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Abstract. Many real-world large-scale complex networks demonstrate a surprising degree of synchronization.
To unravel the underlying mechanics of synchronization in these complex networks, a generally
linearly hybrid coupled network with time-varying delay is proposed, and its global synchronization is
then further investigated. Several effective sufficient conditions of global synchronization are attained
based on the Lyapunov function and a linear matrix inequality (LMI). Both delay-independent and
delay-dependent conditions are deduced. In particular, the coupling matrix may be nonsymmetric
or nondiagonal. Moreover, the derivative of the time-varying delay is extended to any given value.
Finally, a small-world network, a regular network, and scale-free networks with network size are
constructed to show the effectiveness of the proposed synchronous criteria.
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1. Introduction. Over the last few years, complex networks have received increasing at-
tention from all fields of sciences and humanities [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].
Networks are everywhere in the real world, such as food-webs, ecosystems, metabolic path-
ways, the Internet, the World Wide Web, social networks, and global economic markets [1, 2].
The ubiquity of networks in the biological, physical, engineering, and social sciences leads
naturally to two important common problems: How does network structure affect network
function? How do individual dynamics affect global dynamics?

Despite advances in understanding network structure and dynamical behaviors in ideal-
ized cases, relatively little is known about large-scale, real-world complex networks and their
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dynamical characteristics, especially for the evolving networks [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34]. Historically, many models
were proposed to describe various complex networks, including regular graph, random graph,
small-world network, scale-free network, evolving networks, etc. [1, 2]. Undoubtedly, these
models well describe many real networks in nature, such as social, biological, and engineering
networks.

On the other hand, one can also extend the existing network models by introducing dynam-
ical elements into the network nodes [3, 4, 14, 32, 33, 34]. Over the last few years, nonlinear
dynamics of complex networks have been intensively investigated. Synchronization is a kind
of typical collective behavior and a basic motion in nature [14]. Our intuition is that loosely
coupled dynamical systems tend to synchronize with respect to periodic behavior [18]. This
synchronization is essentially a form of self-organization. Moreover, it has been demonstrated
that many real-world problems have a close relationship with network synchronization. For
example, theoretical and experimental results reveal that a mammalian brain not only displays
its storage of associative memories but also modulates oscillatory neuronal synchronization
by selective perceived attention [6].

Recently, network synchronization has been intensively investigated in various different
fields [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32,
33, 34]. For example, some researchers studied the synchronization of coupled connected neural
networks [6, 8, 9, 10]; Yu, Cao, and their colleagues explored the synchronization of an array
of linearly coupled networks with time-delay [7, 16]; Lü and his colleagues introduced several
synchronization criteria for the time-varying complex dynamical networks [16, 32, 33, 34];
and Li and Chen studied the robust adaptive synchronization of some uncertain dynamical
networks [15].

In this paper, we introduce a linearly hybrid coupled network with time-varying delay.
Based on this network model, several simply sufficient conditions of global network synchro-
nization are then deduced by using the Lyapunov function and a linear matrix inequality
(LMI). Both delay-independent and delay-dependent sufficient conditions are also attained.
It should be especially emphasized that we do not assume that the coupling matrix is sym-
metric or diagonal. However, most of the former works on network synchronization are based
on this assumption. Furthermore, we extend the derivative of the time-varying delay to any
given value. Last but not least, one constructs a small-world network, a regular network, and
scale-free networks with network size to verify the effectiveness of the proposed synchronous
criteria.

The remainder of this paper is organized as follows: In section 2, the main background
of complex networks is briefly outlined, and a generally linearly hybrid coupled network with
time-varying delay is proposed. The main theorems and corollaries for global network syn-
chronization are then given in section 3. In section 4, a small-world network, a regular
network, and scale-free networks with network size are constructed to show the effectiveness
of the proposed global network synchronous criteria. The conclusions are finally drawn in
section 5.
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2. Preliminaries. Consider a complex dynamical network consisting of N identical nodes
with linearly diffusive couplings [3, 4, 5, 14, 32, 33, 34], which is described by

(1) ẋi(t) = f(xi(t)) + c

N∑
j=1, j �=i

GijΓ(xj(t) − xi(t)), i = 1, 2, . . . , N,

where i = 1, 2, . . . , N , xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the state vector of the
ith node, f : Rn −→ Rn is continuously differentiable, c is the coupling strength, Γ =
diag(γ1, γ2, . . . , γn) ∈ Rn×n is a 0-1 diagonal matrix with specific γi = 1 and 0 for others, and
G = (Gij)N×N is a coupling configuration matrix representing the topological structure of the
network, where Gij is defined as follows: if there exists a connection from node i to another
node j, then the coupling strength Gij = Gji = 1; otherwise, Gij = Gji = 0 (j �= i), and the
diagonal elements of matrix G are defined by

(2) Gii = −
N∑

j=1, j �=i

Gij = −
N∑

j=1, j �=i

Gji.

Thus network (1) can be rewritten as follows:

(3) ẋi(t) = f(xi(t)) + c

N∑
j=1

GijΓxj(t), i = 1, 2, . . . , N.

Hereafter, suppose network (3) is connected in the sense that there are no isolate clusters.
That is, the coupling configuration matrix G is an irreducible matrix.

However, most real-world complex networks are time-varying. To characterize the real-
world evolving networks, Lü and Chen introduced a time-varying network [14, 32, 33, 34]
which represents many real biological and engineering networks. Also, there inevitably exists
time-delay in many practical complex networks because of the finite information exchanging
speed. Considering the time-delay, we propose a simple complex network model as follows [13].
Recently, a linearly coupled complex network was presented and further studied [6, 7, 8].
Considering the time delay, Cao and his colleagues further introduced the following constant
delayed complex dynamical network [16].

In this paper, we will consider the following linearly hybrid coupled network with time-
varying delay:

(4) ẋi(t) = −Cxi(t)+Af(xi(t))+Bf(xi(t−τ))+I(t)+

N∑
j=1

GijDxj(t)+

N∑
j=1

GijDτxj(t−τ(t)),

where i = 1, 2, . . . , N , C = diag(c1, c2, . . . , cn) ∈ Rn×n is a diagonal matrix with positive
diagonal entries ci > 0, i = 1, 2, . . . , n, A = (aij)n×n and B = (bij)n×n are weight and delayed
weight matrices, respectively, I(t) = (I1(t), I2(t), . . . , In(t))T ∈ Rn is an external input vector,
D = (dij) ∈ Rn×n and Dτ = (dτij) ∈ Rn×n are constant and delayed inner coupling matrices
of complex networks, respectively, f(xi(t)) = (f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))T ∈ Rn
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corresponds to the activation functions of neurons, and G = (Gij)N×N satisfies the diffusive
condition (2). In particular, one does not assume that the constant and delayed inner coupling
matrices D = (dij) ∈ Rn×n and Dτ = (dτij) ∈ Rn×n are diagonal matrices.

Denote xi(t) = φi(t) ∈ C([−r, 0], R) (i = 1, 2, . . . , N), where r = supt∈R{τ(t)} and
C([−r, 0], R) is the set of continuous functions from [−r, 0] to R. To simplify, one has the
following fundamental assumptions.

A1: fi(xi) (i = 1, 2, . . . , n) are monotonically nondecreasing on R.

A2: fi(xi) (i = 1, 2, . . . , n) are Lipschitz continuous; i.e., there exist constants Fi > 0 such
that

(5) |fi(α1) − fi(α2)| ≤ Fi|α1 − α2| ∀α1, α2 ∈ R.

A3: τ(t) is a bounded differential function of time t satisfying

0 ≤ τ̇(t) ≤ h < 1,

where h is a positive real constant.

