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Abstract

In this Letter, a four-neuron BAM neural network with four time delays is considered, where the time delays are regarded as parameters. Its
dynamics are studied in terms of local analysis and Hopf bifurcation analysis. By analyzing the associated characteristic equation, it is found
that Hopf bifurcation occurs when these delays pass through a sequence of critical value. A formula for determining the direction of the Hopf
bifurcation and the stability of bifurcating periodic solutions is given by using the normal form method and center manifold theorem.
© 2005 Elsevier B.V. All rights reserved.

Keywords: BAM neural network; Time delay; Hopf bifurcation; Periodic solutions; Stability

1. Introduction

The dynamical characteristics (including stable, unstable, oscillatory, and chaotic behavior) of neural networks [1–14] have
attracted attention of many researchers, and many results have been made to it. There has been increasing interest in investigat-
ing the dynamics of neural networks since Hopfield [15] constructed a simplified neural network model. Based on the Hopfield
neural network model, Marcus and Westervelt [16] argued that time delays always occur in the signal transmission and proposed
a neural network model with delay. Afterward, a variety of artificial models has been established to describe neural networks with
delays [16–19].

Recently, there has been extensive interest in studying the effect of time delay on the collective dynamics of coupled models [1–
3]. It is well known that time delay is ubiquitous in most physical, chemical, biological, neural, and other natural system due to
finite propagation speeds of signals, finite processing times in synapses, and finite reaction times.

In [19–21], a class of two-layer associative networks, called bidirectional associative memory (BAM) neural networks with or
without axonal signal transmission delays, has been proposed and applied in many fields such as pattern recognition and automatic
control. The bidirectional associated memory neural networks with or without delays has been widely studied in [18,19,22–24].
However, most work focus on establishing the local and global stability. It is known to all that the stability property is only the
dynamic behavior, and there are many other properties such as periodic oscillation, bifurcation, chaos and so on.

The delayed bidirectional associative memory neural network is described by the following system:

(1.1)

{
ẋi (t) = −μixi(t) +∑m

j=1 cij fi(yj (t − τij )),

ẏj (t) = −νjyj (t) +∑n
i=1 djigj (xi(t − νij )),
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where cij , dji (i = 1,2, . . . , n; j = 1,2, . . . ,m) are the connection weights through neurons in two layers: the I -layer and J -layer;
μi and νj describe the stability of internal neuron processes on the I -layer and J -layer, respectively. On the I -layer, the neurons
whose states are denoted by xi(t) receive the inputs Ii and the inputs outputted by those neurons in the J layer via activation
functions fi , while on the J -layer, the neurons whose associated states denoted by yj (t) receive the inputs Ij and the inputs
outputted by those neurons in the I -layer via activation functions gj .

It is well known that neural networks are complex and large-scale non-linear systems, neural networks under study today have
been dramatically simplified [1–8]. These investigation of simplified models are still very useful, since the dynamical characteristics
found in simple models can be carried over to large-scale networks in some way. In order to know much better of large-scale
networks, the simplified networks should be considered first. But there are inevitably some problems since simple models are
carried over to large-scale networks, such as the complexity of the characteristic equation and the bifurcating periodic solutions. In
this Letter, a four-neuron BAM neural network with four time delays has been considered, and it is a more general model.

The organization of this Letter is as follows: In Section 2, the stability of the trivial solutions and the existence of Hopf bifurcation
is discussed. In Section 3, a formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic
solutions will be given by using the normal form method and center manifold theorem introduced by Hassard at [9]. In Section 4,
numerical simulations aimed at justifying the theoretical analysis will be reported.

2. Existence of Hopf bifurcation

The BAM neural networks with time delays considered in this Letter are described by the following differential equations with
delay:

(2.1)

⎧⎪⎨
⎪⎩

ẋ1(t) = −μ1x1(t) + c11f11(y1(t − τ3)) + c12f12(y2(t − τ3)),

ẋ2(t) = −μ2x2(t) + c21f21(y1(t − τ4)) + c22f22(y2(t − τ4)),

ẏ1(t) = −μ3y1(t) + d11g11(x1(t − τ1)) + d12g12(x2(t − τ2)),

ẏ2(t) = −μ4y2(t) + d21g21(x1(t − τ1)) + d22g22(x2(t − τ2)).

To establish the main results for model (2.1), it is necessary to make the following assumptions:

(H1) fij , gij ∈ C1, fij (0) = 0, gij (0) = 0, for i, j = 1,2;
(H2) τ1 + τ3 = τ , τ2 + τ4 = τ .

Letting u1(t) = x1(t − τ1), u2(t) = x2(t − τ2), u3(t) = y1(t), u4(t) = y2(t), (2.1) can be written as the following equivalent
system

(2.2)

⎧⎪⎨
⎪⎩

u̇1(t) = −μ1u1(t) + c11f11(u3(t − τ)) + c12f12(u4(t − τ)),

u̇2(t) = −μ2u2(t) + c21f21(u3(t − τ)) + c22f22(u4(t − τ)),

u̇3(t) = −μ3u3(t) + d11g11(u1(t)) + d12g12(u2(t)),

u̇4(t) = −μ4u4(t) + d21g21(u1(t)) + d22g22(u2(t)).

Under the hypothesis (H1) and (H2), the linear equation of (2.2) at (0,0,0,0) is as follows:

(2.3)

⎧⎪⎨
⎪⎩

u̇1(t) = −μ1u1(t) + α11(u3(t − τ)) + α12(u4(t − τ)),

u̇2(t) = −μ2u2(t) + α21(u3(t − τ)) + α22(u4(t − τ)),

u̇3(t) = −μ3u3(t) + β11(u1(t)) + β12(u2(t)),

u̇4(t) = −μ4u4(t) + β21(u1(t)) + β22(u2(t)),

where αij = cij f
′
ij (0), βij = dij g

′
ij (0). The characteristic equation of the linearized system (2.3) is

(2.4)det

⎛
⎜⎝

λ + μ1 0 −α11e
−λτ −α12e

−λτ

0 λ + μ2 −α21e
−λτ −α22e

−λτ

−β11 −β12 λ + μ3 0
−β21 −β22 0 λ + μ4

⎞
⎟⎠= 0.

