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In this paper, a general two-neuron model with time delay is considered, where the time delay is
regarded as a parameter. It is found that Hopf bifurcation occurs when this delay passes through
a sequence of critical value. By analyzing the characteristic equation and using the frequency
domain approach, the existence of Hopf bifurcation is determined. The stability of bifurcating
periodic solutions are determined by the harmonic balance approach, Nyquist criterion and the
graphic Hopf bifurcation theorem. Numerical results are given to justify the theoretical analysis.
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1. Introduction

In recent years, the dynamical characteristics
(including stable, unstable, oscillatory, and chaotic
behavior) of neural networks [Cao & Chen, 2004;
Cao et al., 2005; Cao & Li, 2005; Cao & Liang,
2004; Cao et al., 2004; Cao & Wang, 2004, 2005;
Liao et al., 2001a, 2001b; Ruan & Wei, 2001,
2003; Yu & Cao, 2005] have attracted the atten-
tion of many researchers, and much efforts have
been expended. It is well known that neural net-
works are complex and large-scale nonlinear sys-
tems, neural networks under study today have
been dramatically simplified [Guo et al., 2004; Liao
et al., 2001a, 2001b; Ruan & Wei, 2001, 2003;
Song et al., 2005; Song & Wei, 2005; Yu & Cao,
2005; Yu & Cao, in press]. These investigations
of simplified models are still very useful, since

the dynamical characteristics found in simple mod-
els can be carried over to large-scale networks in
some way. So in order to know better the large-scale
networks, we should study the simplified networks
first.

In 1946, Tsypkin published his classical paper
[Tsypkin, 1946] on feedback systems with delay. It is
a major extension of the Nyquist criterion in which
the problem of delay was solved in a single stroke
simply and elegantly. An English translation of this
paper was published in a volume in commemoration
of Harry Nyquist edited by MacFarlane [Tsypkin,
1946]. It is fitting that this paper appeared immedi-
ately following that of Nyquist’s original paper. The
method of Tsypkin is of major significance consid-
ering that the analytical formulation of the problem
of stability with delay is very complicated.
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There has been increasing interest in inves-
tigating the dynamics of neural networks since
Hopfield [1984] constructed a simplified neural net-
work model. Based on the Hopfield neural network
model, Marcus and Westervelt [1989] argued that
time delays always occur in the singal transmission
and proposed a neural network model with delay.
Afterward, a variety of artificial models have been
estabished to describe neural networks with delays
[Babcock & Westervelt, 1987; Baldi & Atiya, 1994;
Hopfield, 1984; Kosko, 1988]. Many researchers
[Gopalsamy & Leung, 1996, 1997; Liao et al., 1999]
focus their attention on the neural networks with
time delays and study the dynamical characteris-
tics of neural networks with time delays.

It is known to all that periodic solutions can
cause a Hopf bifurcation. This occurs when an
eigenvalue crosses the imaginary axis from left to
right as a real parameter in the equation pass-
ing through a critical value. Recently, stability
and Hopf bifurcation analysis have been studied
in many neural network models [Guo et al., 2004;
Liao et al., 2001a, 2001b; Ruan & Wei, 2001, 2003;
Song et al., 2005; Song & Wei, 2005; Yu & Cao,
2005; Yu & Cao, in press]. Since the general mod-
els are more complex and we cannot investigate
the bifurcation analysis of them. Thus, networks
of two neurons have been used as a prototype to
understand the dynamics of large-scale neural net-
works. Hopf bifurcation and stability of bifurcat-
ing periodic solutions are often studied using the
approach in [Hassard et al., 1981] (see, for example
[Guo et al., 2004; Liao et al., 2001a, 2001b; Ruan
& Wei, 2001, 2003; Song et al., 2005; Song & Wei,
2005; Yu & Cao, 2005, 2006]). In this paper, we will
study a more general neural network model with
time delay, using Nyquist criterion and the graphi-
cal Hopf bifurcation theorem stated in [Mees, 1981;
Moiola & Chen, 1996] to determine the existence of
Hopf bifurcation and stability of bifurcating peri-
odic solutions.