A4: The coupling matrix G satisfies the conditions

(6) Gij ≥ 0, i �= j, Gii = −
N∑

j=1, j �=i

Gij , i = 1, 2, . . . , N.

Before stating the main results, some similar definitions and lemmas are given [6, 7, 8, 9,
10].

Definition 1. Let r = maxt∈R{τ(t)}. Set S = {x = (x1(s), x2(s), . . . , xN (s)) : xi(s) ∈
C([−r, 0], R), xi(s) = xj(s), i, j = 1, 2, . . . , N}, which is called the synchronization manifold
of network (4).

Definition 2. Let R̂ be a ring and T (R̂,K) = {the set of matrices with entries R̂ such that
the sum of the entries in each row is equal to K for some K ∈ R̂}.

Definition 3. The set of MN
1 (1): MN

1 (1) is composed of matrices with N columns; each

row (such as the ith row) of M̃ ∈ MN
1 (1) has exactly one entry αi and one entry −αi, where

αi �= 0, and all other entries are zeros.

Definition 4. The set of MN
1 (n): MN

1 (n) = {M = M ⊗ In : M ∈ MN
1 (1), In is the

n-dimensional identity matrix}, where ⊗ is Kronecker product.

Definition 5. MN
2 (n) ⊂ MN

1 (n): If M ∈ MN
2 (n), for any pair of indices i and j, there

exist indices j1, j2, . . . , jl and p1, p2, . . . , pl−1 such that Mpq ,iq �= 0 and Mpq ,iq+1 �= 0 for all
1 ≤ q < l, where j1 = i and jl = j.

Definition 6. Synchronization manifold S is said to be globally exponentially stable (or
network (4) is globally exponentially synchronized) if there exist ε > 0, T > t0, and M > 0
such that

(7) ‖xi(t) − xj(t)‖ ≤ Me−εt,

where φi ∈ C([−r, 0], R), t > T , i, j = 1, 2, . . . , N .
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Definition 7. Synchronization manifold S is said to be globally asymptotically stable (or
network (4) is globally asymptotically synchronized) if for any ε > 0, there exists T > t0 such
that

(8) ‖xi(t) − xj(t)‖ ≤ ε,

where φi, φj ∈ C([−r, 0], R), t > T , i, j = 1, 2, . . . , N .

Lemma 1 (see [9]). Let G be an N×N matrix in the set T (R̂,K). Then the (N−1)×(N−1)
matrix H satisfies MG = HM , where H = MGJ ,
(9)

M =

⎛⎜⎜⎜⎝
1 −1

1 −1
. . .

1 −1

⎞⎟⎟⎟⎠
((N−1)×N)

, J =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
0 1 1 · · · 1

. . . 1
· · · 1 1

0 0 · · · 0 1
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(N×(N−1))

,

in which 1 is the multiplicative identity of R̂. Moreover, the matrix H can be rewritten
explicitly as follows: H(i,j) =

∑j
k=1 G(i,k) −G(i+1,k) for i, j ∈ {1, 2, . . . , N − 1}.

Lemma 2 (Schur complement [17]). The LMI(
Q̃(x) S̃(x)

S̃(x)T R̃(x)

)
> 0

is equivalent to one of the following conditions:

(i) Q̃(x) > 0, R̃(x) − S̃(x)T Q̃(x)−1S̃(x) > 0,

(ii) R̃(x) > 0, Q̃(x) − S̃(x)R̃(x)−1S̃(x)T > 0,

where Q̃(x) = Q̃(x)T , R̃(x) = R̃(x)T .

Lemma 3 (see [9]). If matrix G is symmetric and also satisfies condition A4, then G is
irreducible iff there exists a p×N matrix M ∈ MN

2 (1), such that G = −MTM .

Lemma 4 (see [9]). Let x = (x1, x2, . . . , xN )T , where xi ∈ Rn, i = 1, 2, . . . , N . Then x ∈ S
iff there exists M ∈ MN

2 (n) satisfying ‖Mx‖ = 0.

Denote

(10) d(x) = ‖Mx‖2 = xTMTMx, M ∈ MN
2 (n).

Then d(x) is a nonnegative distance function. From the assumptions of M, one has d(x) −→ 0
iff ‖xi(t) − xj(t)‖ −→ 0 for all i, j = 1, 2, . . . , N .

Lemma 5 (see [19]). The Kronecker product has the following properties:

(1) (αA) ⊗B = A⊗ (αB);

(2) (A + B) ⊗ C = A⊗ C + B ⊗ C;

(3) (A⊗B)(C ⊗D) = (AC) ⊗ (BD).

Lemma 6 (Jensen inequality [29]). Assume that the vector function ω : [0, r] ∈ Rm×m is
well defined for the following integrations. For any symmetric matrix W ∈ Rm×m and scalar
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r > 0, one has

r

∫ r

0
ω(s)Wω(s) ds ≥

(∫ r

0
ω(s) ds

)T

W

(∫ r

0
ω(s) ds

)
.

3. Main results. In this section, several novel criteria are proposed for the global syn-
chronization of complex network (4) based on the Lyapunov function and an LMI.

To simplify the presentation, some notation is given in the following. Let T be a symmetric
and irreducible matrix satisfying assumption A4. From Lemma 3, there exists a p×N matrix

M̃ ∈ MN
2 (1) such that T = −M̃T M̃ . Denote M = M̃ ⊗ In ∈ MN

2 (n), and let Mi =
(Mi1,Mi2, . . . ,MiN ) be the ith row of M, where Mii1 = αiIn, Mii2 = −αiIn, and Mij = 0 for
j �= i1, i2. Let A⊗B be the Kroneker product of matrices A and B.

C = IN ⊗ C, C1 = Ip ⊗ C, A = IN ⊗A, A1 = Ip ⊗A,

B = IN ⊗B, B1 = Ip ⊗B, G = G⊗D, Gτ = G⊗Dτ ,

xi(t) = (xi1(t), xi2(t), . . . , xin(t))T (∀i = 1, 2, . . . , N), x(t) = (xT1 (t), xT2 (t), . . . , xTN (t))T ,

f(x(t)) = (fT (x1(t)), f
T (x2(t)), . . . , f

T (xN (t)))T , I(t) = (IT (t), IT (t), . . . , IT (t))T ,(11)

where IN is the N dimensional identity matrix.
Then the complex network (4) can be recast as follows:

(12)
ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t− τ(t))) + I(t) + Gx(t) + Gτx(t− τ(t)), i = 1, 2, . . . , N.

Theorem 1. Suppose A2–A4 hold. Network (12) is globally exponentially synchronized if
there exist positive definite matrices P = (pij)n×n ∈ Rn×n, Q = (qij)n×n ∈ Rn×n, and
Ω = (Ωij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n,
a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, and an irreducible symmetric matrix T = (tij) ∈
RN×N satisfying A4, such that

(13) Λ0 =

⎛⎝ −2PC − Δ + FΣF PA PB
ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and one of the following conditions holds:

(i) Λij =

( ∑N
k=1 TikGkj(PD + DTP ) + Tij(Ω + Δ)

∑N
k=1 TikGkjPDτ∑N

k=1 TikGkjD
T
τ P −(1 − h)TijΩ

)
< 0

∀1 ≤ i < j ≤ N.

(14)

(ii) Λ̃ij =

(
2
∑n

k=1 pikdkjTG + (Ωij + Δij)T
∑n

k=1 pikdτkjTG∑n
k=1 pikdτkjG

TT −(1 − h)ΩijT

)
> 0

∀1 ≤ i, j ≤ n.

