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Robust Adaptive Control of Unknown Modified
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Abstract—In this brief, robust adaptive control of unknown
modified Cohen–Grossberg neural networks with time delays is
considered based on nonsmooth analysis and matrix inequality
technique. Several new controllers are designed to ensure the
global asymptotical stability of the targeted equilibrium point.
The designed controllers are independent of the bounds of the
perturbations, system functions and the time delays. One does not
need to know the bounds of the unknown parameters, but only
needs to know the structures of the modified Cohen–Grossberg
neural networks with time delays. Finally, some simulations
examples are given to verify the theoretical results.

Index Terms—Global asymptotical stability, Lyapunov func-
tional method, matrix inequality, modified Cohen–Grossberg
neural network, nonsmooth analysis, time delay.

I. INTRODUCTION

RECENTLY, many artificial neural networks especially
Cohen–Crossberg neural networks [3], which was pro-

posed in 1983, have been a focal subject for research due to
their wide applications in signal processing, image processing,
pattern recognition and optimization problems. Some of these
applications require the knowledge of the dynamical behaviors
of the network used, such as the uniqueness and global asymp-
totical stability of its equilibrium point [8]–[11], [19]–[21].
Thus, the qualitative analysis of these dynamic behaviors is
a prerequisite step for the practical design and application of
neural networks.

In particular, although neural networks can be implemented
by very large-scale integrated (VLSI) electronic circuits, the fi-
nite speeds of switching and transmission signals inevitably in-
duce time delays in the interaction between the neurons, which
may result in an oscillation phenomenon or network instability.
Since neural networks can be implemented by very large-scale
integrated (VLSI) electronic circuits, neural networks become
more interesting in the electrical engineering. Ye et al. [4] in-
troduced delays into a modified Cohen–Grossberg neural net-
work model where the Hopfield neural network can be consid-
ered as a special case of this modified Cohen–Grossberg neural
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network. Cao and Song [26] proposed a delayed Cohen–Gross-
berg type bidirectional associative memory network and studied
its stability. Since then, the modified Cohen–Grossberg neural
networks with time delays [5]–[7], [26]–[28] have been widely
studied. Therefore, the modified neural network with time de-
lays is further considered in this brief.

It is well known that, by carefully choosing network struc-
tures, training methods, and input data, the neural network
controllers have been developed to compensate for the effects
of nonlinearities and system uncertainties, so that the stability,
error convergence, and robustness of the control system can be
greatly improved. Clearly, the recurrent neural network (RNN)
has capabilities superior to the feedforward neural networks,
such as feedback response and the information-storing ability.
Since the RNN has a feedback loop, it captures the dynamical
response of a system with external feedback. Thus, it is more
important to develop some controllers based on the feedback
response to ensure the stability of delayed neural networks.

Furthermore, many efforts have been devoted to searching
sufficient conditions for the problem of robust stabilization
of time-delay systems recently [12]–[18], [25]. By using
Lyapunov methods, some robust stabilization techniques for
uncertain delay systems were developed. In the research of
control for time-delay systems, adaptive control is commonly
used [14]–[18]. For example, Kwon and Park [12] designed a
memoryless state-feedback controller by using the linear ma-
trix inequality (LMI) technique. In addition, Yu and Cao [13]
proposed a memoryless state-feedback controller together with
a delayed feedback controller. The authors of [12], [13] derive
some conditions to ensure the stability of delayed systems
based on LMI technique and almost all the system parameters
are involved in the LMI approach. However, as a useful tool,
LMI is hard to apply to nonlinear systems with unknown
system parameters, yet Lyapunov functional design has been
proven to be an effective tool in such controllers design. Thus,
some adaptive controllers received wide interests [14]–[18],
[22]–[25]. Nonetheless, the designed controllers [14]–[18] are
related to the system parameters or some restrictions must be
satisfied in the designed controllers. However, in this brief,
we propose to design some controllers that are independent
of the bounds of the perturbations and system functions and
the time delays. We do not need to know the bounds of the
unknown parameters, but only need to know the structures of
the modified Cohen–Grossberg neural networks.

Finally, it should be noted that some functions, for instance,
the piecewise-linear approximation of a sigmoidal function, are
nonsmooth. However, they are of special interest since they are
widely used as activation functions neural networks model. In
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this sense, nonsmooth analysis plays an paramount role in de-
signing neural networks.

In this brief, a general modified Cohen–Grossberg neural net-
work with uncertainties in parameters and with unknown time
delays is considered. Several controllers are designed to ensure
the global asymptotical stability of the network. Some simula-
tion examples are constructed to verify the effectiveness of the
designed controllers.

II. MODEL FORMULATION AND PRELIMINARIES

In this brief, a general modified Cohen–Grossberg neural net-
work model with time delays is considered as follows:

(1)

or

(2)

where , denotes the number of neurons
in the network,
is the state vector associated with the neurons,

is the external input vector,

corresponds to the activation functions of neurons,
are the time delays, and the initial

conditions are given by with
, where denoting the

set of all continuous functions from to . Moreover,

and represents an amplification function,
and is a

behaved function, and and are the
unknown connection weight matrix and the delayed connection
weight matrix, respectively. The matrices and represent
the uncertainties in the system parameters, respectively, which
are possibly time-varying or random. It is assumed that the
equilibrium point exists for every well-posed initial condition.
Our objective is to design a controller to ensure system (1) be
globally asymptotically stable at its equilibrium point.

To establish the main results for model (1), it is necessary to
make the following assumptions:

A1) Each function is positive, continuous and bounded,
, where and are

positive constants.
A2) Each function is locally Lipschitz and there

exist such that for all in which
is continuously differentiable.

A3) Each function is nondecreasing and glob-
ally Lipschitz with constants , i.e.

