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Abstract: In this paper, the adaptive synchroniz-
ation of coupled complex networks is investigated.
Some controllers and adaptive laws are designed
to ensure the synchronization of complex networks.
With this new effective method, a general complex
network can achieve synchronization. Two examples
are simulated, using the chaotic Lorenz system and the
delayed neural network as the nodes of the dynamical
complex network, which demonstrate the feasibility and
effectiveness of the proposed method in this paper.
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1. INTRODUCTION

Complex networks exist in all fields of sciences
and societies, and have been intensively studied over
the last few years [?]-[?]. Among these are computer
networks, the World Wide Web, telephone call graphs,
food webs, neural networks, electrical power grids and
citation networks of scientists. Recently, in [?] the
authors proposed a new complex network model for
reputation computation in virtual organizations and and
also investigated its convergence dynamics.

Synchronization of complex networks of dynamical
systems has received a great deal of attention [?]-[?]
due to proposition of the diffusively coupled networks
in [?][?], especially about small-world and scale-free
dynamical network models. In [?][?][?], the authors
linearized the nonlinear dynamical nodes around
the synchronization state, which is known as local
synchronization. By using the Lyapunov functional
method, synchronization manifold and linear matrix
inequality (LMI) approach, several sufficient conditions
have been derived to ensure the synchronization of
complex networks [?]-[?].

Moreover, one can not guarantee that all the
dynamical nodes can synchronize. However, it is very
desirable if some controllers are designed to ensure
the synchronization of all the nodes in the complex
network. Some controllers are intensively studied,
such as feedback and delayed feedback controller
[?], nonlinear adaptive feedback controller [?] and so
on. Sometimes, it is too hard to design a controller
to achieve the synchronization. However, it could be
interesting to achieve synchronization for a general
complex network model. In [?]-[?], the authors proposed
a new adaptive law to ensure the synchronization of
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the system, and it is very efficient. By using this new
effective method based on Lyapunov functional method
and a suitable adaptive law to adjust parameters in this
paper, the synchronization of a general complex network
can be achieved. In the recent study of synchronization
in complex networks, an elementary assumption is that
the inner coupling is uniform which means that the
inner coupling between arbitrary two linked nodes is
the same. It is of great interest if the inner coupling
is nonuniform. Thus, the synchronization in complex
network with nonuniform inner couplings can also be
obtained in this paper, and we will investigate a general
complex network model which include almost all the
dynamical systems [?]-[?][?]-[?].

The organization of this paper is as follows: In
Section 2, we give preliminaries for the synchronization
of coupled dynamical networks. In Section 3, main
results are given. Several controllers are presented
for the synchronization of coupled complex network.
Some remarks are also given to show the advantages
of the obtained results. In Section 4, some simulation
examples including more large-scale Lorenz system
and delayed neural network are given to show the
effectiveness and feasibility of this paper. In Section 5,
we give conclusions and some prospects for our future
works.

2. PRELIMINARIES

Consider a general complex dynamical network
consisting of N diffusively coupled identical nodes,
with each node being an-dimensional dynamical
system, in the following form:

ẋi(t) = f(xi(t)) + g(xi(t− τ1))
+hi(x1(t), x2(t), · · · , xN (t))
+li(x1(t− τ2), x2(t− τ2), · · · , xN (t− τ2)),
i = 1, 2, · · · , N. (1)

wherexi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn, i =
1, 2, · · · , N is the state vector representing the state
variables of nodei, τ1, τ2 are the time delays,f, g :
Rn −→ Rn are continuously differentiable nonlinear
vector functions, andhi, li : RnN −→ Rn are diffu-
sively coupling functions. We assume that the system (1)
satisfies the following initial conditions:xi(t) = φi(t) ∈
C([−r, 0],Rn)(i = 1, 2, · · · , N) with r = max{τ1, τ2},
whereC([−r, 0],Rn) denotes the set of all continuous
functions from[−r, 0] to Rn.

Note that the complex network model (1) is general. It
can be almost all the dynamical systems [?]-[?][?]-[?].
Also, the diffusively coupling functionshi and li are
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general. First, it can be chosen as linear combination
of the states of the nodes, i.e.,hi = c

∑N
j=1 aijΓxj

[?][?][?]-[?], wherec is the coupling strength,Γ is the
inner coupling matrix, andA = (aij) is the coupling
configuration matrix which satisfies

∑N
j=1 aij = 0.

Second, it can be chosen as delayed coupling, i.e.,li =
c
∑N

j=1 aijΓxj(t − τ) [?][?], where τ is a time delay.