(15)
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Proof. See Appendix A.
Instead of using inequality (A.4), from assumption A1, one has

fT (x(t))MTΣMf(x(t)) =
∑p

j=1 α
2
j [f(xj1(t)) − f(xj2(t))]

TΣ[f(xj1(t)) − f(xj2(t))]

≤
∑p

j=1 y
T
j (t)FΣ[f(xj1(t)) − f(xj2(t))].

(16)

Similarly, following the same steps in part (i) of Theorem 1, one can easily attain the following
corollary.

Corollary 1. Suppose that assumptions A1–A4 hold. Then network (12) is globally expo-
nentially synchronized if there exist positive definite matrices P = (pij)n×n ∈ Rn×n, Q =
(qij)n×n ∈ Rn×n, and Ω = (Ωij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ =
diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n, a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, and an irreducible
symmetric matrix T = (tij) ∈ RN×N satisfying A4, such that

(17)

⎛⎝ −2PC − Δ PA + FΣ PB
ATP + ΣF −2Σ + Q 0

BTP 0 −(1 − h)Q

⎞⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and
(18)( ∑N

k=1 TikGkj(PD + DTP ) + Tij(Ω + Δ)
∑N

k=1 TikGkjPDτ∑N
k=1 TikGkjD

T
τ P −(1 − h)TijΩ

)
< 0 ∀1 ≤ i < j ≤ N.

Denote e = (1, 1, . . . , 1)T ∈ RN , J = eeT , U = NIN − J . Let T = −U = J −NIN ; then
Tij = 1 (i �= j), Tij = −(N − 1) (i = j), i, j = 1, 2, . . . , N . It is easy to verify that T satisfies
assumption A4. According to Lemma 3, there exists a p×N matrix M ∈ MN

2 (1), such that
T = −MTM . Since G satisfies assumption A4, then one has∑N

k=1 TikGkj = (Tii − 1)Gij +
∑N

k=1, k �=i TikGkj + Gij

= −NGij +
∑N

k=1 Gkj = −NGij .
(19)

Therefore, from Theorem 1, one gets the following corollary.
Corollary 2. Suppose assumptions A2–A4 hold. Then network (12) is globally exponen-

tially synchronized if there exist positive definite matrices P = (pij)n×n ∈ Rn×n, Q =
(qij)n×n ∈ Rn×n, and Ω = (Ωij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ =
diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n, and a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, such that

(20)

⎛⎝ −2PC − Δ + FΣF PA PB
ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and

(21)

(
−NGij(PD + DTP ) + (Ω + Δ) −NGijPDτ

−NGijD
T
τ P −(1 − h)Ω

)
< 0 ∀1 ≤ i < j ≤ N.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL SYNCHRONIZATION OF HYBRID COUPLED NETWORKS 115

Remark 1. In [16], Cao and his colleagues investigated the global synchronization of a
coupled complex network with constant time-delay. The main theorem in [16] is Corollary 2
with h = 0, where the time-delay is a constant. Therefore, the main result in [16] is a special
case of Theorem 1.

Let Gτ = 0; i.e., there is no linearly delayed coupling in network (12) as that in [6, 7, 8].
Let Ω = ζIn, where ζ is a sufficient small positive number. Then one has the following
corollary.

Corollary 3. Suppose assumptions A2–A4 hold. Network (12) with Dτ = 0 is globally ex-
ponentially synchronized if there exist positive definite matrices P = (pij)n×n ∈ Rn×n and
Q = (qij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n,
a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, and an irreducible symmetric matrix T = (tij) ∈
RN×N satisfying A4, such that

(22)

⎛⎝ −2PC − Δ + FΣF PA PB
ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and

(23)

(
2

n∑
k=1

pikdkjTG + ΔijT

)
> 0 ∀1 ≤ i, j ≤ n.

It should be especially emphasized that the inner coupling matrix D is not necessarily a
diagonal matrix in Theorem 1. If D is a diagonal matrix, then one gets the following corollary.

Corollary 4. Suppose that assumptions A2–A4 hold. Assume also that Dτ = 0 and D is
diagonal. Network (12) is globally exponentially synchronized if there exist a positive definite
matrix Q = (qij)n×n ∈ Rn×n, positive definite diagonal matrices P = diag(p1, p2, . . . , pn) ∈
Rn×n and Σ = diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n, a symmetric matrix Δ = diag(δ1, δ2, . . . , δn) ∈
Rn×n, and an irreducible symmetric matrix T = (tij) ∈ RN×N satisfying A4, such that

(24)

⎛⎝ −2PC − Δ + FΣF PA PB
ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and

(25) T (2pidiG + δi) > 0, i = 1, 2, . . . , n.

Let P , Ω, and Δ be diagonal matrices. According to part (ii) of Theorem 1, one has the
following corollary.

Corollary 5. Suppose assumptions A2–A4 hold. Suppose also that D and Dτ are diagonal
matrices. Then network (12) is globally exponentially synchronized if there exist a positive def-
inite matrix Q = (qij)n×n ∈ Rn×n, positive definite diagonal matrices P = diag(p1, p2, . . . , pn)
∈ Rn×n, Σ = diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n, and Σ = diag(Ω1,Ω2, . . . ,Ωn) ∈ Rn×n, a
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symmetric matrix Δ = diag(δ1, δ2, . . . , δn) ∈ Rn×n, and an irreducible symmetric matrix
T = (tij) ∈ RN×N satisfying A4, such that

(26)

⎛⎝ −2PC − Δ + FΣF PA PB
ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n and

(27)

(
2pidiTG + Ωi + δiT pidτiTG

pidτiG
TT −(1 − h)ΩiT

)
> 0, i = 1, 2, . . . , n.

Remark 2. In [6], Lu and Chen further investigated the synchronization of a coupled
connected neural network with constant time-delay. Theorem 3 in [6] is Corollary 4 with
h = 0. Therefore, the main result in [6] is a special case of Theorem 1. Moreover, in [6],
the inner coupling matrix D and the inner delayed coupling matrix Dτ are both diagonal
matrices. However, one removes these limit conditions in this paper.

Remark 3. To minimize the number of LMIs in the conditions of Theorem 1, one can
apply the following rule: if N < n, one can use condition (i) of Theorem 1; otherwise, one can
use condition (ii) of Theorem 1.

Since the conditions of Theorem 1 are relatively complex, one will simplify these LMIs by
introducing some special M ∈ MN

2 (1).
Theorem 2. Suppose that assumptions A2–A4 hold. Network (12) is globally asymptotically

synchronized if there exist positive definite matrices P = (pij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n,

Q = (qij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n, and R = (rij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n

and a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,Σ(N−1)n) ∈ R(N−1)n×(N−1)n,
such that
(28)

Ω =

⎛⎜⎜⎜⎝
−2PC1 + PH + HTP + FΣF + R PHτ PA1 PB1

HT
τ P −(1 − h)R 0 0

A1TP 0 −Σ + Q 0

B1TP 0 0 −(1 − h)Q

⎞⎟⎟⎟⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n, F = IN−1 ⊗ F , H = MGJ , H = (MGJ) ⊗ D,
Hτ = (MGJ) ⊗Dτ , and M and J are defined in (9).

