the dynamical characteristics
found in simple models can be carried over to large-
scale networks in some way. So in order to know much
better of large-scale networks, we should study the sim-
plified networks first. But there are inevitably some
problems since simple models are carried over to large-
scale networks, such as the complexity of the charac-
teristic equation and the bifurcating periodic solutions.
We must try to find the essence of dynamical systems.

In this paper, we will study the uniqueness and the
global asymptotical stability of the equilibrium point.
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The results we obtained improve and extend the earlier
works.

The organization of this paper is as follows: In
Section 2, model formulation and preliminaries are
given for our main results. In Section 3, our main re-
sults are established. Several sufficient conditions are
presented for the uniqueness and the global asymptot-
ical stability of neural networks. We also give some
remarks to show that our results improve and extend
some earlier works. In Section 4, numerical simula-
tions aimed at justifying the theoretical analysis will
be reported. In Section 5, we give the conclusions.

2 Model formulation and preliminaries

In this paper, we consider the following delayed recur-
rent neural network model:

ẋ(t) = −b(x(t)) + A f (x(t)) + B f (x(t − τ (t))) + u,

(1)

or

ẋi (t) = −bi (xi (t)) +
n∑

j=1

ai j f j (x j (t)) + ui ,

+
n∑

j=1

bi j f j (x j (t − τ (t)))

i = 1, 2, . . . , n (2)

where n denotes the number of units in a neural
network, τ (t) is the time varying delay, x(t) =
(x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state vector asso-
ciated with the neurons, u = (u1, u2, . . . , un)T ∈ Rn

is a constant external input vector, f (x(t)) =
( f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ∈ Rn correspon-
ds to the activation functions of neurons,
f (x(t − τ (t))) = ( f1(x1(t − τ (t))), f2(x2(t − τ (t))),
. . . , fn(xn(t − τ (t))))T ∈ Rn , b(x(t)) = (b1(x1(t)), b2

(x2(t)), . . . , bn(xn(t)))T ∈ Rn are the behaved func-
tions, A = (ai j )n×n and B = (bi j )n×n are the connec-
tion weight matrix and the delayed connection weight
matrix, respectively. Let I denote the identity matrix.

In this paper, the behaved functions and activa-
tion functions are assumed to satisfy the following
properties:

A1: The activation functions fi (xi )(i = 1, 2, . . . , n)
are monotonically nondecreasing on R; fi (xi )
(i = 1, 2, . . . , n) are Lipschitz continuous, that
is, there exist constants μi > 0 such that

| fi (α1) − fi (α2)| ≤ μi |α1 − α2|, ∀α1, α2 ∈ R.

(3)

A2: Each function bi : R → R is locally Lipschitz and
there exists ci > 0 such that b′

i (x) ≥ ci for all
x ∈ R at which bi (·) is differentiable.

A3: τ (t) is a bounded differential function of time t ,
and the following condition is satisfied:

0 ≤ τ̇ (t) ≤ h < 1,

where h is a positive constant.
Next, we give the definition of the Generalized

Jacobian which are essential for conducting nonsmooth
analysis on Lipschitz continuous functions as stated in
[26, 27]. Let the function F : Rn → Rn be locally Lips-
chitz continuous. According to Rademacher’s theorem
[24, Th.9.60], F is differentiable almost everywhere.
Let DF denote the set of those points where F is differ-
entiable and F ′(x) denote the Jacobian of F at x ∈ DF .
Then, the set DF is dense in Rn . For any given x ∈ Rn

define

Lipx F := sup
y→x,x 	=y∈Rn

‖F(y) − F(x)‖
‖y − x‖ .

Since F is locally Lipschitz continuous, the constant
Lipx is finite and we have ‖F ′(x)‖ ≤ Lipx F for any
x ∈ DF . Now we are ready to define the generalized
Jacobian in the sense of Clarke [24]:

Definition 1. For any x ∈ Rn , let ∂ F(x) be the set of
the following collection of matrices

∂ F(x) = co{W |there exists a sequence of {xk} ⊂ DF

with lim
xk→x

F ′(xk) = W },

where co� denote the convex hull of the set �. We
called ∂ F(x) as the generalized Jacobian.