Also, it can be distributed delayli =
N∑

j=1

aij

∫ t

−∞K(t−
s)xj(s)ds [?], whereK(·) is the weight matrix function.
Actually, hi and li can be the combination of nonlinear
functions, namely,hi = c

∑N
j=1 aijΓH(xj) and li =

c
∑N

j=1 aijΓL(xj(t− τ)), whereH(·) andL(·) are the
inner coupling functions between two nodes.

In this paper, we consider the synchronization of
complex network model (1). When the complex network
(1) achieves synchronization, namely, the statesx1 =
x2 = · · · = xN → s(t), as t → ∞, wheres(t) is a
solution of an isolated node which satisfies

ṡ(t) = f(s(t)) + g(s(t− τ1)). (2)

Here,s(t) can be an equilibrium point, a periodic orbit,
or even a chaotic attractor.

In order to investigate the synchronization of complex
network (1), we add some simple controllers to the
nodes of the complex network (1). Then the controlled
complex network is described by

ẋi(t) = f(xi(t)) + g(xi(t− τ1))
+hi(x1(t), x2(t), · · · , xN (t))
+li(x1(t− τ2), x2(t− τ2), · · · , xN (t− τ2))
+ui, i = 1, 2, · · · , N, (3)

where ui ∈ Rn are the feedback controllers. The
objective of control here is to find some controllers
such that the solutions of controlled complex network
(3) synchronize with the solution of (2), in the sense
that

lim
t→∞

‖xi(t)− s(t)‖ = 0, i = 1, 2, · · · , N. (4)

When the complex network (3) achieves synchroniza-
tion, the coupling functions and the control inputs should
vanish, i.e.,hi(x1(t), x2(t), · · · , xN (t)) = 0, li(x1(t −
τ2), x2(t − τ2), · · · , xN (t − τ2)) = 0, and ui = 0.
This ensures any solutionxi(t) of a single isolated
node is also a solution of synchronized coupled complex
network.

In order to give our main results, it is necessary to
make the following assumptions:

A1: For i = 1, 2, · · · , N , there exist non-negative
constantsαi such that

‖f(xi(t))− f(s(t))‖ ≤ αi‖xi(t)− s(t)‖. (5)

A2: For i = 1, 2, · · · , N , there exist non-negative
constantsβi such that

‖g(xi(t))− g(s(t))‖ ≤ βi‖xi(t)− s(t)‖. (6)

A3: For i = 1, 2, · · · , N , there exist non-negative
constantsγij (j = 1, 2, · · · , N) such that

‖hi(x1, x2, · · · , xN )− hi(s, s, · · · , s)‖

≤
N∑

j=1

γij‖xj − s‖. (7)

A4: For i = 1, 2, · · · , N , there exist non-negative
constantsηij (j = 1, 2, · · · , N) such that

‖li(x1, x2, · · · , xN )− li(s, s, · · · , s)‖

≤
N∑

j=1

ηij‖xj − s‖. (8)

Note that the above assumptions are very loose,
for example, AssumptionA1 is satisfied as long as
∂fk/∂xij(k, j = 1, 2, · · · , n, i = 1, 2, · · · , N) are
bounded. Therefore, the complex network (1) can in-
clude all well-known dynamical complex systems.

Subtracting (2) from (3) gives the error dynamical
system

ėi(t) = f(xi(t))− f(s(t))
+g(xi(t− τ1))− g(s(t− τ1))
+hi(x1(t), x2(t), · · · , xN (t))− hi(s, s, · · · , s)
+li(x1(t− τ2), x2(t− τ2), · · · , xN (t− τ2))
−li(s(t− τ2), s(t− τ2), · · · , s(t− τ2)) + ui,

i = 1, 2, · · · , N, (9)

whereei(t) = xi(t)− s(t).

3. Synchronization in Complex
Networks

In this section, we give our main results. Some
controllers are designed to ensure the synchronization
of system (3).

Theorem 1: Under the AssumptionsA1-A4, the
complex network (3) is synchronized if we choose the
following linear feedback controllers

ui = θi(xi(t)− s(t)), (10)

whereθi = diag(θi1, θi2, · · · , θin)(i = 1, 2, · · · , N) are
the feedback gain matrices. The elementθij of matrix
θi can be adjusted by

θ̇ij = −εije
2
ij , (11)

for i = 1, 2, · · · , N, j = 1, 2, · · · , n, where εij are
positive.

