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Parameter identification of dynamical systems from time series has received increasing interest due
to its wide applications in secure communication, pattern recognition, neural networks, and so on.
Given the driving system, parameters can be estimated from the time series by using an adaptive
control algorithm. Recently, it has been reported that for some stable systems, in which parameters
are difficult to be identified [Li et al., Phys Lett. A 333, 269-270 (2004); Remark 5 in Yu and Cao,
Physica A 375, 467-482 (2007); and Li et al., Chaos 17, 038101 (2007)], and in this paper, a brief
discussion about whether parameters can be identified from time series is investigated. From some
detailed analyses, the problem of why parameters of stable systems can be hardly estimated is
discussed. Some interesting examples are drawn to verify the proposed analysis. © 2007 American

Institute of Physics. [DOIL: 10.1063/1.2749458]

Chaos synchronization has been intensively investigated
since its wide applications in secure communication, au-
tomatic control, parameter identification, chemical reac-
tor, physics, etc. Among these, one of the interesting ap-
plications is parameter identification from dynamical
systems especially from chaotic systems, which can be
applied to secure communication based on adaptive
synchronization."’5 Many works>*!! have studied chaos
synchronization by using an adaptive control method,12
and parameters can be estimated from time series of dy-
namical systems simultaneously. In Refs. 1 and 3, it has
been reported that parameters cannot be estimated from
some stable systems; thus someone may doubt if this
adaptive control method is effective. Some analyses about
why parameters of stable systems can hardly be esti-
mated are studied in this paper, which may make some
contribution to this field.

I. INTRODUCTION AND SUMMARY

Since the pioneering work proposed in Ref. 13, chaos
synchronization has been widely investigated since its exten-
sive applications in secure communication, automatic con-
trol, artificial neural networks, chemical reactor, physics, etc.
In Ref. 13, the authors introduced a new method to synchro-
nize two identical systems with different initial conditions,
which are known as driving and response systems now. The
idea of synchronization here is to use the output of the driv-
ing system to control the dynamics of the response system so
that the output of the response system can synchronize with
the output of the driving system.

In Ref. 14, the author first estimated model parameters
from time series by autosynchronization. This idea is quite
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impressive and incited a new way to estimate model param-
eters from the output of the system (time series). Then, in
Refs. 1 and 3, the authors found that the method used in
Refs. 7, 14, and 15 can be ineffective for estimating param-
eters from the stable system, and some counterexamples are
also proposed in Refs. 1 and 3. Later, in Ref. 16, the author
declared that the statements in Ref. 1 are inaccurate and the
detailed analysis is given by studying the largest invariance
set based on LaSalle invariance principle, which provided a
clear view about this topic. In Ref. 16, the author showed
that for chaotic or periodic systems, parameters can be esti-
mated by using the method in Refs. 14. Recently, the authors
in Refs. 17 and 18 all studied parameters identification of
dynamical systems from time series. In Ref. 17, the author
stressed that “the chaotic behavior is necessary to realize
such techniques of parameter estimation,” and in Ref. 18, the
authors also demonstrated that “both adaptive synchroniza-
tion and parameter identification are more rapidly achieved”
by using such control techniques. In addition, some explana-
tions about whether parameters of chaotic systems can be
estimated are also discussed.

From what has been introduced above, it is easy to ob-
tain that parameters can be hardly estimated from some
stable systems and may be clearly identified from chaotic
systems. Therefore, in order to investigate clearly the param-
eter identification problem of dynamical systems from time
series, the main question should be answered: Why cannot
parameters of stable systems be estimated from time series?
Is there any problem in the previous works 271 Next, we
will focus on this problem, and a detailed analysis will be
addressed. Then, it is obvious to see why parameters cannot
be estimated from time series of stable systems; however,
parameters of some chaotic systems may be estimated effec-
tively by using LaSalle invariance principle as in Refs. 17
and 18.

© 2007 American Institute of Physics
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In order to derive the main results, some prior knowl-
edge about adaptive synchronization and parameters identi-
fication in Ref. 15 are first introduced. For more details,
please refer to Ref. 15. Consider the following driving sys-
tem:

y(1) == Cy(1) + Ag(y(1)) + Bl(y(1 - 7(1))) (1)

or

yi(t) =—cyt) + 2 a;g(y(1) + E byl (y(t = 7(1))),
j=1 =1

i=1,2,...,n, (2

where n denotes the number of units in a neural network;
y(&)=(1(8),y,(t),....y,()T€eR* is the state vector
associated with the neurons; gy(0)
=(g1(0(1),8:0(0), ....&,(0(1)) e R" and  U(y(t-(1)))
=(L(y(t=m(0)), L(y(t=7(1)), ....L((1=1))" € R" corre-
spond to the activation functions and delayed activation
functions of neurons; and 7(f)=7,(r) (i,j=1,2,...,n)
are the multiple time-varying delays. Suppose that each 7;()
(i,j=1,2,...,n) is bounded and the initial conditions
of (1) are given by x;(t)=¢,(r) eC(-r,0],R) with
r=max=; j=, g1 7;(t)}, where C([-r,0],R) denotes the set
of all continuous functions from [-r,0] to R.
C=diag(cy,cy,...,c,) is a diagonal matrix, A=(a;;),x, and
B=(b;;),x, are the connection weight matrix and the delayed
connection weight matrix, respectively, which are unknown.
The response system is