It is easy to see that the above definition is well
defined and ‖W‖ ≤ Lipx F for any W ∈ ∂ F(x). We
say that ∂ F(x) is invertible if every element W in ∂ F(x)
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is nonsingular. The generalized Jacobian ∂ F(x) have
many nice properties, but only a few of them need to be
singled out for our purpose. For one thing, the collection
∂ F(x) reduces to a singleton {F ′(x)} whenever F is
continuously differentiable at x . We stress that ∂ F(x)
may contain other elements if F is only differentiable
at x .

Lemma 1 (Lebourg Theorem). [24, p. 41]: For any
given x, y ∈ Rn, there exists an element W in the union⋃
z∈[x,y]

∂ F(z) such that

F(y) − F(x) = W (y − x), (4)

where [x, y] denotes the segment connecting x and y.

For more discussion on the generalized Jacobian and
its various applications, we refer to books [23, 24].
Now, we analyze (1) from the viewpoint of nonsmooth
analysis.

It is known that the bounded activation functions
always guarantee the existence of an equilibrium point
for system (1).

We assume that the model (1) has an equilibrium
x∗ = (x∗

1 , x∗
2 , . . . , x∗

n )T for a given u. To simplify the
proofs, we will shift the equilibrium point x∗ of (1) to
the origin. Using the following transformation

y(t) = x(t) − x∗, y(t − τ (t)) = x(t − τ (t)) − x∗.

The model (1) can be transformed into the following
form:

ẏ(t) = −L(y(t)) + Ag(y(t)) + Bg(y(t − τ (t))), (5)

namely,

ẏi (t) = −li (yi (t)) +
n∑

j=1

ai j g j (y j (t))

+
n∑

j=1

bi j g j (y j (t − τ (t))), i = 1, 2, . . . , n

(6)

where g(y(t)) = (g1(y1(t)), g2(y2(t)), . . . , gn(yn(t)))T

∈ Rn , gi (yi (t)) = fi (yi (t) + x∗
i ) − fi (x∗

i ), g(0) = 0,
L(y(t)) = (l1(y1(t)), l2(y2(t)), . . . , ln(yn(t)))T ∈ Rn ,

li (yi (t)) = bi (yi (t) + x∗
i ) − bi (x∗

i ), b(0) = 0. More-
over, from (3), we know that

|gi (yi )| ≤ μi |yi | ∀yi ∈ R, i = 1, 2, . . . , n (7)

To obtain our main results, we need the following
two elementary lemmas:

Lemma 2. For any vectors x, y ∈ Rn and positive def-
inite matrix G ∈ Rn×n, the following matrix inequality
holds:

2xT y ≤ xT Gx + yT G−1 y.

Lemma 3 (Schur complement [22]). The following
linear matrix inequality (LMI)

(
Q(x) S(x)

S(x)T R(x)

)
> 0,

where Q(x) = Q(x)T , R(x) = R(x)T , is equivalent to
one of the following conditions:

(i) Q(x) > 0, R(x) − S(x)T Q(x)−1S(x) > 0,

(ii) R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0.

3 Global asymptotical stability criteria

In this section, new criteria are presented for the global
asymptotical stability of the equilibrium point of the
neural network defined by (5). Its proof is based on a
new Lyapunov functional method, nonsmooth analysis
and linear matrix inequality (LMI) approach.

Theorem 1. Under the assumptions A1 and A2, the
origin is the unique equilibrium of (5) if there
are positive definite diagonal matrix D = diag
(d1, d2, . . . , dn) > 0 and positive definite matrix H =
(hi j )n×n, such that any one of the following conditions
hold:

(i) N =
(

2DC�−1 − D A − AT D − H −DB

−BT D H

)
> 0, (8)
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or equivalently,

(ii) 2DC�−1 − D A − AT D − H

−DB H−1 BT D > 0, (9)

where � = diag(μ1, μ2, . . . , μn) and C = diag(c1,

c2, . . . , cn).