Gopalsamy and Leung [1996] considered the fol-
lowing neural network of two neurons constituting
an activator-inhibitor assembly by the delay differ-
ential system:


dx(t)
dt

= −x(t) + a tanh[c1y(t − τ)],

dy(t)
dt

= −y(t) + a tanh[−c2x(t − τ)],
(1)

where a, c1, c2 and τ are positive constants, y
denotes the activating potential of x, and x is the

inhibiting potential. Gopalsamy and Leung showed
that if the delay has a sufficiently large magni-
tude, the network is excited to exhibit a temporally
periodic behavior, where the analytical mecha-
nism for the onset of cyclic behavior is through
a Hopf bifurcation. Approximate solutions to the
periodic output of the netlet were calculated, and
the stability of the temporally periodic cyclic was
investigated.

Olien and Bèlair [1997], on the other
hand, investigated the following system with two
delays



dx1(t)
dt

= −x1(t) + a11f(x1(t − τ1))

+ a12f(x2(t − τ2)),

dx2(t)
dt

= −x2(t) + a21f(x1(t − τ1))

+ a22f(x2(t − τ2)),

(2)

for which several cases, such as τ1 = τ2, a11 = a22 =
0, etc. were discussed. They obtained some sufficient
conditions for the stability of the stationary point
of model (2), and showed that (2) undergoes some
bifurcations at certain values of the parameters. Wei
and Ruan [1999] analyzed model (2) with two dis-
crete delays. For the case without self-connections,
they found that Hopf bifurcation occurs when the
sum of the two delays passes through a sequence
of critical values. The stability and direction of the
Hopf bifurcation were also determined.

In this paper, we will consider a more general
equation with a discrete delay, and study the exis-
tence of a Hopf bifurcation and the stability of bifur-
cating periodic solutions of equation.

The organization of this paper is as follows: In
Sec. 2, we will discuss the stability of the triv-
ial solutions and the existence of Hopf bifurcation.
In Sec. 3, a formula for determining the stability
of bifurcating periodic solutions will be given by
using harmonic balance approach, Nyquist criterion
and the graphic Hopf bifurcation theorem intro-
duced at [Allwright, 1977; MacFarlane & Postleth-
waite, 1977; Mees, 1981; Moiola & Chen, 1993a,
1993b, 1996]. In Sec. 4, numerical simulations
aimed at justifying the theoretical analysis will be
reported.

2. Existence of Hopf Bifurcation

The neural networks with single delay considered in
this paper are described by the following differential
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equations with delay:


ẋ1(t) = −a1x1 + b11f1(x1(t − τ))
+ b12f2(x2(t − τ)),

ẋ2(t) = −a2x2 + b21f1(x1(t − τ))
+ b22f2(x2(t − τ)),

(3)

where ai(i = 1, 2) are real and positive, x1(t)
and x2(t) denote the activations of two neurons,
τ denote the synaptic transmission delay, bij(1 ≤
i, j ≤ 2) are the synaptic weights, fi(i = 1, 2) is the
activation function and fi : R → R is a C3 smooth
function with fi(0) = 0.

In a more simplified case, (3) can be written as

ẋ(t) = −Ax(t) + Bf(x(t − τ)), (4)

where

x(t) =
(

x1(t)
x2(t)

)
, A =

(
a1 0
0 a2

)
,

B =
(

b11 b12

b21 b22

)
, f =

(
f1(x(t − τ))
f2(x(t − τ))

)
.

By introducing a “state-feedback control” u = g(y),
one obtains a linear system with a nonlinear feed-
back, as follows


ẋ(t) = −Ax(t) + Bu,

y(t) = −Cx(t),
u = g(y(t − τ)),

(5)

where

y(t) =
(

y1(t)
y2(t)

)
, C =

(
1 0
0 1

)
,

g(y(t − τ))=
(

g1(y1(t − τ))
g2(y2(t − τ))

)
=
(

f1(−y1(t − τ))
f2(−y2(t − τ))

)
.