(1) =- C(0)z(t) + A(t)g(z(1)) + BOI(z(t — 7)) +u, (3)

namely,
40 =-cz(1) + > a;i(1g;(z(1)
J=1

+, l;,-j(t)lj(z(t— (O +u, i=12,....n, (4)
=1

where C(r)=diag(c,(1),c5(1), ...,c,(1)), A(1)=(a;(1)),x, and
E(t):(l;,-j(t))an are matrix functions depending on the time
t, u(t)=(u(t),uxt),...,u,(r)) is a controller. In practical
situations, the output signals of the driving system (1) can be
received by the response system (3), but the parameter ma-
trices C, A and B of the driving system (1) are unknown,
which are needed to be estimated.

Then, Theorem 1 in Ref. 15 is established.

Theorem I: Assume that the Jacobian matrix of the vec-
tor function Q is invertible. Then, the driving system (1) Q-S
time varying synchronizes with the response system (3) if
one chooses

38 (y(t = r(1)))

- 1 . g
e =—(1=H))| 2 ped = —

yilt=r(0) |,
(5)
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- 1 .
a;(t)=-—(1-#{1)
rij

y [ S S0 = r0)

P ayt - r(1) gyt r(f)))] , (6)

Byl = f(l _ i)
ij

. a8 (y(1 = (1))
X |:g preit) &—y,»(t ~A0) Liy(t = m(1) = r(t)))] ,

()

u=—-[DO((1)] ' Me(r) + C(1)z(1) — A(1)g(z(1))
- B(0l(z(t - (1)) + (1 = H0)[DQ(z())]™"
X[DS(y(t = r()][= C0)y(t - (1)
+A(g(y(t = (1)) + BOI(y(t = (1) — r()))], (®)

where pi,qi,rij,sij(i,jz 1,2,...,n) are positive constants,
M=diag(m,,m,, ...,m,) is a positive definite matrix. C(z),
A(1), and B(r) are independent of C, A, and B.

Let e(t)=0(z(t))-S(y(t=r(2))), and subtracting (1) from
(3) yields the synchronization error dynamical system as fol-
lows:

é(t)=—Me(1) + (1 - #(1) DS(y(t — r(1)))
X[~ (C(1) = C)y(t = r(2) + (A1) - A)g(y(t = r(1))
+(B(1) = B)I(y(t = (1) = r(1)))], )
namely,
éi(t) = —mye(t) + (1 = (1))

y [_ 5 B8(0=r0)

2 yl—r(p) el =r(0)

4 2 E 3S(y(t—r(1)))

Ayt —r(r) (@(1) = ay)g;(y(t = (1))

j=1 k=1

+ 2 E aS,(y(t = r(1)))

Iyt =r(1)) (byy(r) = by (y( = 75(1)

j=1 k=1

—r(t)))], i=1,2,...,n. (10)

Consider the following Lyapunov functional candidate:

V(e(1),C(1) = C,A(r) - A,B(t) - B)

= %E Pie?(f) +qlc() -]+ E rijlai(t) — aij]2
i1 j=1

+ 2 sij[l;ij(t) - bij]z ; (11)
j=1

then one has
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driving system
— — —response system 1
----- response system 2

16 18 20
FIG. 1. Trajectories of driving system
(solid line) and two response systems

(dashed lines).

driving system
— — —response system 1
----- response system 2

0 2 4 6 8 10 12 14
t
v _ <
i = -2 {pme; (1)}. (12)
i=1

From Lyapunov functional method, one can easily obtain
the asymptotical stability of error system (9). Here, only sta-
bility results of the error system can be derived, and the
parameters cannot be identified from (12) directly. However,
a lot of existing results>¢~ 1151718 investigated parameters
identification of dynamical systems by using the similar
method, which may not be accurate. In Refs. 17 and 18, the
authors studied the parameters identification by using the
LaSalle invariance principle and concluded that parameters
of chaotic system can be estimated.

Il. ANALYSIS AND EXAMPLES OF PARAMETERS
IDENTIFICATION FOR STABLE SYSTEMS

Because of the lack of theoretical analyses of parameters
identification, some counterexamples are proposed in Refs. 1
and 3, which show that parameters of stable systems can be
hardly estimated. Next, we will investigate why the theoret-
ical analysis cannot work for stable systems, and if there are
some relationships between the original stable system and
the identified stable system.