Proof: By the LMI approach from Lemma 2, we can
easily prove that the condition (i) is equivalent to the
condition (ii) Here we take Q(x) = 2DC�−1 − D A −
AT D − H , S(x) = −DB and R(x) = H . In the fol-
lowing, we shall prove that this theorem is true if (ii) is
satisfied. �

We will prove the uniqueness of the equilibrium
point by using the method of contradiction. Consider
the equilibrium equation of (5)

L(y∗) − Ag(y∗) − Bg(y∗) = 0. (10)

It is evident to see that if g(y∗) = 0, then y∗ = 0.
Now let g(y∗) 	= 0. Multiplying both sides of (10) by
2gT (y∗)D, yields

2gT (y∗)DL(y∗) − 2gT (y∗)D Ag(y∗)

−2gT (y∗)DBg(y∗) = 0, (11)

which can be rewritten as

2gT (y∗)DL(y∗) − gT (y∗)D Ag(y∗)

− gT (y∗)AT Dg(y∗)

− 2gT (y∗)DBg(y∗) = 0. (12)

From Lemma 1, we have that

L(y∗) = b(y∗ + x∗) − b(x∗)

= My∗, M ∈
⋃

y∈[x∗,y∗+x∗]

∂b(y).

Form the definition of b, matrix M is diagonal, and we
denote M = diag(m1, m2, . . . , mn).

From (7) and the assumptions A1 and A2, we get

yi gi (yi ) ≥ 0 ∀yi ∈ R, i = 1, 2, . . . , n (13)

and

g2
i (yi ) ≤ μi yi gi (yi )∀yi ∈ R, i = 1, 2, . . . , n (14)

According to (13) and (14), we can obtain the following
inequality

gT (y∗)DL(y∗) =
n∑

i=1

gi (y∗
i )di mi y∗

i

≥
n∑

i=1

di ci

μi
g2

i (y∗
i )

= gT (y∗)DC�−1g(y∗), (15)

in which � = diag(μ1, μ2, . . . , μn) and C = diag
(c1, c2, . . . , cn).

According to Lemma 1, we have

2gT (y∗)DBg(y∗) ≤ gT (y∗)Hg(y∗)

+ gT (y∗)DB H−1 BT Dg(y∗). (16)

Substituting (15) and (16) into (12), we obtain

gT (y∗)[2DC�−1 − D A − AT D − H

− DB H−1 BT D]g(y∗) ≤ 0, (17)

obviously, (17) contradicts with the condition (ii) which
in turn implies that at the equilibrium point g(y∗) = 0,
as well as y∗ = 0. Thus, we proved that the origin of
model (5) is a unique equilibrium point.

First, we consider the constant time delay where
τ (t) = τ .

Theorem 2. Under the assumptions A1 and A2, the
equilibrium point of model (5) is globally asymptot-
ically stable if there are positive definite diagonal
matrix D = diag(d1, d2, . . . , dn) > 0, positive definite
matrix H = (hi j )n×n, P = (pi j )n×n and positive con-
stant α > 0, such that

M =

⎛⎜⎝ 2PC −P A −P B

−AT P α(2DC�−1 − D A − AT D − H ) −αDB

−BT P −αBT D αH

⎞⎟⎠ > 0.

(18)

Proof: We now prove that the condition given in (18)
also imply the global stability of the origin of (5). Con-
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sider the Lyapunov functional

V (y(t)) = yT Py + 2α

n∑
i=1

di

∫ yi (t)

0
gi (s) ds

+ α

∫ t

t−τ

gT (y(s))Hg(y(s)) ds, (19)

where D = diag(d1, d2, . . . , dn) is positive definite di-
agonal matrix, H = (hi j )n×n and P = (pi j )n×n are pos-
itive definite matrices.

Taking the derivative of V (y) along the trajectories
of (5), we obtain

V̇ (y(t))|(5) = 2yT P ẏ + 2αgT (y(t))Dẏ(t)
+ αgT (y(t))Hg(y(t))
− αgT (y(t − τ ))Hg(y(t − τ ))

= −2yT (t)P L(y(t)) + 2yT (t)P Ag(y(t))
+ 2yT P Bg(y(t − τ ))
− 2αgT (y(t))DL(y(t))
+ 2αgT (y(t))D Ag(y(t))
+ 2αgT (y(t))DBg(y(t − τ ))
+ αgT (y(t))Hg(y(t))
− αgT (y(t − τ ))Hg(y(t − τ ))

= −(yT (t) gT (y(t) gT (y(t − τ )) )

×M

⎛⎝ y(t)
g(y(t)

g(y(t − τ ))

⎞⎠
−2yT (t)P[L(y(t)) − Cy(t)]
−2αgT (y(t))D[L(y(t)) − C�−1g(y(t))].