Proof. See Appendix B.
Instead of using inequality (B.4), from assumption A1, one has

fT (x(t))MTΣMf(x(t)) =
∑N−1

j=1 [f(xj(t)) − f(xj+1(t))]
TΣj [f(xj(t)) − f(xj+1(t))]

≤
∑N−1

j=1 [xj(t) − xj+1(t)]
TFΣj [xj(t) − xj+1(t)]

= xT (t)MTFΣMx(t),

(29)

where Σj = diag(Σ(j−1)n+1, . . . ,Σjn). Following the same steps in Theorem 2, other conditions
can be similarly verified. Then the following corollary is obtained.
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Corollary 6. Suppose assumptions A1–A4 hold. Network (12) is globally asymptotically syn-
chronized if there exist positive definite matrices P = (pij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n,

Q = (qij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n, and R = (rij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n

and a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,Σ(N−1)n) ∈ R(N−1)n×(N−1)n,
such that

(30)

⎛⎜⎜⎜⎝
−2PC1 + PH + HTP + R PHτ PA1 + FΣ PB1

HT
τ P −(1 − h)R 0 0

A1TP + ΣF 0 −2Σ + Q 0

B1TP 0 0 −(1 − h)Q

⎞⎟⎟⎟⎠ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n, F = IN−1 ⊗ F , H = MGJ , H = (MGJ) ⊗ D,
Hτ = (MGJ) ⊗Dτ , and M and J are defined in (9).

Corollary 7. Suppose that assumptions A2–A4 hold. Network (12) is globally asymptot-
ically synchronized if there exist positive definite matrices P = (pij)n×n ∈ Rn×n, Q =
(qij)n×n ∈ Rn×n, and R = (rij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ =
diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n, and a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, such that

(31) Λ0 =

⎛⎝ −2PC − Δ + FΣF PA PB
ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞⎠ < 0

and

(32) Ξ =

(
PH + HTP + R + Δ PHτ

HT
τ P −(1 − h)R

)
< 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n, P = IN−1 ⊗ P , R = IN−1 ⊗ R, Δ = IN−1 ⊗ Δ,
H = H ⊗D, Hτ = H ⊗Dτ , H = MGJ , and M and J are defined in (9).

Proof. See Appendix C.
When Dτ = 0, there is no linearly delayed coupling in network (12). Let R = ζ In

in Corollary 7, where ζ is a sufficiently small positive number. Then Corollary 7 can be
simplified as follows.

Corollary 8. Suppose that assumptions A2–A4 hold. Network (12) with Dτ = 0 is globally
exponentially synchronized if there exist positive definite matrices P = (pij)n×n ∈ Rn×n and
Q = (qij)n×n ∈ Rn×n, a positive definite diagonal matrix Σ = diag(Σ1,Σ2, . . . ,Σn) ∈ Rn×n,
and a symmetric matrix Δ = (Δij)n×n ∈ Rn×n, such that

Λ0 =

⎛⎝ −2PC − Δ + FΣF PA PB
ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞⎠ < 0

and
PH + HTP + Δ < 0,

where F = diag(F1, F2, . . . , Fn) ∈ Rn×n, P = IN−1 ⊗ P , Δ = IN−1 ⊗ Δ, H = H ⊗ D,
H = MGJ , and M and J are defined in (9).
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Remark 4. In [7], Wang and Cao further studied the synchronization of an array of linearly
coupled networks with time-varying delay. The main theorem, Theorem 2, in [7] is Corollary 8.
Therefore, the main result in [7] is a special case of Theorem 2. Moreover, the inner coupling
matrix D and inner delayed coupling matrix Dτ are both diagonal matrices in [7]. However,
one removes these limit conditions. Furthermore, one also introduces the time-delay in the
linear coupling in this paper.

If assumption A3 is not satisfied, i.e., τ̇(t) ≥ 1 for some t, one attains the following
synchronous theorem.

Theorem 3. Suppose assumptions A2 and A4 hold. Then network (12) is globally
asymptotically synchronized if there exist positive definite matrices P = (pij)(N−1)n×(N−1)n ∈
R(N−1)n×(N−1)n, Q = (qij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n, R = (rij)(N−1)n×(N−1)n ∈
R(N−1)n×(N−1)n, and T = (tij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n, positive definite diagonal

matrices Σ = diag(Σ1,Σ2, . . . ,Σ(N−1)n) ∈ R(N−1)n×(N−1)n and Λ = diag(Λ1,Λ2, . . . ,Λ(N−1)n)

∈ R(N−1)n×(N−1)n, and a matrix U = (uij)(N−1)n×(N−1)n ∈ R(N−1)n×(N−1)n, such that
(33)

Ω1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ PHτ + UT PA1 PB1 0 (−C1 + H)TT
HT

τ P + U Ψ1 0 0 −U HT
τ T

A1TP 0 −Σ + Q 0 0 A1TT

B1TP 0 0 −(1 − h)Q − Λ 0 B1TT

0 −UT 0 0 −1

r
T 0

T(−C1 + H) THτ TA1 TB1 0 −1

r
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0,

where Ψ = −2PC1 + PH + HTP + R + FΣF, Ψ1 = −(1 − h)R − 2U + FΛF, F =
diag(F1, F2, . . . , Fn) ∈ Rn×n, F = IN−1 ⊗ F , H = MGJ , H = (MGJ) ⊗D, Hτ = (MGJ) ⊗
Dτ , and M and J are defined in (9).

Proof. See Appendix D.
Remark 5. Although Theorems 1–3 and Corollaries 1–8 give some rigorously theoretical

conditions for the synchronization of network (12), it is also difficult to fix the suitable param-
eters of matrixes in these conditions. However, in real-world control systems, one can easily
use MATLAB LMI Toolbox to numerically solve these system parameters. For example, in
Theorem 1, fixing matrix T as in Corollary 2, one can use MATLAB LMI Toolbox to solve
(20) and (21); in Theorems 2–3, one can use MATLAB LMI Toolbox to solve (28) and (33),
respectively.

In this paper, the delay-independent and delay-dependent conditions are both further
investigated. It is well known that the delay-independent conditions tend to be conservative
for small time-delay. In addition, for the coupled networks with time-varying delay, the state
estimation criteria proposed in [7] are not applicable to the case in which the derivative of
the time-varying delay is larger than 1. In this case, assumption A3 is not satisfied. In this
paper, one overcomes this difficulty in Theorem 3. Moreover, in [6, 7, 8], the coupling matrix
G is a diagonal matrix. However, we do not need this assumption in all theorems.

4. Numerical simulations. To verify the effectiveness of the proposed theorems and corol-
laries, three simple examples are given in the following.
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Figure 1. Phase portrait of a single node.

Figure 2. Small-world network.

4.1. Synchronization of small-world network. Consider the following Chua circuit de-
scribed by [37]:

(34)

⎧⎨⎩
ẋ1 = θ(−x1 + x2 − l(x1)),
ẋ2 = x1 − x2 + x3,
ẋ3 = −βx2,

where l(x1) = bx1 + 0.5(a − b)(|x1 + 1| − |x1 − 1|). The system (34) is chaotic as shown in
Figure 1 when θ = 10, β = 18, a = −4/3, and b = −3/4.

Now one considers network (4) with small-world connection as shown in Figure 2 [1], where
the single node is given as above, and

D =

⎛⎝ 4 0.4 0.4
0.8 4 1.2
−0.4 −0.8 4

⎞⎠ .
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Figure 3. Phase portrait of single node in network (4) and total synchronous error of the small-world
network (4).

According to Theorem 2 and MATLAB LMI Toolbox, one can easily attain the feasible
solutions. Then network (4) is globally asymptotically synchronized. The total synchronous
error of the small-world network is defined as follows:

err(t) =
1

25

2∑
i=1

√√√√ 25∑
j=1

[x1i(t) − xji(t)]2.

Figure 3 shows the phase portrait of single node in network (4) and the total synchronous error
of the small-world network (4). Similarly, one can verify the synchronization of network (4)
with other topological structures, such as random graph and scale-free distribution.