That the following four degree exponential polynomial equation is obtained

(2.5)λ4 + d1λ
3 + d2λ

2 + d3λ + d4 + (d5λ
2 + d6λ + d7

)
e−λτ + d8e

−2λτ = 0,

where

(2.6)d1 = μ1 + μ2 + μ3 + μ4,

(2.7)d2 = μ1μ2 + μ1μ3 + μ1μ4 + μ2μ3 + μ2μ4 + μ3μ4,

(2.8)d3 = μ1μ2μ3 + μ1μ2μ4 + μ1μ3μ4 + μ2μ3μ4,
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(2.9)d4 = μ1μ2μ3μ4,

(2.10)d5 = −α11β11 − α12β21 − α21β12 − α22β22,

(2.11)d6 = −μ1(α22β22 + α21β12) − μ2(α11β11 + α12β21) − μ3(α12β21 + α22β22) − μ4(α21β12 + α11β11),

(2.12)d7 = −μ1μ3α22β22 − μ2μ3α12β21 − μ1μ4α21β12 − μ2μ4α11β11,

(2.13)d8 = (β11β22 − β12β21)(α11α22 − α12α21).

Multiplying esτ on both sides of (2.5), it is obvious to obtain

(2.14)
(
λ4 + d1λ

3 + d2λ
2 + d3λ + d4

)
eλτ + (d5λ

2 + d6λ + d7
)+ d8e

−λτ = 0.

Let s = iω0, τ = τ0, and substituting this into (2.14), for the sake of simplicity, denote ω0 and τ0 by ω,τ , respectively, then (2.14)
becomes

(2.15)
(
ω4 − id1ω

3 − d2ω
2 + d3iω + d4

)(
cos(ωτ) + i sin(ωτ)

)− d5ω
2 + id6ω + d7 + d8

(
cos(ωτ) − i sin(ωτ)

)= 0.

Separating the real and imaginary parts, it is easy to obtain

(2.16)

{
(ω4 − d2ω

2 + d4 + d8) cos(ωτ) + (d1ω
3 − d3ω) sin(ωτ) = d5ω

2 − d7,

(−d1ω
3 + d3ω) cos(ωτ) + (ω4 − d2ω

2 + d4 − d8) sin(ωτ) = −d6ω.

By simple calculation, the following equations are obtained

(2.17)sin(ωτ) = ω[(d1d5 − d6)ω
4 + (d2d6 − d1d7 − d3d5)ω

2 + d3d7 − d4d6 − d6d8]
ω8 + (d2

1 − 2d2)ω6 + (d2
2 + 2d4 − 2d1d3)ω4 + (d2

3 − 2d2d4)ω2 + d2
4 − d2

8

,

and

(2.18)cos(ωτ) = d5ω
6 + (d1d6 − d2d5 − d7)ω

4 + (d4d5 − d5d8 + d2d7 − d3d6)ω
2 + d7d8 − d4d7

ω8 + (d2
1 − 2d2)ω6 + (d2

2 + 2d4 − 2d1d3)ω4 + (d2
3 − 2d2d4)ω2 + d2

4 − d2
8

.

Let e1 = d2
1 − 2d2, e2 = d2

2 + 2d4 − 2d1d3, e3 = d2
3 − 2d2d4, e4 = d2

4 − d2
8 , e5 = d1d5 − d6, e6 = d2d6 − d1d7 − d3d5, e7 =

d3d7 − d4d6 − d6d8, e8 = d5, e9 = d1d6 − d2d5 − d7, e10 = d4d5 − d5d8 + d2d7 − d3d6, e11 = d7d8 − d4d7, and sin(ωτ), cos(ωτ)

can be written as

(2.19)sin(ωτ) = ω(e5ω
4 + e6ω

2 + e7)

ω8 + e1ω6 + e2ω4 + e3ω2 + e4
,

and

(2.20)cos(ωτ) = e8ω
6 + e9ω

4 + e10ω
2 + e11

ω8 + e1ω6 + e2ω4 + e3ω2 + e4
.

As is known to all that sin2(ωτ) + cos2(ωτ) = 1, we have

(2.21)ω16 + f7ω
14 + f6ω

12 + f5ω
10 + f4ω

8 + f3ω
6 + f2ω

4 + f1ω
2 + f0 = 0,

where f7 = 2e1, f6 = e2
1 + 2e2 − e2

8, f5 = 2e3 + 2e1e2 − 2e8e9 − e2
5, f4 = e2

2 + 2e4 + 2e1e3 − 2e5e6 − e2
9 − 2e8e10, f3 = 2e1e4 +

2e2e3 − e2
6 − 2e5e7 − 2e8e11 − 2e9e10, f2 = e2

3 + 2e2e4 − 2e6e7 − e2
10 − 2e9e11, f1 = 2e3e4 − e2

7 − 2e10e11, f0 = e2
4 − e2

11. Denote
z = ω2, (2.21) becomes

(2.22)z8 + f7z
7 + f6z

6 + f5z
5 + f4z

4 + f3z
3 + f2z

2 + f1z + f0 = 0.

Let

(2.23)l(z) = z8 + f7z
7 + f6z

6 + f5z
5 + f4z

4 + f3z
3 + f2z

2 + f1z + f0.

Suppose

(H3) (2.22) has at least one positive real root.

If μk (k = 1,2,3,4), cij , dij , fij , gij (i, j = 1,2) of the system (2.1) are given, it is easy to use computer to calculate the roots of
(2.22). Since limz→∞ l(z) = +∞, we conclude that if f0 < 0, then (2.22) has at least one positive real root.

Without loss of generality, assuming that it have eight positive real roots, defined by z1, z2, z3, z4, z5, z6, z7, z8, respectively.
Then (2.22) have eight positive roots

ω1 = √
z1, ω2 = √

z2, ω3 = √
z3, ω4 = √

z4, ω5 = √
z5, ω6 = √

z6, ω7 = √
z7, ω8 = √

z8.
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By (2.20), we have

(2.24)cos(ωkτ) = e8ω
6
k + e9ω

4
k + e10ω

2
k + e11

ω8
k + e1ω

6
k + e2ω

4
k + e3ω

2
k + e4

.

Thus, denoting

(2.25)τ
j
k = 1

ωk

{
arccos

(
e8ω

6
k + e9ω

4
k + e10ω

2
k + e11

ω8
k + e1ω

6
k + e2ω

4
k + e3ω

2
k + e4

)
+ 2jπ

}
,

where k = 1, . . . ,8; j = 0,1, . . . , then ±iωk is a pair of purely imaginary roots of (2.5) with τ
j
k . Define

(2.26)τ0 = τ 0
k0

= min
k∈{k=1,...,8}

{
τ 0
k

}
, ω0 = ωk0 .