(3)

A4) The unknown matrices and are norm bounded

(4)

where and are positive constants.
Next, some notations are introduced, which will be used later

for convenience.
For any vector , define

, . Similarly, for any ma-
trix , define . Let
denote the Euclidean norm in . If is a symmetric
matrix with and as its largest and
smallest eigenvalue, respectively, then its norm is defined
by .
The notation means that is positive def-
inite (negative definite). Let also ,

, and
.

Finally, we introduce the definition of the Generalized Jaco-
bian, which are essential for nonsmooth analysis on Lipschitz
continuous functions. Let the function be locally
Lipschitz continuous. According to Rademacher’s theorem [1,
Th. 9. 60], is differentiable almost everywhere. Let de-
note the set of those points at where is differentiable and

denote the Jacobian of at . Then, the set is
dense in . For any given , define

(5)

Since is locally Lipschitz continuous, the constant is
finite and for all . Now, we are ready
to define the generalized Jacobian in the sense of Clarke [2]:

Definition 1: For any , let be the set of the
following collection of matrices:

there exists a sequence of

with

where denotes the convex hull of the set . We call
as the generalized Jacobian.

It is easy to see that the above definition is well defined and
for all . We say that is

invertible if every element in is nonsingular. The
generalized Jacobian have many nice properties, but
only a few of them need to be singled out for our purpose. For
one thing, the collection reduces to a singleton
whenever is continuously differentiable at . We stress that

may contain other elements if is only differentiable
at .

Lemma 1 (Lebourg Theorem) [2, p. 41]: For any given
, there exists an element in the union such

that

(6)

where denotes the segment connecting and .
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For more discussions on the generalized Jacobian and its ap-
plications, please refer to books [1], [2].

Now, we analyze system (1) from the viewpoint of nonsmooth
analysis. We recall that a state is called an equilibrium
point of system (1) if it satisfies

(7)

Notice that are positive, so (7) is equivalent to

(8)

Assume that system (1) has an equilibrium
for a given . To simplify the following

proofs, we will shift the equilibrium point of system (1) to
the origin by using the following transformation:

(9)

Then system (1) can be transformed into the following form:

(10)

or

(11)

where

It is easy to see that

Moreover, from (3), we know that

(12)

and

(13)

where and .
We add a controller to system (10) to ensure the system be

globally asymptotically stable about the origin and consider the
following system:

(14)

or

(15)

where and is a function of the state vector.
Note that if we use the controller to stabilize system (14), then
the goal of ensuring the asymptotical stability of system (1) can
be obtained by the transformation (9). Thus, in this brief we just
consider the asymptotical stability of system (14).

To obtain the main results, we furthermore need the following
elementary lemma:

Lemma 2 [3]: For any vectors and positive definite
matrix , the following matrix inequality holds:

III. ROBUST ADAPTIVE CONTROLLER DESIGN

In this section, a simple adaptive controller is designed to
stabilize system (14).

Theorem 1: Under the assumptions A1)–A4), the origin of
model (14) is globally asymptotically stable if we choose the
controller

(16)

(17)

where is a positive constant.
Proof: Consider the Lyapunov functional

(18)

where are positive constants.
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Taking the derivative of along the trajectories of (14),
we obtain

(19)

From Lemma 1, we have

(20)

where . It is obvious that
for . We thus obtain

(21)

From Lemma 2 and Assumption A3), we obtain

(22)

and

(23)

In addition, substituting (21), (22), and (23) into (19), we have

(24)

If we choose , then it follows that

(25)

From (13), we have

(26)

Therefore, with the designed controller (16) and (17),
if and only if ; otherwise .

Moreover, is radially unbounded since as
. We have thus proved that the equilibrium of (14)

is globally asymptotically stable. This completes the proof.
Corollary 1: Under the assumptions A1)–A4), the origin of

model (14) is globally asymptotically stable if we choose the
controller

(27)

(28)

Proof: We choose to obtain Corollary 1 di-
rectly from Theorem 1. The proof is completed.

Remark 1: In Corollary 1, it is easy to see that the designed
controller is independent of the time delays, the bounds of the
unknown parameters and system functions. In addition, the non-
smooth functions is considered in this brief. We can ensure
the global asymptotical stability of the system even without
knowing any condition on the unknown parts of the system.

IV. SIMULATION EXAMPLES

In this section, two simulation examples are given to show
the effectiveness of the designed controllers.

Example: Consider the following modified Cohen–Gross-
berg neural network with time delays:

(29)

where

if
if

for , 2. It is easy to see that the assumptions A1)–A4) are
satisfied. Moreover, ( , 2) are bounded, pos-
itive continuous functions, is globally
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Fig. 1. Trajectories of state variables y (t) and y (t) without control.

Fig. 2. Trajectories of state variables y (t) and y (t) with control.

Lipschitz and nondecreasing. Obviously, , where is
the identity matrix, and

Suppose all elements of the uncertainty matrices and
are random in [ 0.02,0.02] at all times.

The trajectories of system (29) without controller and with
controller (27) and (28) are shown in Figs. 1 and 2, respectively.
It is easy to see that without controller, system (29) is chaotic,
but it is stable with controller (27) and (28) according to Corol-
lary 1. The designed controller (27) and (28) is effective and can
ensure the stability of system (29). Here, the behaved function
is nonsmooth and the perturbations to the unknown parameters

and are random.

V. CONCLUSION

In this brief, the robust adaptive control problem for unknown
modified Cohen–Grossberg neural networks with time delays
has been studied. Several effective controllers have been de-
signed for ensuring the global asymptotical stability of the net-
works. One does not need to know the bounds of the unknown
parameters and the time delays. Also, the functions in the net-
works can be nonsmooth. The effectiveness and feasibility of the
designed controllers have been demonstrated through numerical
simulations.
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