(20)

From Lemma 1, we have

L(y(t)) = b(y(t) + x∗) − b(x∗)

= M̂ y(t), M̂ ∈
⋃

z∈[x∗,y+x∗]

∂b(z), (21)

where M̂ = diag(m̂1, m̂2, . . . , m̂n). It is obvious to see
m̂i ≥ li for i = 1, 2, . . . , n. Together with (13) and
(14), we obtain

yT (t)P L(y(t)) =
n∑

i=1

yi (t)pi m̂i yi (t)

≥
n∑

i=1

pi ci y2
i (t)

= yT (t)PCy(t).

(22)

gT (y(t))DL(y(t)) =
n∑

i=1

gi (yi (t))di m̂i yi (t)

≥
n∑

i=1

di ci

μi
g2

i (yi (t))

= gT (y(t))DC�−1g(y(t)).

(23)

Therefore, From (20), we know that under the
given condition (18), (22) and (23), V̇ (y(t)) = 0 if and
only if y(t) = g(y(t)) = g(y(t − τ )) = 0, otherwise
V̇ (y(t)) ≤ 0. Moreover, on the other hand, V (y) is radi-
ally unbounded since V (y(t)) → ∞ as ‖y(t)‖ → ∞.
We have proved that the equilibrium of (5) is globally
asymptotically stable. This completes the proof. �

Theorem 3. Under the assumptions A1 and A2, the
origin is the unique equilibrium of (5) and it is globally
asymptotically stable if there are positive definite di-
agonal matrix D = diag(d1, d2, . . . , dn) > 0 and pos-
itive definite matrix H = (hi j )n×n, such that any one of
the condition of Theorem 1 is satisfied.

Proof: Obviously, according to Theorem 1, we know
that origin is the unique equilibrium of (5). Next, we
prove that under the condition of Theorem 1, the con-
dition in Theorem 2 is satisfied.

Let W = [−P A − P B],

N =
(

2DC�−1 − D A − AT D − H −DB
−BT D H

)
, and

(18) is equivalent to

M =
(

2PC W
W T αN

)
> 0. (24)

According to Lemma 2, we have

PC > 0, αN − 1

2
W T (PC)−1W > 0.

From the condition given in Theorem 1, we know N >

0, we choose α large enough, we can see that (18) is
satisfied. For example, we choose α >

γ1

γ2
, where γ1

denotes the maximum eigenvalue of 1
2 W T (PC)−1W

and γ2 denotes the minimum eigenvalue of N . This
completes the proof. �
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Corollary 1. Under the assumptions A1 and A2, the
origin is the unique equilibrium of (5) and it is globally
asymptotically stable if there is a positive definite ma-
trix H = (hi j )n×n, such that any one of the following
conditions hold:

(i)
(

2C�−1 − A − AT − H −B
−BT H

)
> 0,

or equivalently,

(i i) 2C�−1 − A − AT − H − B H−1 BT > 0,

where � = diag(μ1, μ2, . . . , μn).

Proof: In Theorem 3, let D = I , its proof is obvious
and here we omitted. �

Corollary 2. Under the assumptions A1 and A2, the
origin is the unique equilibrium of (5) and it is glob-
ally asymptotically stable if any one of the following
conditions hold:

(i)

(
2C�−1 − A − AT − I −B

−BT I

)
> 0,

or equivalently,

(ii) 2C�−1 − A − AT − I − B BT > 0,

where � = diag(μ1, μ2, . . . , μn).

Proof: In Theorem 3, let D = H = I , Corollary 2 is
a direct result of Theorem 3, here we omitted. �

Corollary 3. Under the assumptions A1 and A2, the
equilibrium point model (5) is globally asymptotically
stable if there are positive definite matrix H = (hi j )n×n,
P = (pi j )n×n and positive constant α > 0, such
that⎛⎝ 2PC −P A −P B

−AT P α(2C�−1 − A − AT − H ) −αB
−BT P −αBT αH

⎞⎠ > 0.

Proof: If we take D = I , Corollary 3 is a direct result
of Theorem 2, here we omitted. �

Corollary 4. Under the assumptions A1 and A2, the
equilibrium point model (5) is globally asymptotically
stable if there is a positive definite matrix P = (pi j )n×n,
such that

⎛⎝ 2PC −P A −P B
−AT P (2C�−1 − A − AT − I ) −B
−BT P −BT I

⎞⎠ > 0.