Proof: Consider the following Lyapunov functional

V (t) =
1
2

N∑

i=1

eT
i (t)ei(t) +

1
2

N∑

i=1

n∑

j=1

1
εij

(θij + p)2

+q
N∑

i=1

∫ t

t−τ1

eT
i (s)ei(s)ds

+m
N∑

i=1

∫ t

t−τ2

eT
i (s)ei(s)ds, (12)
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wherep, q, m are large positive constants.
Taking the derivative ofV (t) along the trajectories of

(9), we obtain

V̇ (t)|(9) =
N∑

i=1

eT
i (t)ėi(t)−

N∑

i=1

n∑

j=1

(θij + p)e2
ij

+q

N∑

i=1

(eT
i (t)ei(t)− eT

i (t− τ1)ei(t− τ1))

+m

N∑

i=1

(eT
i (t)ei(t)− eT

i (t− τ2)ei(t− τ2))

=
N∑

i=1

eT
i (t)[f(xi(t))− f(s(t)) + g(xi(t− τ1))

−g(s(t− τ1)) + hi(x1(t), x2(t), · · · , xN (t))
−hi(s, s, · · · , s)
+li(x1(t− τ2), x2(t− τ2), · · · , xN (t− τ2))
−li(s(t− τ2), s(t− τ2), · · · , s(t− τ2))

+θiei]−
N∑

i=1

n∑

j=1

(θij + p)e2
ij + (q + m)

×
N∑

i=1

eT
i (t)ei(t)−

N∑

i=1

[qeT
i (t− τ1)ei(t− τ1)

+meT
i (t− τ2)ei(t− τ2)]. (13)

Let α = max1≤i≤N{αi}, β = max1≤i≤N{βi}, γ =
max1≤i≤N,1≤j≤n{γij}, η = max1≤i≤N,1≤j≤n{ηij},
and

n∑
j=1

e2
ij = ‖ei‖2, where e = (eT

1 , eT
2 , · · · , eT

N )T .

According to AssumptionA1-A4, we can have

V̇ (t)|(9) ≤
N∑

i=1

‖ei(t)‖[αi‖ei(t)‖+ βi‖ei(t− τ1)‖

+
N∑

j=1

γij‖ej(t)‖+
N∑

j=1

ηij‖ej(t− τ2)‖]

−p
N∑

i=1

N∑

j=1

e2
ij + (q + m)

N∑

i=1

eT
i (t)ei(t)

−
N∑

i=1

[q‖ei(t− τ1)‖2 + m‖ei(t− τ2)‖2]

≤ (α + q + m− p)
N∑

i=1

‖ei(t)‖2

+
β

2

N∑

i=1

[‖ei(t)‖2‖+ ei(t− τ1)‖2]

+
γ

2

N∑

i=1

N∑

j=1

[‖ei(t)‖2 + ‖ej(t)‖2]

+
η

2

N∑

i=1

N∑

j=1

[‖ei(t)‖2 + ‖ej(t− τ2)‖2]

−
N∑

i=1

[q‖ei(t− τ1)‖2 + m‖ei(t− τ2)‖2].

(14)

Therefore, we obtain

V̇ (t)|(9) ≤ (α + q + m +
β

2
+ Nγ +

Nη

2
− p)

×
N∑

i=1

‖ei(t)‖2 + (
β

2
− q)

N∑

i=1

‖ei(t− τ1)‖2

+(
Nη

2
−m)

N∑

i=1

‖ei(t− τ2)‖2. (15)

If we choosep = α+q+m+ β
2 +Nγ + Nη

2 +1, q = β
2 ,

andm = Nη
2 , then we have

V̇ (t)|(9) ≤ −
N∑

i=1

‖ei(t)‖2. (16)

It is obvious thatV̇ (t) = 0 if and only if eij = 0 for
i = 1, 2, · · · , N, j = 1, 2, · · · , n. Therefore, according
to the well-known LaSalle invariance principle [?], the
proof is completed.

Remark 1: Complex networks have become a focal
topic recently, and a lot of studies considered the
diffusively coupled complex networks [?]-[?]. Some
simple results were investigated in [?][?]. However, in
this paper, we try to study a general model. It is easy
to see that it can be almost all systems, such as Lorenz
system, Chen system, delayed neural network and so
on. Also, time delays are introduced since delays are
inevitable in the dynamical systems.