Next, taking a Laplace transform L(•) on (5),
yields

L(x) = [sI + A]−1BL(g(y)),

and so

L(y) = −CL(x) = −C[sI + A]−1BL(g(y))
= −G(s)L(g(y)), (6)

where

G(s) = C[sI + A]−1B (7)

is the standard transfer matrix of the linear part of
the system.

It follows from (6) that we may only deal with
y(t) in the frequency domain, without directly con-
sidering x(t). In so doing, we first observe that if

x∗ is an equilibrium solution of the first equation of
(5), then

y∗(t) = −G(0)g(y∗). (8)

From (7), we have

G(s) = C[sI + A]−1B

=
(

1 0
0 1

)(
s + a1 0

0 s + a2

)−1(
b11 b12

b21 b22

)

=




1
s + a1

0

0
1

s + a2



(

b11 b12

b21 b22

)

=




b11

s + a1

b12

s + a1

b21

s + a2

b22

s + a2


 . (9)

Clearly, y = 0 is the equilibrium of the
linearized feedback system, then the Jacobian is
given by

J =
(

∂g

∂y

)∣∣∣∣
y=0

=
(

g11 g12

g21 g22

)
=
(

g11 0
0 g22

)
, (10)

where

gij =
∂gi

∂yj

∣∣∣∣
y=0

(i, j = 1, 2),

so one has

G(s)J =




b11

s + a1

b12

s + a1

b21

s + a2

b22

s + a2



(

g11 0
0 g22

)

=




b11g11

s + a1

b12g22

s + a1

b21g11

s + a2

b22g22

s + a2


 . (11)

Set

h(λ, s; τ) = det|λI − G(s)Je−sτ |

=

∣∣∣∣∣∣∣∣∣
λ − b11g11

s + a1
e−sτ − b12g22

s + a1
e−sτ

− b21g11

s + a2
e−sτ λ − b22g22

s + a2
e−sτ

∣∣∣∣∣∣∣∣∣
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= λ2 −
(

b11g11

s + a1
+

b22g22

s + a2

)
λe−sτ

+
1

(s + a1)(s + a2)

× (b11b22 − b12b21)g11g22e
−2sτ . (12)

Then applying the generalized Nyquist stability
criterion, the following results stated in [Mees,
1981; Moiola & Chen, 1993a, 1993b, 1996] can be
established.

Lemma 2.1 [Moiola & Chen, 1996]. If an eigen-
value of the corresponding Jacobian of the nonlin-
ear system, in the time domain, assumes a purely
imaginary value iω0 at a particular value τ = τ0,
then the corresponding eigenvalue of the constant
matrix [G(iω0)Je−iω0τ0 ] in the frequency domain
must assume the value −1 + i0 at τ = τ0.

To apply Lemma 2.1, let λ̂ = λ̂(iω; τ) be the
eigenvalue of G(iω)Je−iωτ that satisfies λ̂(iω0; τ0) =
−1 + i0. Then

h(−1, iω0; τ0) = 1 +
(

b11g11

s + a1
+

b22g22

s + a2

)
e−sτ

+
1

(s + a1)(s + a2)
(b11b22 − b12b21)

× g11g22e
−2sτ = 0. (13)

Thus, we obtained

s2 + (a1 + a2)s + a1a2 + [(b11g11

+ b22g22)s + a2b11g11 + a1b22g22]e−sτ

+ [(b11b22−, b12b21)g11g22]e−2sτ = 0, (14)

and it can be written as

s2 + d1s + d2 + (d3s + d4)e−sτ + d5e
−2sτ = 0, (15)

where d1 = a1 + a2, d2 = a1a2, d3 = b11g11 +
b22g22, d4 = a2b11g11 + a1b22g22, d5 = (b11b22 −
b12b21)g11g22.