Note that when τ = 0, (2.5) becomes

(2.27)λ4 + d1λ
3 + (d2 + d5)λ

2 + (d3 + d6)λ + d4 + d7 + d8 = 0.

A set of necessary and sufficient conditions for all roots of (2.27) to have a negative real part is given by the well-known Routh–
Hurwitz criteria in the following form:

(2.28)D1 = d1 > 0,

(2.29)D2 = det

(
d1 d3 + d6
1 d2 + d5

)
= d1(d2 + d5) − (d3 + d6) > 0,

(2.30)D3 = det

(
d1 d3 + d6 0
1 d2 + d5 d4 + d7 + d8
0 d1 d3 + d6

)
= d1

[
(d2 + d5)(d3 + d6) − d1(d4 + d7 + d8)

]− (d3 + d6)
2 > 0,

(2.31)D4 = det

⎛
⎜⎝

d1 d3 + d6 0 0
1 d2 + d5 d4 + d7 + d8 0
0 d1 d3 + d6 0
0 1 d2 + d5 d4 + d7 + d8

⎞
⎟⎠= (d4 + d7 + d8)D3 > 0.

In order to give the main results in this Letter, it is necessary to make the following assumptions:

(H4) If (2.28)–(2.31) holds, (2.27) have four roots with negative real parts and when τ = 0, system (2.1) is stable near the equilib-
rium.

(H5) Re( dλ
dτ

)|τ=τ0 �= 0.

Taking the derivative of λ with respect to τ in (2.14), it is easy to obtain:

(
4λ3 + 3d1λ

2 + 2d2λ + d3
)
eλτ dλ

dτ
+
(

λ + τ
dλ

dτ

)(
λ4 + d1λ

3 + d2λ
2 + d3λ + d4

)
eλτ

+ 2d5λ
dλ

dτ
+ d6

dλ

dτ
− d8e

−λτ

(
λ + τ

dλ

dτ

)
= 0,

it follows that:

(2.32)
dλ(τ)

dτ
= −λ(λ4 + d1λ

3 + d2λ
2 + d3λ + d4)e

λτ + d8λe−λτ

(4λ3 + 3d1λ2 + 2d2λ + d3)eλτ + (λ4 + d1λ3 + d2λ2 + d3λ + d4)τeλτ + 2d5λ + d6 − d8τe−λτ
.

For the sake of simplicity, denoting w0 and τn by w, τ respectively, then(
dλ

dτ

)−1

= (4λ3 + 3d1λ
2 + 2d2λ + d3)e

λτ + 2d5λ + d6

−λ(λ4 + d1λ3 + d2λ2 + d3λ + d4)eλτ + d8λe−λτ
− τ

λ

= (4λ3 + 3d1λ
2 + 2d2λ + d3)e

λτ + 2d5λ + d6

d5λ3 + d6λ2 + d7λ + 2d8λe−λτ
− τ

λ

= (−4iω3 − 3d1ω
2 + 2d2iω + d3)[cos(ωτ) + i sin(ωτ)] + 2d5iω + d6

3 2
− τ
−d5iω − d6ω + d7iω + 2d8iω[cos(ωτ) − i sin(ωτ)] iω
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= [(−3d1ω
2 + d3) cos(ωτ) + (4ω3 − 2d2ω) sin(ωτ) + d6]

[−d6ω2 + 2d8 sin(ωτ)] + i[−d5ω3 + d7ω + 2d8ω cos(ωτ)]
(2.33)+ i

[(−4ω3 + 2d2ω) cos(ωτ) + (−3d1ω
2 + d3) sin(ωτ) + 2d5ω]

[−d6ω2 + 2d8 sin(ωτ)] + i[−d5ω3 + d7ω + 2d8ω cos(ωτ)] − τ

iω
.

Let

Q = [−d6ω
2 + 2d8 sin(ωτ)

]2 + [−d5ω
3 + d7ω + 2d8ω cos(ωτ)

]2
> 0,

(2.34)

QRe

(
dλ

dτ

)−1

= [(−3d1ω
2 + d3

)
cos(ωτ) + (4ω3 − 2d2ω

)
sin(ωτ) + d6

][−d6ω
2 + 2d8 sin(ωτ)

]
+ [(−4ω3 + 2d2ω

)
cos(ωτ) + (−3d1ω

2 + d3
)

sin(ωτ) + 2d5ω
][−d5ω

3 + d7ω + 2d8ω cos(ωτ)
]
,

noticing that

(2.35)sign

[
Re

(
dλ

dτ

)∣∣∣∣
τ=τ0

]
= sign

[
Re

(
dλ

dτ

)−1∣∣∣∣
τ=τ0

]
.

Till now, we can employ a result from Ruan and Wei [1] to analyze (2.5), which is, for the convenience of the reader, stated as
follows.

Lemma 2.1 [1]. Consider the exponential polynomial

P
(
λ, e−λτ1, . . . , e−λτm

)= λn + p
(0)
1 λn−1 + · · · + p

(0)
n−1λ + p(0)

n + [p(1)
1 λn−1 + · · · + p

(1)
n−1λ + p(1)

n

]
e−λτ1

+ · · · + [p(m)
1 λn−1 + · · · + p

(m)
n−1λ + p(m)

n

]
e−λτm,

where τi � 0 (i = 1,2, . . . ,m) and p
(i)
j (i = 0,1, . . . ,m; j = 1,2, . . . , n) are constants. As (τ1, τ2, . . . , τm) vary, the sum of the

order of the zeros of P(λ, e−λτ1 , . . . , e−λτm) on the open right half plane can change only if a zero appears on or crosses the
imaginary axis.

From Lemma 2.1, it is easy to obtain the following theorem:

Theorem 2.2. Suppose that (H3), (H4) and (H5) holds, then the following results hold:

(I) For Eq. (2.1), its zero solution is asymptotically stable for τ ∈ [0, τ0);
(II) Eq. (2.1) undergoes a Hopf bifurcation at the origin when τ = τ0. That is, system (2.1) has a branch of periodic solutions

bifurcating from the zero solution near τ = τ0.

Remark 2.3. In [2], Yu and Cao study a van der Pol equation, and the characteristic equation is

λ2 + aλe−λτ + e−2λτ = 0.

In [3], Guo and Huang study a two-neuron network model with three delays, the coefficient of the system must satisfy some given
conditions, and the characteristic equation discussed in [3] is[

λ + 1 − βe−λτ
]2 − ¯a12 ¯a21e

−2λτ = 0.