Proof: If we take D = H = I and α = 1, Corollary 3
is a direct result of Theorem 2, here we omitted. �

Next, we consider time varying delay τ (t).

Theorem 4. Under the assumptions A1 − A3, the
equilibrium point of model (5) is globally asymptot-
ically stable if there are positive definite diagonal
matrix D = diag(d1, d2, . . . , dn) > 0, positive definite
matrix H = (hi j )n×n, P = (pi j )n×n and positive con-
stant α > 0, such that

M1 =
⎛⎝ 2PC −P A −P B

−AT P α(2DC�−1 − D A − AT D − H ) −αDB
−BT P −αBT D α(1 − h)H

⎞⎠ > 0.

(25)

Proof: Consider the same Lyapunov functional the
same as in (19):

V (y(t)) = yT Py + 2α

n∑
i=1

di

∫ yi (t)

0
gi (s)ds

+ α

∫ t

t−τ (t)
gT (y(s))Hg(y(s))ds, (26)

where D = diag(d1, d2, . . . , dn) is positive definite di-
agonal matrix, H = (hi j )n×n and P = (pi j )n×n are pos-
itive definite matrices.

Taking the derivative of V (y) along the trajectories
of (5), we obtain
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V̇ (y(t))|(5) = 2yT P ẏ + 2αgT (y(t))Dẏ(t)
+ αgT (y(t))Hg(y(t))
− αgT (y(t − τ ))Hg(y(t − τ ))

= − 2yT (t)P L(y(t)) + 2yT (t)P Ag(y(t))
+ 2yT P Bg(y(t − τ ))
− 2αgT (y(t))DL(y(t))
+2αgT (y(t))D Ag(y(t))
+2αgT (y(t))DBg(y(t − τ ))
+ αgT (y(t))Hg(y(t))
− α(1 − τ̇ (t))gT (y(t − τ ))Hg(y(t−τ ))

= − (
yT (t) gT (y(t) gT (y(t − τ ))

)
×M1

⎛⎝ y(t)
g(y(t)

g(y(t − τ ))

⎞⎠
− 2yT (t)P[L(y(t)) − Cy(t)]
− 2αgT (y(t))D[L(y(t))
− C�−1g(y(t))]
− α(h − τ̇ (t))gT (y(t − τ ))Hg(y(t−τ )).

(27)

The same as in Theorem 2, we can obtain the global
asymptotical stability of equilibrium point of (5). �

Theorem 5. Under the assumptions A1–A3, the ori-
gin is the unique equilibrium of (5) and it is globally
asymptotically stable if there are positive definite diag-
onal matrix D = diag(d1, d2, . . . , dn) > 0 and positive
definite matrix H = (hi j )n×n, such that any one of the
following conditions hold:

(i) N =
(

2DC�−1 − D A − AT D − H −DB
−BT D (1 − h)H

)
> 0, (28)

or equivalently,

(ii) 2DC�−1 − D A − AT D − H

− 1

1 − h
DB H−1 BT D > 0, (29)

where � = diag(μ1, μ2, . . . , μn) and C = diag(c1,

c2, . . . , cn).

Proof: From Lemma 3, it is easy to see that (25) is
equivalent to (28). Since

1

1 − h
DB H−1 BT D ≥ DB H−1 BT D,

we obtain

2DC�−1 − D A − AT D − H − DB H−1 BT D

≥ 2DC�−1 − D A − AT D − H

− 1

1 − h
DB H−1 BT D > 0.

The condition (9) in Theorem 1 is also satisfied, the
proof is completed by the same step as in Theorem 3.

�

Corollary 5. Under the assumptions A1 − A3, the ori-
gin is the unique equilibrium of (5) and it is globally
asymptotically stable if

2C�−1 − A − AT − I − 1

1 − h
B BT > 0. (30)

Proof: In Theorem 5, let D = H = I , Corollary 5 is
a direct result of Theorem 5, here we omitted. �

Theorem 6. Under the assumptions A1 − A3, the
equilibrium point of model (5) is globally asymptot-
ically stable if there are positive definite diagonal
matrix D = diag(d1, d2, . . . , dn) > 0, positive definite
matrix H = (hi j )n×n, P = (pi j )n×n and positive con-
stant α > 0, such that the matrix condition (25) or (28)
is satisfied. Also, the two conditions are equivalent to
each other.