It is easy to see that (14) is equivalent to the
characteristic equation of (3). Multiplying esτ on
both sides of (15), we have

(s2 + d1s + d2)esτ + (d3s + d4) + d5e
−sτ = 0. (16)

Let s = iω0, τ = τ0, and substituting these into
(16), for the sake of simplicity, we denote ω0 and τ0

by ω, τ , respectively, then (16) becomes

(cos(ωτ) + i sin(ωτ))(−ω2 + d1iω + d2) + d3iω

+ d4 + d5(cos(ωτ) − i sin(ωτ)) = 0. (17)

Separating the real and imaginary parts, we have{
(ω2 − d2 − d5) cos(ωτ) + d1ω sin(ωτ) = d4,

(ω2 − d2 + d5) sin(ωτ) − d1ω cos(ωτ) = d3ω.
(18)

By simple calculation, we obtained

sin(ωτ) =
ω(d3ω

2 + d1d4 − d2d3 − d3d5)
ω4 + (d2

1 − 2d2)ω2 + d2
2 − d2

5

, (19)

and

cos(ωτ) =
(d4 − d1d3)ω2 + (d5d4 − d2d4)
ω4 + (d2

1 − 2d2)ω2 + d2
2 − d2

5

. (20)

Let e1 = d2
1 − 2d2, e2 = d2

2 − d2
5, e3 = d3, e4 =

d1d4−d2d3−d3d5, e5 = d4−d1d3, e6 = d5d4−d2d4,
and sin(ωτ), cos(ωτ) can be written as

sin(ωτ) =
ω(e3ω

2 + e4)
ω4 + e1ω2 + e2

, (21)

and

cos(ωτ) =
e5ω

2 + e6

ω4 + e1ω2 + e2
. (22)

As is known to all that sin2(ωτ)+ cos2(ωτ) = 1, we
have

ω8 + f3ω
6 + f2ω

4 + f1ω
2 + f0 = 0, (23)

where f3 = 2e1−e2
3, f2 = e2

1+2e2−2e3e4−e2
5, f1 =

2e1e2 − e2
4 − 2e5e6, f0 = e2

2 − e2
6. Denote z = ω2,

(23) becomes

z4 + f3z
3 + f2z

2 + f1z + f0 = 0. (24)

Let

l(z) = z4 + f3z
3 + f2z

2 + f1z + f0.

Suppose (H1) (24) has at least one positive root.

If A, B, f of the system (4) are given, we can
use the computer to calculate the roots of (24) eas-
ily. Since limz→∞ l(z) = +∞, we conclude that if
f0 < 0, then (24) has at least one positive root.

Without loss of generality, we assume that it
has four positive roots, defined by z1, z2, z3, z4,
respectively. Then (23) will have four positive roots

ω1 =
√

z1, ω2 =
√

z2, ω3 =
√

z3, ω4 =
√

z4.

By (22), we have

cos(ωkτ) =
e5ω

2
k + e6

ω4
k + e1ω2

k + e2
. (25)
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Thus, we denote

τ j
k =

1
ωk

{
±arccos

(
e5ω

2
k + e6

ω4
k + e1ω2

k + e2

)
+2jπ

}
, (26)

where k = 1, 2, 3, 4; j = 0, 1, . . . , then ±iωk is a pair
of purely imaginary roots of (14) with τ j

k . Define

τ0 = τ0
k0

= min
k∈{1,2,3,4}

{τ0
k : τ0

k ≥ 0}, ω0 = ωk0. (27)

Note that when τ = 0, (15) becomes

s2 + ps + q = 0, (28)

where p = d1 + d3, q = d2 + d4 + d5. If

(H2): p > 0 and q > 0 holds, (28) has two roots with
negative real parts and system (3) is stable near the
equilibrium.