In [6], Song and Wei study a delayed predator-prey system, the characteristic equation is

λ2 + pλ + r + (sλ + q)e−sτ = 0,

clearly, the characteristic equations they have discussed are two degree exponential polynomial equation, and can be solved easily.

Remark 2.4. In [5], Song, Han and Wei study a simplified BAM neural network with three delays, but through a simple transfor-
mation the model can be changed into one time delay since the BAM neural network do not have self-connections. By the method
studied in [4], Song, Han and Wei study the following characteristic equation

λ3 + a2λ
2 + a1λ + a0 + (b1λ + b0)e

−λτ = 0,

and it is a special case in our model. A four degree exponential polynomial equation has been discussed.

The coefficients given in the above characteristic equations, the reader may refer to the references. In this Letter, a method to
solve characteristic Eq. (2.5) is proposed.



W. Yu, J. Cao / Physics Letters A 351 (2006) 64–78 69
Remark 2.5. In [7,8], it is simpler than our models since the characteristic equation of ours is transcendental equation corresponding
to polynomial equation of Liao. So he discussed the local stability and existence of Hopf bifurcation using Routh–Hurwitz criteria.
The stability and existence of Hopf bifurcation which is studied in our Letter is not as simple as his.

3. Stability of bifurcating periodic solutions

In this section, formulae for determining the direction of Hopf bifurcation and stability of bifurcating periodic solutions of
system (2.2) at τ0 shall be presented by employing the normal form method and center manifold theorem introduced by Hassard
at [9].

For convenience, let t = sτ , xi(t) = ui(τ t) and τ = τ0 + μ, μ ∈ R. Then system (2.2) is equivalent to the system:

(3.1)

⎧⎪⎨
⎪⎩

ẋ1(t) = (τ0 + μ)[−μ1x1(t) + c11f11(x3(t − 1)) + c12f12(x4(t − 1))],
ẋ2(t) = (τ0 + μ)[−μ2x2(t) + c21f21(x3(t − 1)) + c22f22(x4(t − 1))],
ẋ3(t) = (τ0 + μ)[−μ3x3(t) + d11g11(x1(t)) + d12g12(x2(t))],
ẋ4(t) = (τ0 + μ)[−μ4x4(t) + d21g21(x1(t)) + d22g22(x2(t))].

Its linear part is given by

(3.2)

⎧⎪⎨
⎪⎩

ẋ1(t) = (τ0 + μ)[−μ1x1(t) + α11(x3(t − 1)) + α12(x4(t − 1))],
ẋ2(t) = (τ0 + μ)[−μ2x2(t) + α21(x3(t − 1)) + α22(x4(t − 1))],
ẋ3(t) = (τ0 + μ)[−μ3x3(t) + β11(x1(t)) + β12(x2(t))],
ẋ4(t) = (τ0 + μ)[−μ4x4(t) + β21(x1(t)) + β22(x2(t))],

The non-linear part of (3.1) is

(3.3)f (μ,xt ) = (τ0 + μ)

⎛
⎜⎜⎝

l11x
2
3(t − 1) + l12x

2
4(t − 1) + l′11x

3
3(t − 1) + l′12x

3
4(t − 1) + h.o.t.

l21x
2
3(t − 1) + l22x

2
4(t − 1) + l′21x

3
3(t − 1) + l′22x

3
4(t − 1) + h.o.t.

m11x
2
1(t) + m12x

2
2(t) + m′

11x
3
1(t) + m′

12x
3
2(t) + h.o.t.

m21x
2
1(t) + m22x

2
2(t) + m′

21x
3
1(t) + m′

22x
3
2(t) + h.o.t.

⎞
⎟⎟⎠ ,

where xt (θ) =
(

x1t (θ)
x2t (θ)
x3t (θ)
x4t (θ)

)
=
(

x1(t+θ)
x2(t+θ)
x3(t+θ)
x4(t+θ)

)
, lij = cij f

′′
ij (0)/2!, l′ij = cij f

′′′
ij (0)/3!,mij = dij g

′′
ij (0)/2!,m′

ij = dij g
′′′
ij (0)/3! (i, j = 1,2).

Denote Ck[−1,0] = {ϕ | ϕ : [−1,0] → R4, each component of ϕ has k order continuous derivative}. For convenience, denote
C[−1,0] by C0[−1,0]. The solutions map continuous initial data into R4. We are interested in periodic solutions. For φ(θ) =
(φ1(θ) φ2(θ) φ3(θ) φ4(θ))T ∈ C[−1,0], define an operator

(3.4)Lμφ = (τ0 + μ)

⎛
⎜⎝

−μ1 0 0 0
0 −μ2 0 0

β11 β12 −μ3 0
β21 β22 0 −μ4

⎞
⎟⎠
⎛
⎜⎝

φ1(0)

φ2(0)

φ3(0)

φ4(0)

⎞
⎟⎠+ (τ0 + μ)

⎛
⎜⎝

0 0 α11 α12
0 0 α21 α21
0 0 0 0
0 0 0 0

⎞
⎟⎠
⎛
⎜⎝

φ1(−1)

φ2(−1)

φ3(−1)

φ4(−1)

⎞
⎟⎠ ,

where Lμ is a one-parameter family of bounded linear operators in C[−1,0] → R4. By the Riesz representation theorem, there
exists a matrix whose components are bounded variation functions η(θ,μ) in [−1,0] → R4, such that

Lμφ =
0∫

−1

dη(θ,μ)φ(θ).

In fact, choosing

(3.5)η(θ,μ) = (τ0 + μ)

⎛
⎜⎝

−μ1 0 0 0
0 −μ2 0 0

β11 β12 −μ3 0
β21 β22 0 −μ4

⎞
⎟⎠ δ(θ) + (τ0 + μ)

⎛
⎜⎝

0 0 α11 α12
0 0 α21 α21
0 0 0 0
0 0 0 0

⎞
⎟⎠ δ(θ + 1)

(where δ(θ) is Dirac function), then (3.4) is satisfied.
For φ ∈ C1[−10], define

(3.6)A(μ)φ =
{

dφ(θ)
dθ

, −1 � θ < 0,∫ 0
−1 dη(θ,μ)φ(θ), θ = 0,
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and

(3.7)R(μ)φ =
⎧⎨
⎩
( 0

0
0
0

)
, −1 � θ < 0,

f (μ,φ), θ = 0.

In order to conveniently study Hopf bifurcation problem, we transform system (3.1) into an operator equation of the form:

(3.8)ẋt = A(μ)xt + Rxt ,

where x = (x1, x2, x3, x4)
T . As in [9], xt = x(t + θ), θ ∈ (−1,0].