Proof: If (28) is satisfied, it is easy to see the condition
(25) is satisfied by Theorem 5. Otherwise, if (25) is
satisfied, we choose P = ε I where ε is a sufficient
small positive constant. From Lemma 3, the condition
(28) is also satisfied. �

Remark 1. In [1], the authors have studied the
global asymptotical stability of equilibrium point
with constant delay, they only obtained Theorem
3. In this paper, the behaved functions studied are
nonsmooth and also we study the time varying
delay.

Remark 2. In [16], the global asymptotic stability of
delayed cellular neural networks was investigated. If
we choose α = 1, the theorem stated in [16] is a special
case in this paper.
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Remark 3. In [11], the global robust stability of
delayed neural networks was considered, if we
choose D = H = I , it is also a special case in this
paper.

Remark 4. In [25], the global asymptotic stability
of a larger class of neural networks with constant
time delay has been studied. However, in this pa-
per, we note that our results do not require smooth-
ness of the behaved function and activation function
as well as boundedness of the activation function. If
we choose b(x(t)) = Cx(t), we have the same results
as in [25]. So it is a special case in my proposed
paper.

Remark 5. In [28], the global asymptotical stability
analysis was investigated by Cao and Ho. The main

theorem (Theorem 1) proposed in [28] is the same
as Theorem 4 in this paper. However, we show the
high-dimensional matrix condition (25) in Theorem
4 is equivalent to the low-dimensional matrix con-
dition (28) in Theorem 5, which is an interesting
phenomena demonstrated in Theorem 6. The high-
dimensional matrix condition (25) can be reduced to the
low-dimensional matrix condition (28), which are sur-
prisingly equivalent. Furthermore, the function b(x(t))
in (1) is nonsmooth, which is more general than the
smooth function in [28]. We have used the nonsmooth
analysis method in this paper.

4 Numerical example

In this section, we will give two examples to justify the
theoretical analysis in this paper.
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Fig. 1 Trajectories of state variables x1(t) and x2(t)
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Fig. 2 Trajectories of state variables x1(t) and x2(t)
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Example 1. Consider a delayed neural network with
the connection weight matrices

A =
(

0.2 0.1
0.1 0.3

)
, B =

(
0.1 0.3
0.2 0.1

)
,

where

bi (u) =
{

u, if u ≥ 0,

2u, if u < 0,
.

for i = 1, 2, fi (x) = (|x + 1| − |x − 1|)/2 (i = 1, 2),
this implies that � = C = I . According to Corollary
2,

2C�−1 − A − AT − I − B BT

=
(

0.5 −0.25
−0.25 0.35

)
> 0,

the equilibrium of model (5) is globally asymptotically
stable.

Next, we give a simulation to justify the theoreti-
cal analysis in the proposed paper, let τ = 5, then we
choose the initial functions(

y1(t)
y2(t)

)
=

(
sin(t)
cos(t)

)
and (

y1(t)
y2(t)

)
=

(
5 cos(t)
5 sin(t)

)
(−τ ≤ t ≤ 0),

respectively to show the global asymptotical stability
of equilibrium point. From Fig. 1, we can know that
the equilibrium of model (5) is globally asymptotically
stable.

Example 2. Consider the same neural network model
as above, but we choose τ = 5 + 0.5 sin(t). It is easy
to see that h = 0.5. According to Corollary 5,

2C�−1 − A − AT − I − 1

1 − h
B BT

=
(

0.4 −0.3
−0.3 0.3

)
> 0,

according to Corollary 5, the equilibrium of model (5)
is globally asymptotically stable, which is illustrated in
Fig. 2.

5 Conclusions

In this paper, we have studied global asymptotical
stability of neural networks with time varying de-
lays. We use nonsmooth analysis, Lyapunov functional
method and LMI technique to solve this problem. Sev-
eral sufficient conditions have been derived to ensure
the existence of unique equilibrium point and global
asymptotic stability for the delayed neural networks.
Our results do not require smoothness of the behaved
function and activation function as well as bounded-
ness of the activation function. The obtained results
improve and extend the earlier works. It is easy to ap-
ply these sufficient conditions to the real networks. Fi-
nally, we give two simulations to justify the obtained
results.
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