Till now, we can employ a result from [Ruan &
Wei, 2001] to analyze (15), which is, for the conve-
nience of the reader, stated as follows:

Lemma 2.2 [Ruan & Wei, 2001]. Consider the
exponential polynomial

P (λ, e−λτ1 , . . . , e−λτm)

= λn + p
(0)
1 λn−1 + · · · + p

(0)
n−1λ + p(0)

n

+ [p(1)
1 λn−1 + · · · + p

(1)
n−1λ + p(1)

n ]e−λτ1 + · · ·
+ [p(m)

1 λn−1 + · · · + p
(m)
n−1λ + p(m)

n ]e−λτm ,

where τi ≥ 0(i = 1, 2, . . . ,m) and p
(i)
j (i = 0, 1, . . . ,

m; j = 1, 2, . . . , n) are constants. As (τ1, τ2, . . . , τm)
vary, the sum of the order of the zeros of
P (λ, e−λτ1 , . . . , e−λτm) on the open right half plane
can change only if a zero appears on or crosses the
imaginary axis.

From Lemmas 2.1 and 2.2, we have the
following:

Theorem 2.3. Suppose that (H1) and (H2) holds,
then the following results hold:

(I) For Eq. (3), its zero solution is asymptotically
stable for τ ∈ [0, τ0),

(II) Eq. (3) undergoes a Hopf bifurcation at the ori-
gin when τ = τ0. That is, system (3) has a branch of
periodic solutions bifurcating from the zero solution
near τ = τ0.

Remark 2.4. Yu and Cao [2005] studied a van der
Pol equation. If we choose

A =
(

0 0
0 0

)
, B =

(−a 1
−1 0

)
, J =

(−1 0
0 −1

)
,

and the characteristic equation is

λ2 + aλe−λτ + e−2λτ = 0,

this is a special case in our characteristic Eq. (15).

Remark 2.5. In [Guo et al., 2004], though Guo,
Huang and Wang studied a two-neuron network
model with three delays, the coefficients of the sys-
tem must satisfy some conditions. We choose

A =
(

1 0
0 1

)
, B =

(
a11 a12

a21 a11

)
,

J =
(−f ′(0) 0

0 −f ′(0)

)
, β = −a11g11,

a12 = −a12g22, a21 = −a21g11

and the characteristic equation discussed in [Guo
et al., 2004] is

[λ + 1 − βe−λτ ]2 − a12a21e
−2λτ = 0.

It is also a special case in our characteristic Eq. (15).

Remark 2.6. Song et al. [2005] studied a simplified
BAM neural network with three delays, but through
a simple transformation the model can be changed
into one time delay since the BAM neural network
do not have self-connections. By the method studied
in [Ruan & Wei, 2001], Song, Han and Wei studied
the following characteristic equation

λ3 + a2λ
2 + a1λ + a0 + (b1λ + b0)e−λτ = 0,

and this characteristic equation is more simple than
ours, also the approach used in that paper is more
difficult than ours since it involves much mathemat-
ical analysis in that paper. We can also develop our
model to a third degree exponential polynomial.

Remark 2.7. Song and Wei [2005] studied a delayed
predator–prey system, the characteristic equa-
tion is

λ2 + pλ + r + (sλ + q)e−λτ = 0,

clearly, it is a special case in our characteristic
Eq. (15).

For the coefficients given in the above charac-
teristic equations, the reader may refer to the ref-
erences. In this paper, we have a method to solve
characteristic Eq. (15).
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3. Stability of Bifurcating Periodic
Solutions

Based on the Lemma 2.1 and the results in
[Allwright, 1977; Mees, 1981; Moiola & Chen,
1993a, 1993b, 1996], we just give some conclusions
for simplicity. By applying a second-order harmonic
balance approximation in [Mees, 1981; Moiola &
Chen, 1996] to the output, we have

y(t) = y∗ + �
{

2∑
k=0

Yke
ikωt

}
, (29)

where y∗ is the equilibrium point, �{•} is the real
part of the complex constant, and the complex
coefficients Yk are determined by the approxima-
tion as shown below: we first define an auxiliary
vector