The adjoint operator A∗ of A is defined by

(3.9)A∗(μ)ψ =
{− dψ(s)

ds
, 0 < s � 1,∫ 0

−1 dηT (s,μ)ψ(−s), s = 0,

where ηT is the transpose of the matrix η.
The domains of A and A∗ are C1[−1,0] and C1[0,1], respectively. For φ ∈ C[−1,0] and ψ ∈ C[0,1]. In order to normalize the

eigenvectors of operator A and adjoint operator A∗, the following bilinear form is needed to introduce:

(3.10)〈ψ,φ〉 = ψ̄(0) · φ(0) −
0∫

θ=−1

θ∫
ξ=0

ψ̄T (ξ − θ) dη(θ)φ(ξ) dξ,

here η(θ) = η(θ,0), C2 is complex plane. And for c and d in C2, c · d means
∑4

i=1 cidi , where ci and di are components of c and
d , respectively. Then, as usual,

(3.11)〈ψ,Aφ〉 = 〈A∗ψ,φ〉,
for (φ,ψ) ∈ D(A) × D(A∗). Normalizing q and q∗ by the condition

〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0.

By discussion in Section 2 and transformation t = sτ , we know that ±iτ0w0 are eigenvalues of A(0) and other eigenvalues
have strictly negative real parts. Thus they are also eigenvalues of A∗. Next we calculate the eigenvector q of A belonging to the
eigenvalue iτ0w0 and the eigenvector q∗ of A∗ belonging to the eigenvalue −iτ0w0. Let

(3.12)q(θ) =
⎛
⎜⎝

1
α

β

γ

⎞
⎟⎠ eiτ0ω0θ , −1 < θ � 0.

From the above discussion, it is easy to know that

(3.13)Aq(0) = iτ0ω0q(0), τ0

⎛
⎜⎝

iω0 + μ1 0 −α11e
−iω0τ0 −α12e

−iω0τ0

0 iω0 + μ2 −α21e
−iω0τ0 −α22e

−iω0τ0

−β11 −β12 iω0 + μ3 0
−β21 −β22 0 iω0 + μ4

⎞
⎟⎠q(0) =

⎛
⎜⎝

0
0
0
0

⎞
⎟⎠ .

Hence, we obtain

(3.14)α = −α11β11β22(iω0 + μ4)e
−iω0τ0 − α12β21β22(iω0 + μ3)e

−iω0τ0 + β22(iω0 + μ1)(iω0 + μ3)(iω0 + μ4)

α11β12β22(iω0 + μ4)e−iω0τ0 + α12β22β22(iω0 + μ3)e−iω0τ0
,

(3.15)β = β12(iω0 + μ1)(iω0 + μ4) + α12(β11β22 − β12β21)e
−iω0τ0

α11β12(iω0 + μ4)e−iω0τ0 + α12β22(iω0 + μ3)e−iω0τ0
,

(3.16)γ = β22(iω0 + μ1)(iω0 + μ3) − α11(β11β22 − β12β21)e
−iω0τ0

α11β12(iω0 + μ4)e−iω0τ0 + α12β22(iω0 + μ3)e−iω0τ0
.

Suppose that the eigenvector q∗ of A∗ is

(3.17)q∗(s) = 1

ρ

⎛
⎜⎝

1
α∗
β∗
γ ∗

⎞
⎟⎠ eiτ0ω0s , 0 � s < 1.
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Then the following relationship is obtained:

(3.18)A∗q∗(0) = −iτ0ω0q
∗(0), τ0

⎛
⎜⎝

−iω0 + μ1 0 −β11 −β21
0 −iω0 + μ2 −β12 −β22

−α11e
iω0τ0 −α21e

iω0τ0 iω0 + μ3 0
−α12e

iω0τ0 −α22e
iω0τ0 0 −iω0 + μ4

⎞
⎟⎠q∗(0) =

⎛
⎜⎝

0
0
0
0

⎞
⎟⎠ .

Hence, we obtain

(3.19)α∗ = −α11α22β11(−iω0 + μ4)e
iω0τ0 − α12α22β21(−iω0 + μ3)e

iω0τ0 + α22(−iω0 + μ1)(−iω0 + μ3)(−iω0 + μ4)

(α22eiω0τ0)[α21β11(−iω0 + μ4) + α22β21(−iω0 + μ3)] ,

(3.20)β∗ = α21(−iω0 + μ1)(−iω0 + μ4) + β21(α11α22 − α12α21)e
iω0τ0

α21β11(−iω0 + μ4) + α22β21(−iω0 + μ3)
,

(3.21)γ ∗ = α22(−iω0 + μ1)(−iω0 + μ3) − β11(α11α22 − α12α21)e
iω0τ0

α21β11(−iω0 + μ4) + α22β21(−iω0 + μ3)
.

Let

〈q∗, q〉 = 1.

One can obtain ρ,

〈q∗, q〉 = q̄∗(0) · q(0) −
0∫

θ=−1

θ∫
ξ=0

q̄∗T (ξ − θ) dη(θ) q(ξ) dξ

= 1

ρ̄
(1 + αᾱ∗ + ββ̄∗ + γ γ̄ ∗) −

0∫
θ=−1

θ∫
ξ=0

1

ρ̄
(1 ᾱ∗ β̄∗ γ̄ ∗ ) e−iτ0ω0(ξ−θ) dη(θ)

⎛
⎜⎝

1
α

β

γ

⎞
⎟⎠ eiτ0ω0ξ dξ

= 1

ρ̄
(1 + αᾱ∗ + ββ̄∗ + γ γ̄ ∗) −

0∫
θ=−1

θ∫
ξ=0

τ0
1

ρ̄
(1 ᾱ∗ β̄∗ γ̄ ∗ )

⎡
⎢⎣
⎛
⎜⎝

−μ1 0 0 0
0 −μ2 0 0

β11 β12 −μ3 0
β21 β22 0 −μ4

⎞
⎟⎠ δ(θ)

+
⎛
⎜⎝

0 0 α11 α12
0 0 α21 α21
0 0 0 0
0 0 0 0

⎞
⎟⎠ δ(θ + 1)

⎤
⎥⎦
⎛
⎜⎝

1
α

β

γ

⎞
⎟⎠ eiτ0ω0θ dξ dθ

= 1

ρ̄
(1 + αᾱ∗ + ββ̄∗ + γ γ̄ ∗) + 1

ρ̄
τ0
[
β(α11 + α21ᾱ

∗) + γ (α12 + α22ᾱ
∗)
]
e−iτ0ω0

= 1.