4.2. Synchronization of a regular network. Consider the following 2-dimensional delayed
system as a node, which is described by

(35) ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t− τ(t))) + I(t),

where x(t) = (x1(t), x2(t))
T , f(x(t)) = (tanh(x1(t)), tanh(x2(t)))

T , I(t) = (0, 0)T ,

C =

(
1 0
0 1

)
, A =

(
2.0 −0.1
−5.0 3.0

)
, B =

(
−1.5 −0.1
−0.2 −2.5

)
,

and τ(t) = 0.03[1 + sin(40t)].
It is easy to verify that assumptions A1 and A2 hold for F = I2 and assumption A3 does

not hold for h = 1.2, r = 0.06. The initial values are given as follows:

x1(s) = 0.4, x2(s) = 0.6 ∀s ∈ [−1, 0].

Then system (35) has a chaotic attractor as shown in Figure 4.
Consider a regular network (4), where A,B,C, I(t), f, τ(t) are given above, and

G =

⎛⎝ −3 1 2
1 −2 1
2 1 −3

⎞⎠ , D =

(
4 0.4

0.8 4

)
, Dτ =

(
1 0.2

0.1 1

)
.
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Figure 4. Phase portrait of a single node.

From Theorem 3, one gets the feasible solutions as follows:

P =

⎛⎜⎜⎝
9.4243 −0.9377 −1.6670 0.2372
−0.9377 7.7092 0.2372 −1.2747
−1.6670 0.2372 9.4243 −0.9377
0.2372 −1.2747 −0.9377 7.7092

⎞⎟⎟⎠ ,

Q =

⎛⎜⎜⎝
31.5252 8.0596 2.1015 −0.8115
8.0596 21.9258 −0.8115 0.8043
2.1015 −0.8115 31.5252 8.0596
−0.8115 0.8043 8.0596 21.9258

⎞⎟⎟⎠ ,

R =

⎛⎜⎜⎝
38.3723 2.7562 −3.4028 −3.1834
2.7562 20.8588 −3.1834 1.0167
−3.4028 −3.1834 38.3723 2.7562
−3.1834 1.0167 2.7562 20.8588

⎞⎟⎟⎠ ,

T =

⎛⎜⎜⎝
4.5225 0.1097 −0.4335 −0.1062
0.1097 3.1546 −0.1062 −0.0711
−0.4335 −0.1062 4.5225 0.1097
−0.1062 −0.0711 0.1097 3.1546

⎞⎟⎟⎠ ,

U =

⎛⎜⎜⎝
52.2980 3.7695 4.8829 1.0437
3.7695 44.0932 1.0437 5.5130
4.8829 1.0437 52.2980 3.7695
1.0437 5.5130 3.7695 44.0932

⎞⎟⎟⎠ ,

Σ =

⎛⎜⎜⎝
118.7802 0 0 0

0 66.5769 0 0
0 0 118.7802 0
0 0 0 66.5769

⎞⎟⎟⎠ ,
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Figure 5. Total synchronous error of network (4) with a regular structure.

Λ =

⎛⎜⎜⎝
35.4724 0 0 0

0 30.6460 0 0
0 0 35.4724 0
0 0 0 30.6460

⎞⎟⎟⎠ .

According to Theorem 3, network (4) is globally asymptotically synchronized. The total
error of network (4) is defined by

err(t) =
1

3

2∑
i=1

√
[x1i(t) − x2i(t)]2 + [x1i(t) − x3i(t)]2.

Figure 5 shows the total synchronous error of network (5), where the initial values are given
by

x1(s) =

(
0.1
−0.3

)
, x2(s) =

(
0.5
−1

)
, x3(s) =

(
1

−0.5

)
.

4.3. Synchronization of scale-free networks with network size. The scale-free network
model was proposed by Barabási and Albert [40]; they generated the network as follows:

(1) Growth: Starting with a small number (m0) of nodes, at every time step a new node
is introduced and connected to m (≤ m0) existing nodes by undirected links.

(2) Preferential attachment : The probability that the new node is connected to node i is
based on the degree ki of node i:

pi =
ki∑N
j=1 kj

.

After t time steps, this complex network has N = t+m0 nodes and mt links. In the simulation,
we take m0 = m = 5, with each node being the same system as (35) except τ(t) = et

1+et . It

is obvious that 0 < τ(t) < 1, τ̇(t) = et

(1+et)2
≤ 1

2 < 1. G is connected in the scale-free

network sense: if there exists a connection from node i to another node j in the scale-free
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Figure 6. The time for solving the LMI with network size in scale-free networks.

network, then the coupling strength Gij = Gji = 1; otherwise, Gij = Gji = 0 (j �= i), and

Gii = −
∑N

j=1, j �=iGij .

D =

(
10 1
2 10

)
, Dτ =

(
1 0.2

0.1 1

)
.

Theorem 1 is available only when the scale-free network size N = 5 or N = 6. Therefore,
the previous works [6, 7, 16] cannot be used to solve the network with size N > 6. However,
Theorem 2 in this paper can be used to solve this problem. The sufficient condition in
Theorem 2 is satisfied with more larger network size N . The time for solving the LMI in
MATLAB Toolbox by using a normal computer and the corresponding network size are given
in Figure 6.

Though the size of matrices P, Q, R, and Σ in Theorem 2 are of order N × N , it
can provide general and good results which is applicable for ensuring the synchronization of
coupled networks with large size N . If the network size N is very large, the computation of
LMI conditions is very difficult as in Figure 6 which should be further considered in the near
future.

5. Conclusions. We have developed a generally linearly hybrid coupled network with
time-varying delay and also further investigated its global synchronization. Based on this
model, several effective sufficient conditions of global network synchronization are then de-
duced by using the Lyapunov function and an LMI. Both delay-independent and delay-
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dependent sufficient conditions are attained. It should be especially pointed out that we do
not assume that the coupling matrix is symmetric or diagonal. However, most of the former
works on network synchronization are based on this assumption. Moreover, we also generalize
the derivative of the time-varying delay to any given value in this paper, although most of
the former results are based on assumption A3. To verify the effectiveness of the proposed
synchronous criteria, a small-world network, a regular network, and scale-free networks with
increasing network size are finally constructed to show the global network synchronization.

The proposed network model builds a platform for the study of network synchronization
and other network dynamical behaviors. These network synchronous criteria also provide
some new insight for the underlying mechanics of network synchronization. Furthermore,
there are some abundant dynamical behaviors in the network which deserve to be also further
investigated in the near future, such as the relation between network structure and function,
the individual and global dynamics, etc. We will also explore the possible applications for
these criteria in the real-world biological and engineering networks.

Appendix A. Proof of Theorem 1. Let

Σ = IN ⊗ Σ, Σ1 = Ip ⊗ Σ, Δ = Ip ⊗ Δ, P = Ip ⊗ P,

Q = Ip ⊗Q, Ω = Ip ⊗ Ω, In = IN ⊗ In, I1n = Ip ⊗ In.

Let y(t) = Mx(t) = (yT1 (t), yT2 (t), . . . , yTp (t))T , yi(t) = (yi1(t), yi2(t), . . . , yin(t))T , i = 1, 2,
. . . , p.

According to (13), there exists a sufficiently small ε > 0, such that

Λ̃0 =

⎛⎝ −2P (C − εIn) − Δ + FΣF PA PB
ATP −Σ + Q 0
BTP 0 −(1 − h)Q

⎞⎠ < 0.

(i) Consider the Lyapunov candidate

V (t) = e2εtxT (t)MTPMx(t) +

∫ t

t−τ(t)
e2εsfT (x(s))MTQMf(x(s)) ds

+

∫ t

t−τ(t)
e2εsxT (s)MTΩMx(s) ds.