ξ1(ω̃) =
−wT [G(iω̃)]p1e

−iω̃τ̃

wT v
, (30)

where τ̃ is the fixed value of the parameter τ ,
wT and v are the left and right eigenvectors
of [G(iω̃)]Je−iω̃τ , respectively, associated with the
value λ̂(iω̃; τ̃), and

p1 =
[
D2

(
V02 ⊗ v +

1
2
v ⊗ V22

)
+

1
8
D3v ⊗ v ⊗ v

]
,

(31)

in which · denotes the complex conjugate as usual,
ω̃ is the frequency of the intersection between the
λ̂ locus and the negative real axis closest to the
point (−1 + i0), ⊗ is the tensor product operator,
and

D2 =
∂2g(y; τ̃ )

∂y2

∣∣∣∣
y=0

, (32)

D3 =
∂3g(y; τ̃ )

∂y3

∣∣∣∣
y=0

, (33)

V02 = −1
4
[I + G(0)J ]−1G(0)D2v ⊗ v, (34)

V22 = −1
4
[I + G(2iω̃)Je−2iω̃τ̃ ]−1

×G(2iω̃)D2v ⊗ ve−2iω̃τ̃ . (35)

Then, the following Hopf bifurcation theorem for-
mulated in the frequency domain can be established

[Moiola & Chen, 1996]:

Theorem 3.1. (The Graphical Hopf Bifurcation
Theorem). Suppose that when ω varies, the vec-
tor ξ1(ω̃) 	= 0, where ξ1(ω̃) is defined in (30), and
that the half-line, starting from −1 + i0 and point-
ing to the direction parallel to that of ξ1(ω̃), first
intersects the locus of the eigenvalue λ̂(iω; τ̃ ) at
the point

P̂ = λ̂(ω̂; τ̃ ) = −1 + ξ1(ω̃)θ2, (36)

at which ω = ω̂ and the constant θ = θ(ω̂) ≥ 0.
Suppose furthermore, that the above intersection is
transversal, namely,

det

∣∣∣∣∣∣∣∣
�{ξ1(ω̂)} 
{ξ1(ω̂)}

�
{

d

dω
λ̂(ω; τ̃)

∣∣∣∣
ω=ω̂

}


{

d

dω
λ̂(ω; τ̃)

∣∣∣∣
ω=ω̂

}
∣∣∣∣∣∣∣∣

	= 0. (37)

Then we have the following conclusions:

(1) The nonlinear system (5) has a periodic solu-
tion y(t) = y(t; ŷ). Consequently, there exists
a unique limit cycle for the nonlinear equa-
tion (3);

(2) If the half-line L1 first intersects the locus of
λ̂(iω) when τ̃ > τ0(< τ0), then the bifurcating
periodic solution exists and the Hopf bifurcation
is supercritical (subcritical);

(3) If the total number of anticlockwise encir-
clements of the point P1 = P̂ + εξ1(ω̃), for a
small enough ε > 0, is equal to the number
of poles of λ(s) that have positive real parts,
then the limit cycle is stable; otherwise, it is
unstable.

In the above, as usual, �{•} and 
{•} are the
real and imaginary parts of the complex number,
respectively.

From (32), one has

D2 =
∂2g(y; τ̃ )

∂y2

∣∣∣∣
y=0

=
(

g111 g112 g121 g122

g211 g212 g221 g222

)

=
(

g111 0 0 0
0 0 0 g222

)
, (38)

where

gijk =
∂2gi

∂yj∂yk
(i, j, k = 1, 2).
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Also

D3 =
∂3g(y; τ̃ )

∂y3

∣∣∣∣
y=0

=

(
g1111 g1112 g1121 g1122 g1211 g1212 g1221 g1222

g2111 g2112 g2121 g2122 g2211 g2212 g2221 g2222

)

=
(

g1111 0 0 0 0 0 0 0
0 0 0 0 0 0 0 g2222

)
, (39)

where

gijkl =
∂3gi

∂yj∂yk∂yl
(i, j, k, l = 1, 2).