Hence, we have

(3.22)ρ̄ = (1 + αᾱ∗ + ββ̄∗ + γ γ̄ ∗) + τ0
[
β(α11 + α21ᾱ

∗) + γ (α12 + α22ᾱ
∗)
]
e−iτ0wω0 .

Using the same method it is easy to proof 〈q∗, q̄〉 = 0, we omit it. Now we obtain q and q∗.
Next, we study the stability of bifurcating periodic solutions. As in [9], the bifurcating periodic solutions Z(t,μ(ε)) has ampli-

tude O(ε) and non-zero Floquet exponent β(ε) with β(0) = 0. Under the hypotheses, μ, β are given by

(3.23)

{
μ = μ2ε

2 + μ4ε
4 + · · · ,

β = β2ε
2 + β4ε

4 + · · · .
The sign of μ2 indicates the direction of bifurcation while that β2 determines the stability of Z(t,μ(ε)). Z(t,μ(ε)) is stable if
β2 < 0 and unstable if β2 > 0. In the following, we will show how to derive the coefficients in this expansions, but we compute μ2
and β2 only.

We first construct the coordinates to describe a center manifold Ω0 near μ = 0, which is a local invariant, attracting a two-
dimensional manifold [9]. Let

(3.24)z(t) = 〈q∗, xt 〉,



72 W. Yu, J. Cao / Physics Letters A 351 (2006) 64–78
and

(3.25)W(t, θ) = xt − 2 Re
[
z(t)q(θ)

]
.

Where xt is a solution of (3.8). On the manifold Ω0: W(t, θ) = W(z(t), z̄(t), θ), where

(3.26)W(z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · .

In fact, z and z̄ are local coordinates of center manifold Ω0 in the direction of q and q∗, respectively.
The existence of center manifold Ω0 enables us to reduce (3.8) to an ordinary differential equation in a single complex variable

on Ω0. For the solution xt ∈ Ω0 of (3.8), since μ = 0,

ż(t) = 〈q∗, ẋt 〉 = 〈q∗,Axt + Rxt 〉 = 〈q∗,Axt 〉 + 〈q∗,Rxt 〉 = 〈A∗q∗, xt 〉 + 〈q∗,Rxt 〉
(3.27)= iτ0ω0z + q̄∗(0) · f (0,W(t,0) + 2 Re

[
z(t)q(0)

])
.

Rewrite (3.27) as

(3.28)ż(t) = iτ0ω0z + g(z, z̄),

where

(3.29)g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

In the following, the motivation is to expand g in powers of z and z̄ and then obtain, from the coefficients of this expansion, the
values of μ2 and β2 using algorithm presented by Hassard at [9]. Substituting (3.8) and (3.27) into

Ẇ = ẋt − żq − ˙̄zq̄,

we have

Ẇ = ẋt − żq − ˙̄zq̄
= Axt + Rxt − [iτ0w0z + q̄∗(0) · f (z, z̄)

]
q − [−iτ0w0z̄ + q∗(0) · f̄ (z, z̄)

]
q̄

= AW + 2ARe(zq) + Rxt − 2 Re
[
q̄∗(0) · f (z, z̄)q(θ)

]− 2 Re
[
iτ0w0zq(θ)

]
= AW − 2 Re

[
q̄∗(0) · f (z, z̄)q(θ)

]+ Rxt

(3.30)=
{

AW − 2 Re[q̄∗(0) · f (z, z̄)q(θ)], −1 � θ < 0,

AW − 2 Re[q̄∗(0) · f (z, z̄)q(θ)] + f, θ = 0.

Let

(3.31)Ẇ = AW + H(z, z̄, θ),

where

(3.32)H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · .

Taking the derivative of W with respect to t in (3.26), we have

(3.33)Ẇ = Wzż + Wz̄
˙̄z.

Substituting (3.26) and (3.28) into (3.33), we obtain

(3.34)Ẇ = (W20z + W11z̄ + · · ·)(iτ0w0z + g) + (W11z + W02z̄ + · · ·)(−iτ0w0z̄ + ḡ).

Then substituting (3.26) and (3.32) into (3.31), the following results is obtained:

(3.35)Ẇ = (AW20 + H20)
z2

2
+ (AW11 + H11)zz̄ + (AW02 + H02)

z̄2

2
+ · · · .

Comparing the coefficients of (3.34) with (3.35),

(3.36)(A − 2iτ0w0)W20(θ) = −H20(θ),

(3.37)AW11(θ) = −H11(θ),

hold.
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According to (3.27) and (3.28), we know

g(z, z̄) = q̄∗(0) · f (z, z̄)

(3.38)= τ0

ρ̄
(1 ᾱ∗ β̄∗ γ̄ ∗ )

⎛
⎜⎜⎝

l11x
2
3t (−1) + l12x

2
4t (−1) + l′11x

3
3t (−1) + l′12x

3
4t (−1) + h.o.t.

l21x
2
3t (−1) + l22x

2
4t (−1) + l′21x

3
3t (−1) + l′22x

3
4t (−1) + h.o.t.

m11x
2
1t (0) + m12x

2
2t (0) + m′

11x
3
1t (0) + m′

12x
3
2t (0) + h.o.t.

m21x
2
1t (0) + m22x

2
2t (0) + m′

21x
3
1t (0) + m′

22x
3
2t (0) + h.o.t.

⎞
⎟⎟⎠ ,

where xt (θ) = (x1t (θ) x2t (θ) x3t (θ) x4t (θ))T = W(t, θ) + zq(θ) + z̄q̄(θ) and q(θ) = (1 α β γ )T eiτ0ω0θ , and then we have

x1t (0) = z + z̄ + W
(1)
20 (0)

z2

2
+ W

(1)
11 (0)zz̄ + W

(1)
02 (0)

z̄2

2
+ o

(∣∣(z, z̄)∣∣3),
x2t (0) = αz + ᾱz̄ + W

(2)
20 (0)

z2

2
+ W

(2)
11 (0)zz̄ + W

(2)
02 (0)

z̄2

2
+ o

(∣∣(z, z̄)∣∣3),
x3t (−1) = zβe−iτ0ω0 + z̄β̄eiτ0ω0 + W

(3)
20 (−1)

z2

2
+ W

(3)
11 (−1)zz̄ + W

(3)
02 (−1)

z̄2

2
+ o

(∣∣(z, z̄)∣∣3),
x4t (−1) = zγ e−iτ0ω0 + z̄γ̄ eiτ0ω0 + W

(4)
20 (−1)

z2

2
+ W

(4)
11 (−1)zz̄ + W

(4)
02 (−1)

z̄2

2
+ o

(∣∣(z, z̄)∣∣3).
It follows that

g(z, z̄) = τ0

ρ̄

{[
(l11 + ᾱ∗l21)β

2e−2iτ0ω0 + (l12 + ᾱ∗l22)γ
2e−2iτ0ω0 + (β̄∗m11 + γ̄ ∗m21) + α2(β̄∗m12 + γ̄ ∗m22)