Remark 2: In fact, the coupling functionshi and
li can be nonuniform inner coupling functions.
For example, there exist two integersi0 and
j0(i0 6= j0) such thathi0 = c

∑N
j=1 ai0jΓxj and

hj0 = c
∑N

j=1 aj0jΓH(xj) whereH(·) can be arbitrary
nonlinear functions.

4. Numerical Examples

In this section, some simulation examples are
given to show the feasibility and effectiveness of the
proposed adaptive method.

Example 1: Consider the following famous Lorenz
system





ẋ1 = a(x2 − x1)
ẋ2 = cx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2,
(17)

which is chaotic when parametersa = 10, b = 8/3, c =
28. System (17) can exhibit chaotic phenomenon which
is illustrated in Fig. 1.

Consider the complex network (3)




ẋi1 = a(xi2 − xi1)
+c

∑N
j=1 aijH

1
i (xj1) + ui1

ẋi2 = cxi1 − xi2 − xi1xi3

+c
∑N

j=1 aijH
2
i (xj2) + ui2

ẋi3 = −bxi3 + xi1xi2

+c
∑N

j=1 aijH
3
i (xj3) + ui3,

(18)

where c = 1,H1
i (xj1) = sin(xj1),H2

i (xj2) =
cos(xj2),H3

i (xj3) = xj3, εij = 1. Suppose that the
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Fig. 1 Trajectories of single node in Lorenz system.
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Fig. 2 Trajectories of one node and error distance in
the coupled Lorenz complex network.

network is connected in the nearest neighbor coupling,
i.e.,

(aij)N×N =




−2 1 0 0 · · · 0 1
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −2 1
1 0 0 0 · · · 1 −2




,

whereN = 10.
The error distance among the nodes of trajectories in

the coupled networks are

err(t) =
∑3

i=1

√∑10
j=1[x1i(t)− xji(t)]2 .

The trajectories of one node and error distance are
illustrated in Fig. 2. It is easy to see that the coupled
complex Lorenz system (18) is synchronized.

Example 2: Consider the following 2-dimensional
delayed neural network model as follows:

ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t− τ1)) + I(t), (19)
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Fig. 3 Trajectories of single node in the delayed neural
network.
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Fig. 4 Trajectories of one node and error distance in
the coupled complex neural network.

where x(t) = (x1(t), x2(t))T , f(x(t)) =
(tanh(x1(t)), tanh(x2(t)))T , I(t) = (0, 0)T ,

C =
(

1 0
0 1

)
, A =

(
2.0 −0.1
−5.0 3.0

)
,

B =
( −1.5 −0.1
−0.2 −2.5

)
, τ1 = 1. Choose the initial

conditions:

x1(s) = 0.4, x2(s) = 0.6,∀s ∈ [−1, 0],

system (??) can exhibit chaotic behaviors as shown in
Fig. 3.

Next we consider the linearly coupled and linearly
delayed coupled neural network:

ẋi(t) = −Cxi(t) + Af(xi(t)) + Bf(xi(t− τ1)) + I(t)

+
N∑

j=1

GijDxj(t) +
N∑

j=1

GijDτxj(t− τ2) + ui,

(20)
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where D =
(

0.1 0
0 0.1

)
, Dτ =

(
0.1 0
0 0.1

)
,

τ2 = 0.5, εij = 1, and suppose that the network is
fully connected, i.e.,

G =




−(N − 1) 1 1 · · · 1
1 −(N − 1) 1 · · · 1
...

...
...

...
...

1 1 1 · · · −(N − 1)


 ,

whereN = 20.
The error distance among the nodes of trajectories in

the coupled networks are

err(t) =
∑2

i=1

√∑20
j=1[x1i(t)− xji(t)]2 .

The trajectories of one node and error distance are
illustrated in Fig. 4. In Fig. 4. The initial conditions
are random functions in[0, 1]. It is easy to see that the
coupled complex neural network (??) is synchronized.

5. Conclusions

Recently, complex networks has become a hot
topic, and a lot of attentions have been made on
it. In this paper, we have investigated the adaptive
synchronization of coupled complex networks. Some
controllers and adaptive laws are given to ensure
the synchronization of complex networks based on
Lyapunov functional method. With this new effective
method, a general complex network can achieve
synchronization.

However, the proposed method is simple. To the
best of our knowledge, the theoretical results about the
synchronization of coupled complex networks are still
lacking and too conservative. Synchronization control
of complex network is a new subject recently, and less
results have been studied about it. Also, there must be
some perturbations in the real complex networks, and
few works have investigated this. Actually, there are
a lot of works for us to do in the complex network.
We will investigate some good theoretical results and
applications.
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