As we know wT and v are the left and right eigenvectors of [G(iω̃)]Je−iω̃τ , respectively, associated with
the value λ̂(iω̃; τ̃ ) = λ̃, we have

v =




1

iω̃ + a1

b12g22
λ̃eiω̃τ̃ − b11g11

b12g22


 =

(
1
v2

)
, (40)

and

w =




1

iω̃ + a2

b21g11
λ̃eiω̃τ̃ − iω̃ + a2

b21g11

b11g11

iω̃ + a1


 =

(
1
w2

)
. (41)

From (34) and (35), we obtained

V02 = −1
4
[I + G(0)J ]−1G(0)D2v ⊗ v

= −1
4




1 +
b11g11

a1

b12g22

a1

b21g11

a2
1 +

b22g22

a2




−1


b11

a1

b12

a1

b21

a2

b22

a2



(

g111 0 0 0
0 0 0 g222

)
1
v2

v2

v2v2




= − 1

4
[(

1 +
b11g11

a1

)(
1 +

b22g22

a2

)
− b12b21g11g22

a1a2

]

×




b11

a1
+

(b11b22 − b12b21)g22

a1a2

b12

a1

b21

a2

b22

a2
+

(b11b22 − b12b21)g11

a1a2



(

g111

g222v2v2

)
, (42)

and

V22 = −1
4
[I + G(2iω̃)Je−2iω̃τ̃ ]−1G(2iω̃)D2v ⊗ ve−2iω̃τ̃

= −1
4




1 +
b11g11

2iω̃ + a1
e−2iω̃τ̃ b12g22

2iω̃ + a1
e−2iω̃τ̃

b21g11

2iω̃ + a2
e−2iω̃τ̃ 1 +

b22g22

2iω̃ + a2
e−2iω̃τ̃




−1


b11

2iω̃ + a1

b12

2iω̃ + a1

b21

2iω̃ + a2

b22

2iω̃ + a2






1362 W. Yu & J. Cao

×
(

g111 0 0 0
0 0 0 g222

)
1
v2

v2

v2v2




= − 1

4
[(

1 +
b11g11

2iω̃ + a1
e−2iω̃τ̃

)(
1 +

b22g22

2iω̃ + a2
e−2iω̃τ̃

)
− b12b21g11g22e

−4iω̃τ̃

(2iω̃ + a1)(2iω̃ + a2)

]

×




b11

2iω̃ + a1
+

(b11b22 − b12b21)g22e
−2iω̃τ̃

(2iω̃ + a1)(2iω̃ + a2)
b12

2iω̃ + a1

b21

2iω̃ + a2

b22

2iω̃ + a2
+

(b11b22 − b12b21)g11e
−2iω̃τ̃

(2iω̃ + a1)(2iω̃ + a2)




×
(

g111

g222v2v2

)
e−2iω̃τ̃ . (43)

Let

V02 =
(

V02(1)
V02(2)

)
and V22 =

(
V22(1)
V22(2)

)
,

substituting (42) and (43) into (31), we obtained

p1 =
[
D2

(
V02 ⊗ v +

1
2
v ⊗ V22

)
+

1
8
D3v ⊗ v ⊗ v

]

=




g111V02(1) +
1
2
g111V22(1) +

1
8
g1111

g222V02(2)v2 +
1
2
g222V22(2)v2 +

1
8
g2222v

2
2v2


.

(44)

Substituting (39)–(44) into (30), we can obtain
ξ1(ω̃).

Corollary 3.2. Let k be the total number of anti-
clockwise encirclements of the point P1 = P̂+εξ1(ω̃)
for a small enough ε > 0, where P̂ is the intersec-
tion of the half-line L1 and the locus λ̂(iω). Then

(1) If k = 0, the bifurcating periodic solutions of
system (3) are stable;

(2) If k 	= 0, the bifurcating periodic solutions of
system (3) are unstable.

Remark 3.3. In this paper we study the stability of
bifurcating periodic solutions using the harmonic
balance approach, Nyquist criterion and the graphic
Hopf bifurcation theorem. It is an algebraic and
graphical approach and more simple than the nor-
mal form method and center manifold theorem intro-
duced by Hassard et al. [1981]. It does not involve
much mathematical analysis. The stability of bifur-
cating periodic orbits have been analyzed drawing

the amplitude locus, L1, and the locus λ̂(iω) in a
neighborhood of the Hopf bifurcation point.