]
z2

+ [(l11 + ᾱ∗l21)β̄
2e2iτ0ω0 + (l12 + ᾱ∗l22)γ̄

2e2iτ0ω0 + (β̄∗m11 + γ̄ ∗m21) + ᾱ2(β̄∗m12 + γ̄ ∗m22)
]
z̄2

+ 2
[
(l11 + ᾱ∗l21)|β|2 + (l12 + ᾱ∗l22)|γ |2 + (β̄∗m11 + γ̄ ∗m21) + (β̄∗m12 + γ̄ ∗m22)|α|2]zz̄

+ [(l11 + ᾱ∗l21)
(
β̄eiτ0ω0W

(3)
20 (−1) + 2βe−iτ0ω0W

(3)
11 (−1)

)
+ (l12 + ᾱ∗l22)

(
γ̄ eiτ0ω0W

(4)
20 (−1) + 2γ e−iτ0ω0W

(4)
11 (−1)

)
+ (β̄∗m11 + γ̄ ∗m21)

(
W

(1)
20 (0) + 2W

(1)
11 (0)

)+ (β̄∗m12 + γ̄ ∗m22)
(
ᾱW

(2)
20 (0) + 2αW

(2)
11 (0)

)

(3.39)

+ 3(l′11 + ᾱ∗l′21)β
2β̄e−iτ0ω0 + 3(l′12 + ᾱ∗l′22)γ

2γ̄ e−iτ0ω0 + 3(β̄∗m′
11 + γ̄ ∗m′

21) + 3(β̄∗m′
12 + γ̄ ∗m′

22)α
2ᾱ
]
z2z̄
}
.

Comparing the coefficients in (3.29) with those in (3.39), it follows that:

g20 = τ0

ρ̄

[
(l11 + ᾱ∗l21)β

2e−2iτ0ω0 + (l12 + ᾱ∗l22)γ
2e−2iτ0ω0 + (β̄∗m11 + γ̄ ∗m21) + α2(β̄∗m12 + γ̄ ∗m22)

]
,

g02 = τ0

ρ̄

[
(l11 + ᾱ∗l21)β̄

2e2iτ0ω0 + (l12 + ᾱ∗l22)γ̄
2e2iτ0ω0 + (β̄∗m11 + γ̄ ∗m21) + ᾱ2(β̄∗m12 + γ̄ ∗m22)

]
,

g11 = 2τ0

ρ̄

[
(l11 + ᾱ∗l21)|β|2 + (l12 + ᾱ∗l22)|γ |2 + (β̄∗m11 + γ̄ ∗m21) + (β̄∗m12 + γ̄ ∗m22)|α|2],

g21 = τ0

ρ̄

[
(l11 + ᾱ∗l21)

(
β̄eiτ0ω0W

(3)
20 (−1) + 2βe−iτ0ω0W

(3)
11 (−1)

)
+ (l12 + ᾱ∗l22)

(
γ̄ eiτ0ω0W

(4)
20 (−1) + 2γ e−iτ0ω0W

(4)
11 (−1)

)
+ (β̄∗m11 + γ̄ ∗m21)

(
W

(1)
20 (0) + 2W

(1)
11 (0)

)+ (β̄∗m12 + γ̄ ∗m22)
(
ᾱW

(2)
20 (0) + 2αW

(2)
11 (0)

)
(3.40)+ 3(l′11 + ᾱ∗l′21)β

2β̄e−iτ0ω0 + 3(l′12 + ᾱ∗l′22)γ
2γ̄ e−iτ0ω0 + 3(β̄∗m′

11 + γ̄ ∗m′
21) + 3(β̄∗m′

12 + γ̄ ∗m′
22)α

2ᾱ
]
.

In the follows, we focus on the computation of W20(θ) and W11(θ). (3.30) and (3.31) imply that

H(z, z̄, θ) = −2 Re
(
q̄∗(0) · f (z, z̄)q(θ)

)+ Rxt

= −gq(θ) − ḡq̄(θ) + Rxt

(3.41)= −
(

1

2
g20z

2 + g11zz̄ + 1

2
g02z̄

2 + · · ·
)

q(θ) −
(

1

2
ḡ20z̄

2 + ḡ11zz̄ + 1

2
ḡ02z

2 + · · ·
)

q̄(θ) + Rxt .

Comparing the coefficients in (3.32) with those in (3.41), we can obtain that

(3.42)H20(θ) = −g20q(θ) − ḡ02q̄(θ), −1 � θ < 0,
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and

(3.43)H11(θ) = −g11q(θ) − ḡ11q̄(θ), −1 � θ < 0.

Substituting (3.42) into (3.36) and (3.43) into (3.37) respectively, it follows that:

(3.44)

{
Ẇ20(θ) = 2iτ0wω0W20(θ) + g20q(θ) + ḡ02q̄(θ),

Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ).

It is easy to obtain the solutions of (3.44):

(3.45)

⎧⎨
⎩

W20(θ) = ig20
τ0ω0

q(0)eiτ0ω0θ − ḡ02
3iτ0ω0

q̄(0)e−iτ0ω0θ + E1e
2iτ0ω0θ ,

W11(θ) = g11
iτ0ω0

q(0)eiτ0ω0θ − ḡ11
iτ0ω0

q̄(0)e−iτ0ω0θ + E2.

Next we focus on the computation of E1 and E2, from (3.36) and (3.37), we have

(3.46)AW20(0) = 2iτ0ω0W20(0) − H20(0),

and

(3.47)AW11(0) = −H11(0).

From the definition of A in (3.6), we obtain

(3.48)

0∫
−1

dη(θ)W20(θ) = 2iτ0ω0W20(0) − H20(0),

and

(3.49)

0∫
−1

dη(θ)W11(θ) = −H11(0).