(A.1)
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Differentiating V (t) along the trajectories of (12) yields

V̇ (t)|(12) = 2εe2εtxT (t)MTPMx(t) + 2e2εtxT (t)MTPMẋ(t) + e2εtfT (x(t))MTQMf(x(t))

− (1 − τ̇(t))e2ε(t−τ(t))fT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ e2εtxT (t)MTΩMx(t)

− (1 − τ̇(t))e2ε(t−τ(t))xT (t− τ(t))MTΩMx(t− τ(t))

≤ 2e2εtxT (t)MTPM[−(C − εIn)x(t) + Af(x(t)) + Bf(x(t− τ(t))) + I(t)

+ Gx(t) + Gτx(t− τ(t))] + e2εtfT (x(t))MTQMf(x(t))

− (1 − h)e2εtfT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ e2εtxT (t)MT (Ω + Δ − Δ)Mx(t)

− (1 − h)e2εtxT (t− τ(t))MTΩMx(t− τ(t)).

(A.2)

From the definition of M, one gets

MC = C1M, MA = A1M, MB = B1M, MIn = I1nM, MI(t) = 0.

Therefore, one has

V̇ (t)|(12) ≤ 2e2εtxT (t)MTP[−(C1 − εI1n)Mx(t) + A1Mf(x(t)) + B1Mf(x(t− τ(t)))

+ MGx(t) + MGτx(t− τ(t))] + e2εtfT (x(t))MTQMf(x(t))

− (1 − h)e2εtfT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ e2εtxT (t)MT (Ω + Δ − Δ)Mx(t)

− (1 − h)e2εtxT (t− τ(t))MTΩMx(t− τ(t)).

(A.3)

According to assumption A2, one gets

fT (x(t))MTΣMf(x(t)) =
∑p

j=1 α
2
j [f(xj1(t)) − f(xj2(t))]

TΣ[f(xj1(t)) − f(xj2(t))]

≤
∑p

j=1 y
T
j (t)FΣFyj(t).

(A.4)

Let

ξj =
(
yTj (t) αj(f(xj1(t)) − f(xj2(t)))

T αj(f(xj1(t− τ(t))) − f(xj2(t− τ(t))))T
)T

.
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It follows from (A.3)–(A.4) that

V̇ (t)|(12) ≤ e2εt∑p
j=1 ξ

T
j Λ̃0ξj + 2e2εtxT (t)MTPM[Gx(t) + Gτx(t− τ(t))] + e2εtxT (t)MT

× (Ω + Δ)Mx(t) − (1 − h)e2εtxT (t− τ(t))MTΩMx(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj + 2e2εtxT (t)(M̃T ⊗ In)(Ip ⊗ P )(M̃ ⊗ In)(G⊗D)x(t)

+ 2e2εtxT (t)(M̃T ⊗ In)(Ip ⊗ P )(M̃ ⊗ In)(G⊗Dτ )x(t− τ(t))

+ e2εtxT (t)(M̃T ⊗ In)(Ip ⊗ (Ω + Δ))(M̃ ⊗ In)x(t)

− (1 − h)e2εtxT (t− τ(t))(M̃T ⊗ In)(Ip ⊗ Ω)(M̃ ⊗ In)x(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj + 2e2εtxT (t)(M̃T M̃G⊗ PD)x(t) + 2e2εtxT (t)(M̃T M̃G⊗ PDτ )

× x(t− τ(t)) + e2εtxT (t)(M̃T M̃ ⊗ (Ω + Δ))x(t) − (1 − h)e2εtxT (t− τ(t))

× (M̃T M̃ ⊗ Ω)x(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εtxT (t)(TG⊗ PD)x(t) − 2e2εtxT (t)(TG⊗ PDτ )x(t− τ(t))

− e2εtxT (t)(T ⊗ (Ω + Δ))x(t) + (1 − h)e2εtxT (t− τ(t))(T ⊗ Ω)x(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εt∑N

i=1

∑N
j=1 x

T
i (t)(

∑N
k=1 TikGkjPD)xj(t)

− 2e2εt∑N
i=1

∑N
j=1 x

T
i (t)(

∑N
k=1 TikGkjPDτ )xj(t− τ(t)) − e2εt∑N

i=1

∑N
j=1 x

T
i (t)Tij

× (Ω + Δ)xj(t) + (1 − h)e2εt∑N
i=1

∑N
j=1 x

T
i (t− τ(t))TijΩxj(t− τ(t)).

(A.5)

Denote Lij =
∑N

k=1 TikGkj . Then one obtains

∑N
j=1 Lij =

∑N
j=1, j �=i Lij + Lii

=
∑N

j=1, j �=i

∑N
k=1 TikGkj +

∑N
k=1 TikGki

=
∑N

k=1(
∑N

j=1, j �=i TikGkj + TikGki)

=
∑N

k=1 Tik(
∑

j=1 Gkj) = 0.

(A.6)

Thus one has

(A.7) Lii = −
N∑

j=1, j �=i

Lij , i = 1, 2, . . . , N.
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Let ηij = (xTi (t) − xTj (t), xTi (t− τ(t)) − xTj (t− τ(t)))T . From (A.5), one gets

V̇ (t)|(12) ≤ e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εt∑N

i=1

∑N
j=1 x

T
i (t)(LijPD)xj(t)

− 2e2εt∑N
i=1

∑N
j=1 x

T
i (t)(LijPDτ )xj(t− τ(t))

− e2εt∑N
i=1

∑N
j=1 x

T
i (t)Tij(Ω + Δ)xj(t)

+ (1 − h)e2εt∑N
i=1

∑N
j=1 x

T
i (t− τ(t))TijΩxj(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εt∑N

i=1

(∑N
j=1, j �=i x

T
i (t)(LijPD)xj(t) + xTi (t)LiiPDxi(t)

)
− 2e2εt∑N

i=1

(∑N
j=1, j �=i x

T
i (t)(LijPDτ )xj(t− τ(t)) + xTi (t)LiiPDτxi(t− τ(t))

)
− e2εt∑N

i=1

(∑N
j=1, j �=i x

T
i (t)Tij(Ω + Δ)xj(t) + xTi (t)Tii(Ω + Δ)xi(t)

)
+ (1 − h)

× e2εt∑N
i=1

(∑N
j=1, j �=i x

T
i (t− τ(t))TijΩxj(t− τ(t)) + xTi (t− τ(t))TiiΩxi(t− τ(t))

)
= e2εt∑p

j=1 ξ
T
j Λ̃0ξj + 2e2εt∑N−1

i=1

∑N
j=i+1 (xi(t) − xj(t))

T (LijPD) (xi(t) − xj(t))

+ 2e2εt∑N−1
i=1

∑N
j=i+1 (xi(t) − xj(t))

T (LijPDτ ) (xi(t− τ(t)) − xj(t− τ(t)))

+ e2εt∑N−1
i=1

∑N
j=i+1 (xi(t) − xj(t))

T Tij(Ω + Δ) (xi(t) − xj(t)) − (1 − h)

× e2εt∑N−1
i=1

∑N
j=i+1 (xi(t− τ(t)) − xj(t− τ(t)))T TijΩ (xi(t− τ(t)) − xj(t− τ(t)))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj + e2εt∑N−1

i=1

∑N
j=i+1 η

T
ijΛijηij .

(A.8)

According to Lemma 4 and (A.8), under conditions (13)–(14), V̇ (y(t)) ≤ 0 and V (t) ≤ V (0).
That is, V (t) is a bounded function and ‖y(t)‖ = O(e−εt). This completes the proof of part (i).

(ii) Let y(t) = Mx(t) = (yT1 (t), yT2 (t), . . . , yTp (t))T , yi(t) = (yi1(t), yi2(t), . . . , yin(t))T , i =

1, 2, . . . , p, x̃j(t) = (x1j(t), x2j(t), . . . , xNj(t))
T , and ỹj(t) = (y1j(t), y2j(t), . . . , ypj(t))

T . Then

ỹj(t) = M̃x̃j(t) for j = 1, 2, . . . , n.