4. Numerical Examples

In this section, some numerical results of simulating
system (3) are presented. The half-line and locus
λ̂(iω) are shown in the corresponding frequency
graphs. If they intersect, a limit cycle exists, or else,
no limit cycle exists. Corollary 3.2 implies that the
stabilities of the bifurcating periodic solutions are
determined by the total number k of the anticlock-
wise encirclements of the point P1 = P̂ + εξ1(ω̃) for
a small enough ε > 0. Suppose that the half-line L1

and the locus λ̂(iω) intersect. If k = 0, the bifur-
cating periodic solutions of system (3) are stable; if
k 	= 0, the bifurcating periodic solutions of system
(3) are unstable.

In order to verify the theoretical analysis results
derived above, system (3) is simulated in different
cases.

(i) A =
(

1 0
0 2

)
, B =

(
1 2
2 3

)
,

f(x) =
(− tanh(x)
− tanh(x)

)
.

Equation (28) have two negative roots −1 and
−6, Eq. (24) has one positive root 14.6834, from
Eq. (26), we have

τj = 0.5183 + 1.6397j (j = 0, 1, . . . , ),

and τ0 = 0.5183.
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Fig. 1. τ = 0.45. The half-line L1 does not intersect the
locus λ̂(iω), so no periodic solution exists.
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Fig. 2. τ = 0.55. The half-line L1 intersects the locus λ̂(iω),
and k = 0, so a stable periodic solution exists.
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Fig. 3. τ = 0.60. The half-line L1 does not intersect the
locus λ̂(iω), so no periodic solution exists.
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Fig. 4. τ = 0.70. The half-line L1 intersects the locus λ̂(iω),
and k = 0, so a stable periodic solution exists.
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We choose τ = 0.45 < τ0 and τ = 0.55 > τ0,
respectively. The corresponding frequency, wave-
form and phase graph are shown in Figs. 1 and
2. By Lemma 2.1, Theorems 2.3 and 3.1 we know
in Fig. 1 its zero solution is asymptotically stable,
in Fig. 2 the bifurcating periodic solution is stable
and the system undergoes a Hopf bifurcation at the
origin.

(ii) A =
(

2 0
0 3

)
, B =

(
3 1
2 2

)
,

f(x) =
(− tanh(x)
− tanh(x)

)
.

Equation (28) have two negative roots −6.4142 and
−3.5858, Eq. (24) has one positive root −1.2259,
from Eq. (26), we have

τj = 0.6751 + 1.9460j (j = 0, 1, . . . , ),

and τ0 = 0.6751.
We choose τ = 0.60 < τ0 and τ = 0.70 > τ0,

respectively. The corresponding frequency, wave-
form and phase graph are shown in Figs. 3 and
4. By Lemma 2.1, Theorems 2.3 and 3.1 we know
in Fig. 3 its zero solution is asymptotically stable,
Fig. 4 undergoes a Hopf bifurcation at the origin.

5. Conclusions

A more general two-neuron model with time delay
studied in this paper from the frequency domain
approach turns out to be not so mathematically
involved and so difficult as analyzing in the time
domain [Guo et al., 2004; Liao et al., 2001a, 2001b;
Ruan & Wei, 2001, 2003; Song et al., 2005; Song
& Wei, 2005; Yu & Cao, 2005, 2006]. By using
the time delay as the bifurcation parameter, it has
been shown that a Hopf bifurcation occurs when
this parameter passes through a critical value. The
stability of bifurcating periodic orbits have been
analyzed drawing the amplitude locus, L1, and the
locus λ̂(iω) in a neighborhood of the Hopf bifur-
cation point. It is very difficult to solve large-scale
neural networks with time delays, since the charac-
teristic equation in large-scale neural networks is a
more complex transcendental equation. In studying
the stability and Hopf bifurcation analysis, there
are still much work to be done, we should focus on
large-scale neural networks with more time delays.
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