From (3.3) and (3.41)–(3.43), we have

(3.50)H20(0) = −g20q(0) − ḡ02q̄(0) + τ0

⎛
⎜⎝

2l11β
2e−2iτ0ω0 + 2l12γ

2e−2iτ0ω0

2l21β
2e−2iτ0ω0 + 2l22γ

2e−2iτ0ω0

2m11 + 2m12
2m21 + 2m22

⎞
⎟⎠ ,

and

(3.51)H11(0) = −g11q(0) − ḡ11q̄(0) + τ0

⎛
⎜⎝

2l11|β|2 + 2l12|γ |2
2l21|β|2 + 2l22|γ |2

2m11 + 2m12
2m21 + 2m22

⎞
⎟⎠ .

Substituting (3.45) and (3.50) into (3.48) and noticing that

(3.52)

(
iτ0ω0I −

0∫
−1

eiτ0ω0θ dη(θ)

)
q(0) = 0,

and

(3.53)

(
−iτ0ω0I −

0∫
−1

e−iτ0ω0θ dη(θ)

)
q̄(0) = 0,

we obtain

(3.54)

(
2iτ0ω0I −

0∫
−1

e2iτ0ω0θ dη(θ)

)
E1 = 2τ0

⎛
⎜⎝

l11β
2e−2iτ0ω0 + l12γ

2e−2iτ0ω0

l21β
2e−2iτ0ω0 + l22γ

2e−2iτ0ω0

m11 + m12
m21 + m22

⎞
⎟⎠ ,
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which leads to

(3.55)

⎛
⎜⎝

2iω0 + μ1 0 −α11e
−2iω0τ0 −α12e

−2iω0τ0

0 2iω0 + μ2 −α21e
−2iω0τ0 −α22e

−2iω0τ0

−β11 −β12 2iω0 + μ3 0
−β21 −β22 0 2iω0 + μ4

⎞
⎟⎠E1 = 2

⎛
⎜⎝

l11β
2e−2iτ0ω0 + l12γ

2e−2iτ0ω0

l21β
2e−2iτ0ω0 + l22γ

2e−2iτ0ω0

m11 + m12
m21 + m22

⎞
⎟⎠ .

It follows that

(3.56)E1 = 2

⎛
⎜⎝

2iω0 + μ1 0 −α11e
−2iω0τ0 −α12e

−2iω0τ0

0 2iω0 + μ2 −α21e
−2iω0τ0 −α22e

−2iω0τ0

−β11 −β12 2iω0 + μ3 0
−β21 −β22 0 2iω0 + μ4

⎞
⎟⎠

−1⎛
⎜⎝

l11β
2e−2iτ0ω0 + l12γ

2e−2iτ0ω0

l21β
2e−2iτ0ω0 + l22γ

2e−2iτ0ω0

m11 + m12
m21 + m22

⎞
⎟⎠ .

Similarly, substituting (3.45) and (3.51) into (3.49), we can get

(3.57)E2 = 2

⎛
⎜⎝

μ1 0 −α11 −α12
0 μ2 −α21 −α22

−β11 −β12 μ3 0
−β21 −β22 0 μ4

⎞
⎟⎠

−1⎛
⎜⎝

l11|β|2 + l12|γ |2
l21|β|2 + l22|γ |2

m11 + m12
m21 + m22

⎞
⎟⎠ .

Hence, we know W20(θ) and W11(θ), then Eq. (3.40) can be obtained. The following parameters can be calculated:

(3.58)C1(0) = i

2w

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+ g21

2
,

(3.59)μ2 = −ReC1(0)

Reλ′(τ0)
,

(3.60)β2 = 2 ReC1(0).

If you want to know the detail, see appendix in [2]. As in [9], the following result is established:

Theorem 3.1. Under the condition of Theorem 2.2,

(I) μ = 0 is Hopf bifurcation value of system (3.1).
(II) The direction of Hopf bifurcation is determined by the sign of μ2: if μ2 > 0, the Hopf bifurcation is supercritical; if μ2 < 0,

the Hopf bifurcation is subcritical.
(III) The stability of bifurcating periodic solutions is determined by β2: if β2 < 0, the periodic solutions are stable; if β2 > 0, they

are unstable.

4. Numerical examples

In this section, some numerical results of simulating system (2.1) are presented at justifying the theorem obtained above.
As an example, considering the following system:⎧⎪⎨
⎪⎩

ẋ1(t) = −2x1(t) − 2 tanh(y1(t − τ3)) − tanh(y2(t − τ3)),

ẋ2(t) = −2x2(t) − tanh(y1(t − τ4)) − 2 tanh(y2(t − τ4)),

ẏ1(t) = −2y1(t) + 2 tanh(x1(t − τ1)) + tanh(x2(t − τ2)),

ẏ2(t) = −2y2(t) + tanh(x1(t − τ1)) + 2 tanh(x2(t − τ2)),

which has a unique steady state (0 0 0 0). From (2.22), we have

z8 + 32z7 + 348z6 + 1184z5 − 4442z4 − 44448z3 − 120164z2 − 128800z − 47775 = 0,

and it has only one positive real root 5. Also, (2.27) becomes

λ4 + 8λ3 + 34λ2 + 72λ + 65 = 0,

and it have four roots with negative real parts, the hypothesis of (H4) is clearly satisfied.
According to (2.25), we obtain

τj = 0.6527 + 2.8099j (j = 0,1, . . .).
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Fig. 1. τ = 0.6 < τ0, the zero steady state is stable.

First, we choose τ = 0.6 < τ0, the corresponding waveform and phase plots are shown in Fig. 1, by Theorem 2.2, we know its
zero solution is asymptotically stable.

Finally, we choose τ = 0.7 > τ0, the corresponding waveform and phase plots are shown in Fig. 2. It is easy to see that in Fig. 2
undergoes a Hopf bifurcation.

With these parameters, μ2 > 0. Hence, by Theorem 3.1, we know that the bifurcating point is supercritical. Correspondingly,
β2 = −0.962, and so these bifurcating periodic solutions are stable.

5. Conclusions

The bidirectional associative memory neural networks provide rich dynamical behaviors. From the viewpoint of non-linear
systems, their analysis are useful in solving problems of both theoretical and practical importance. In this Letter, a four-neuron
BAM neural network with four time delays has been studied, they are potentially useful as the complexity found might be carried
over to a general BAM neural networks.
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Fig. 2. τ = 0.7 > τ0, the bifurcating periodic solution is stable.

By calling the time delay as a parameter, we have shown that a Hopf bifurcation occurs when this parameter passes through a
critical value. The direction of Hopf bifurcation and the stability of the bifurcating periodic orbits are also discussed.
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