Following the same method in part (i), from (A.5), one has

V̇ (t)|(12) ≤ e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εtxT (t)(TG⊗ PD)x(t) − 2e2εtxT (t)(TG⊗ PDτ )x(t− τ(t))

− e2εtxT (t)(T ⊗ (Ω + Δ))x(t) + (1 − h)e2εtxT (t− τ(t))(T ⊗ Ω)x(t− τ(t))

= e2εt∑p
j=1 ξ

T
j Λ̃0ξj − 2e2εt∑n

i=1

∑n
j=1 x̃

T
i (t)(

∑n
k=1 pikdkjTG)x̃j(t)

− 2e2εt∑n
i=1

∑n
j=1 x̃

T
i (t)(

∑n
k=1 pikdτkjTG)x̃j(t− τ(t)) − e2εt∑n

i=1

∑n
j=1 x̃

T
i (t)

× (Ωij + Δij)T x̃j(t) + (1 − h)e2εt∑n
i=1

∑n
j=1 x̃

T
i (t− τ(t))ΩijT x̃j(t− τ(t)).

(A.9)

Let η̃ij = (x̃Ti (t) − x̃Tj (t), x̃Ti (t− τ(t)) − x̃Tj (t− τ(t)))T . According to (A.9), one obtains

(A.10) V̇ (t)|(12) ≤ e2εt
p∑

j=1

ξTj Λ̃0ξj + e2εt
n∑

i=1

n∑
j=1

η̃TijΛ̃ij η̃ij .
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From Lemma 4 and (A.10), under conditions (13) and (15), V̇ (y(t)) ≤ 0 and V (t) ≤ V (0).
That is, V (t) is a bounded function and ‖y(t)‖ = O(e−εt). This completes the proof of
part (ii).

Appendix B. Proof of Theorem 2. Consider the following Lyapunov candidate:
(B.1)

V (t) = xT (t)MTPMx(t) +

∫ t

t−τ(t)
fT (x(s))MTQMf(x(s)) ds +

∫ t

t−τ(t)
xT (s)MTRMx(s) ds.

Differentiating V (t) along the trajectories of (12) yields

V̇ (t)|(12) = 2xT (t)MTPMẋ(t) + fT (x(t))MTQMf(x(t)) − (1 − τ̇(t))fT (x(t− τ(t)))MT

× QMf(x(t− τ(t))) + xT (t)MTRMx(t)

− (1 − τ̇(t))xT (t− τ(t))MTRMx(t− τ(t))

≤ 2xT (t)MTPM[−Cx(t) + Af(x(t)) + Bf(x(t− τ(t))) + I(t) + Gx(t)

+ Gτx(t− τ(t))]

+ fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ xT (t)MTRMx(t) − (1 − τ̇(t))xT (t− τ(t))MTRMx(t− τ(t)).

(B.2)

From the definition of M, one has

MC = C1M, MA = A1M, MB = B1M, MI(t) = 0.

Therefore, one obtains

V̇ (t)|(12) ≤ 2xT (t)MTP[−C1Mx(t) + A1Mf(x(t)) + B1Mf(x(t− τ(t))) + MGx(t)

+ Gτx(t− τ(t))]

+ fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ xT (t)MTRMx(t) − (1 − h)xT (t− τ(t))MTRMx(t− τ(t)).

(B.3)

According to assumption A2, one gets

fT (x(t))MTΣMf(x(t)) =
∑N−1

j=1 [f(xj(t)) − f(xj+1(t))]
TΣj [f(xj(t)) − f(xj+1(t))]

≤
∑N−1

j=1 [xj(t) − xj+1(t)]
TFΣjF [xj(t) − xj+1(t)]

= xT (t)MTFΣFMx(t),

(B.4)

where Σj = diag(Σ(j−1)n+1, . . . ,Σjn). From Lemmas 1 and 5, one has

2xT (t)MTPMGx(t) = 2xT (t)MTP[(M ⊗ In)(G⊗D)]x(t)

= 2xT (t)MTP[MG⊗D]x(t)

= 2xT (t)MTP[HM ⊗D]x(t)

= 2xT (t)MTP[(H ⊗D)(M ⊗ In)]x(t)

= 2xT (t)MTPHMx(t)

(B.5)
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and

2xT (t)MTPMGτx(t− τ(t)) = 2xT (t)MTP[(M ⊗ In)(G⊗Dτ )]x(t− τ(t))

= 2xT (t)MTP[MG⊗Dτ ]x(t− τ(t))

= 2xT (t)MTP[HM ⊗Dτ ]x(t− τ(t))

= 2xT (t)MTP[(H ⊗Dτ )(M ⊗ In)]x(t− τ(t))

= 2xT (t)MTPHτMx(t− τ(t)),

(B.6)

where H = MGJ , H = (MGJ) ⊗D, Hτ = (MGJ) ⊗Dτ , and M and J are defined in (9).

According to (B.3)–(B.6), one obtains

V̇ (t)|(12) ≤ −2xT (t)MTPC1Mx(t) + 2xT (t)MTPA1Mf(x(t))

+ 2xT (t)MTPB1Mf(x(t− τ(t)))

+ 2xT (t)MTPHMx(t) + 2xT (t)MTPHτMx(t− τ(t)) + xT (t)MTFΣFMx(t)

− fT (x(t))MTΣMf(x(t)) + fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MT

× QMf(x(t− τ(t))) + xT (t)MTRMx(t) − (1 − h)xT (t− τ(t))MTRMx(t− τ(t))

= ηT (t)Ωη(t),

(B.7)

where

η(t) =
(
xT (t)MT xT (t− τ(t))MT fT (x(t))MT fT (x(t− τ(t)))MT

)T
.

From Lemma 4 and (B.7), under the condition (28), V̇ (t) ≤ 0 and V (t) ≤ V (0). That is, V (t)
is a bounded function and ‖Mx(t)‖ −→ 0. This proof is thus completed.

Appendix C. Proof of Corollary 7. Select the Lyapunov candidate (B.1), where M and
J are also defined in (9), P = IN−1 ⊗ P , Q = IN−1 ⊗Q, R = IN−1 ⊗R, and Σ = IN−1 ⊗ Σ.

From (B.7), one obtains

V̇ (t)|(12) ≤ ηT (t)Ωη(t)

=
∑N−1

j=1 ξTj Λ0ξj +
(
xT (t)MT , xT (t− τ(t))MT

)
Ξ
(
MxT (t),MxT (t− τ(t))

)T
,

(C.1)

where

ξj =
(

(xj(t) − xj+1(t))
T (f(xj(t)) − f(xj+1(t)))

T (f(xj(t− τ(t))) − f(xj+1(t− τ(t))))T
)T

and Ω is defined in (28). According to Lemma 4 and (C.1), under the conditions (31)–(32),
V̇ (t) ≤ 0 and V (t) ≤ V (0). That is, V (t) is a bounded function, and ‖Mx(t)‖ −→ 0. This
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completes the proof.

Appendix D. Proof of Theorem 3. Construct the Lyapunov function as follows:

V (t) = xT (t)MTPMx(t) +
∫ t
t−τ(t) f

T (x(s))MTQMf(x(s)) ds +
∫ t
t−τ(t) x

T (s)MTRMx(s) ds

+
∫ 0
−r dθ

∫ t
t+θ ẋ

T (s)MTTMẋ(s) ds.

(D.1)

From Lemma 6, differentiating V (t) along the trajectories of (12) results in

V̇ (t)|(12) = 2xT (t)MTPMẋ(t) + fT (x(t))MTQMf(x(t)) − (1 − τ̇(t))fT (x(t− τ(t)))MT

× QMf(x(t− τ(t))) + xT (t)MTRMx(t)

− (1 − τ̇(t))xT (t− τ(t))MTRMx(t− τ(t))

+ rẋT (t)MTTMẋ(t) −
∫ t
t−r ẋ

T (θ)MTTMẋ(θ) dθ

≤ 2xT (t)MTPM[−Cx(t) + Af(x(t)) + Bf(x(t− τ(t))) + I(t) + Gx(t)

+ Gτx(t− τ(t))]

+ fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ xT (t)MTRMx(t) − (1 − h)xT (t− τ(t))MTRMx(t− τ(t)) + rẋT (t)MTTMẋ(t)

− 1

r

(∫ t

t−τ(t)
Mẋ(θ) dθ

)T

T

(∫ t

t−τ(t)
Mẋ(θ) dθ

)
.

(D.2)

From the definition of M, one has

MC = C1M, MA = A1M, MB = B1M, MI(t) = 0.

According to (D.2), one obtains

V̇ (t)|(12) ≤ 2xT (t)MTP[−C1Mx(t) + A1Mf(x(t)) + B1Mf(x(t− τ(t))) + HMx(t)

+ HτMx(t− τ(t))]

+ fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MTQMf(x(t− τ(t)))

+ xT (t)MTRMx(t) − (1 − h)xT (t− τ(t))MTRMx(t− τ(t)) + rẋT (t)MTTMẋ(t)

− 1

r

(∫ t

t−τ(t)
Mẋ(θ) dθ

)T

T

(∫ t

t−τ(t)
Mẋ(θ) dθ

)
.

(D.3)

Similar to (B.4), one has

(D.4) fT (x(t))MTΣMf(x(t)) ≤ xT (t)MTFΣFMx(t)

and

(D.5) fT (x(t− τ(t)))MTΛMf(x(t− τ(t))) ≤ xT (t− τ(t))MTFΛFMx(t− τ(t)).
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From the Leibniz–Newton formula, for any matrix U with appropriate dimensions, one
gets

(D.6) xT (t− τ(t))MTUM

(
x(t) − x(t− τ(t)) −

∫ t

t−τ(t)
ẋ(s) ds

)
= 0.

Let

ξ(t) =
(

xT (t)MT xT (t− τ(t))MT fT (x(t))MT fT (x(t− τ(t)))MT
∫ t
t−τ(t) ẋ

T (s) dsMT
)T

,

Π =
(
−C1 + H Hτ A1 B1 0

)
;

then one has

(D.7) ẋT (t)MTTMẋ(t) = ξT (t)ΠTTΠξ(t).

Combining this with (D.3)–(D.7), one obtains

V̇ (t)|(12) ≤ −2xT (t)MTPC1Mx(t) + 2xT (t)MTPA1Mf(x(t)) + 2xT (t)MTPB1Mf(x(t− τ(t)))

+ 2xT (t)MTPHMx(t) + 2xT (t)MTPHτMx(t− τ(t)) + xT (t)MTFΣFMx(t)

− fT (x(t))MTΣMf(x(t)) + xT (t− τ(t))MTFΛFMx(t− τ(t)) − fT (x(t− τ(t)))MT

× ΛMf(x(t− τ(t))) + fT (x(t))MTQMf(x(t)) − (1 − h)fT (x(t− τ(t)))MTQM

× f(x(t− τ(t))) + xT (t)MTRMx(t) − (1 − h)xT (t− τ(t))MTRMx(t− τ(t))

+ rξT (t)ΠTTΠξ(t) − 1

r

(∫ t

t−τ(t)
Mẋ(θ) dθ

)T

T

(∫ t

t−τ(t)
Mẋ(θ) dθ

)
+ 2xT (t− τ(t))MTUM

(
x(t) − x(t− τ(t)) −

∫ t
t−τ(t) ẋ(s) ds

)
= ξT (t)(Ξ + rΠTTΠ)ξ(t),

(D.8)

where

Ξ =

⎛⎜⎜⎜⎜⎜⎜⎝
Ψ PHτ + UT PA1 PB1 0

HT
τ P + U −(1 − h)R − 2U + FΛF 0 0 −U

A1TP 0 −Σ + Q 0 0

B1TP 0 0 −(1 − h)Q − Λ 0

0 −UT 0 0 −1

r
T

⎞⎟⎟⎟⎟⎟⎟⎠
and Ψ = −2PC1 + PH + HTP + R + FΣF.

According to Schur complement Lemma 2, Ξ+rΠTTΠ < 0 is equivalent to Ω1 < 0. From
Lemma 4 and (D.8), under the condition (33), V̇ (t) ≤ 0 and V (t) ≤ V (0). That is, V (t) is a
bounded function, and ‖Mx(t)‖ −→ 0. Thus the proof is completed.
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REFERENCES

[1] S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), pp. 268–276.
[2] D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature, 393 (1998),

pp. 440–442.
[3] C. Li and G. Chen, Stability of a neural network model with small-world connections, Phys. Rev. E (3),

68 (2003), 052901.
[4] X. Wang and G. Chen, Synchronization in scale-free dynamical networks: Robustness and fragility,

IEEE Trans. Circuits Systems I Fund. Theory Appl., 49 (2002), pp. 54–62.
[5] X. Wang and G. Chen, Synchronization in small-world dynamical networks, Internat. J. Bifur. Chaos

Appl. Sci. Engrg., 12 (2002), pp. 187–192.
[6] W. Lu and T. Chen, Synchronization of coupled connected neural networks with delays, IEEE Trans.

Circuits Syst. I Regul. Pap., 51 (2004), pp. 2491–2503.
[7] W. Wang and J. Cao, Synchronization in an array of linearly coupled networks with time-varying delay,

Phys. A, 366 (2006), pp. 197–211.
[8] G. Chen, J. Zhou, and Z. Liu, Global synchronization of coupled delayed neural networks and applica-

tions to chaotic CNN models, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), pp. 2229–2240.
[9] C. Wu and L. O. Chua, Synchronization in an array of linearly coupled dynamical systems, IEEE Trans.

Circuits Systems I Fund. Theory Appl., 42 (1995), pp. 430–447.
[10] C. Wu, Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying

coupling, IEEE Trans. Circuits Systems II, 52 (2005), pp. 282–286.
[11] C. Li, S. Li, X. Liao, and J. Yu, Synchronization in coupled map lattices with small-world delayed

interactions, Phys. A, 335 (2004), pp. 365–370.
[12] C. Li, H. Xu, X. Liao, and J. Yu, Synchronization in small-world oscillator networks with coupling

delays, Phys. A, 335 (2004), pp. 359–364.
[13] C. Li and G. Chen, Synchronization in general complex dynamical networks with coupling delays, Phys.

A, 343 (2004), pp. 263–278.
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[34] J. Lü, X. Yu, G. Chen, and D. Cheng, Characterizing the synchronizability of small-world dynamical

networks, IEEE Trans. Circuits Syst. I Regul. Pap., 51 (2004), pp. 787–796.
[35] W. Yu and J. Cao, Synchronization control of stochastic delayed neural networks, Phys. A, 373 (2007),

pp. 252–260.
[36] W. Yu, J. Cao, and G. Chen, Robust adaptive control of unknown modified Cohen-Grossberg neural

networks with delay, IEEE Trans. Circuits Systems II, 54 (2007), pp. 502–506.
[37] L. O. Chua, The genesis of Chua’s circuit, Arch Elektron Ubertragung, 46 (1992), pp. 250–257.
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