Consider a typical delayed Hopfield neural network as
driving system,

y(@) == Cy() + Ag(y(1) + Bg(y(r — (1)), (13)

where

(1 0) (5.0 —0.1> (—1.6 —0.1>
C= , A= , B= ,
0 1 -50 28 -03 =25

tanh y, )

=] ',':1’2, =
Tij (i, ), &) (tanhy2

which is the same as in Ref. 3, where the authors changed the
parameter a;;=2 in simulation example15 to a;;=5. How-
ever, this changing model does not exhibit chaos phenom-
enon as illustrated in Fig. 1 shown above. In the following, a
special case of complete synchronization is considered for
simplicity, i.e., z(r) — y(r) as t—oo.

Here, two response systems (3)—(8) with different initial
conditions are considered. From the above analysis, one ob-
tains that the driving system (13) synchronizes with the two
response systems as illustrated in Fig. 1. The solid line and
two dashed lines are trajectories of the driving system and
two response systems, respectively. The true parameter val-
ues in the driving system and trajectories of parameters esti-
mation in two response systems are shown with solid and
dashed lines as in Figs. 2—4, respectively. It is easy to see
that parameters of driving systems cannot be estimated. Sur-
prisingly, two response systems with different initial condi-
tions converge to different values. Then, one can hardly de-
cide which is the true parameter estimation of the original
driving system. Why does this question occur? Next, some
analyses concerning this problem are demonstrated.

Note that on the synchronization manifold, where y(z)
=z72(t)=(a; ay)7 (@, and a, are constants for stable systems),
the error dynamical system (9) can be rewritten as
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4 6 8 10 12 14 16 18 20 FIG. 2. True parameter value (solid
t line) in driving system and parameters
: ; : . ; : . . estimation of C (dashed lines) in two
response systems.
[ e e e e e e e e e
| 1 | 1 1 | 1 1
4 6 8 10 12 14 16 18 20

0=(&(1) - ¢)ay+ 3 (@(r) ~ ay)tanh(a)
j=1

+ 2 (byj(1) = btanh(ey), i=1,2.

J=1

(14)

Given this equation, where ¢ s Qijs and 5[ ;j are unknown vari-
ables, there are no unique solutions for these variables. It is
obvious that two completely different systems that have the
same stable equilibrium can achieve synchronization. This
means that the states of two response systems both converge

to the same equilibrium as shown in Fig. 1. However, param-
eters in two systems are not the same.

Actually, the driving system (1) and the response system
(3) and (5)—(8) can be considered as a whole system with
dimensions 37+2n2. The number of variables in the whole
system are 3n+2n2, which include y;, z;, c;, a;j, and b;; for
i,j=1,2,...,n. Note that in (14), there are n equations with
n+2n? variables when y; and z; are known equilibrium points
on the synchronization manifold. Therefore, there exist many
different solutions c;, a;;, b;; satisfying (14). From (12), one
knows that y; and z; are the same on the synchronization

FIG. 3. True parameter value (solid
line) in driving system and parameters

estimation of A (dashed lines) in two
response systems.
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manifold for stable systems, however, ¢;, a
differently for different response systems.

The learning equations (5)—(7) can just achieve some
parameters, which enables the response system to have the
same stable equilibrium as the driving system. However, if
the driving system is chaotic, the learning equation may
work effectively. For some chaotic driving systems, the pa-
rameters may be estimated by adaptive control method and
the LaSalle invariant principle.”’18 It might be impossible for
another response system with identical structure, but with
different parameters, to track the same chaotic driving sys-
tem. Once it is not in the synchronization state, the param-
eters’ update law will be activated to make the estimated
parameters approach the true value.

;j» and b;; can vary

lll. CONCLUSIONS

Since some counter examples are proposed in Refs. 1
and 3, which show that parameters cannot be estimated from
stable systems, and one may doubt whether parameters can
be precisely estimated from time series of dynamical sys-
tems. Some detailed explanations and analyses are derived in
this paper. From previous analyses,m_18 it has been reported
that parameters of chaotic systems can be estimated from
time series. Some detailed analyses and examples are given
in this paper to investigate why parameters of stable systems
cannot be estimated.

As for the stable systems, the dynamical asymptotic be-
havior is only an equilibrium point, which provides inad-
equate information for estimating their parameters. Two
completely different systems with the same stable equilib-
rium point can synchronize with each other. However, for
chaotic systems, chaotic attractor provides more information
for identifying the parameters. If there is a mismatch in the
parameters of two identical systems, it may be hard for them
to achieve synchronization. However, this is not to say that

parameters of chaotic systems can be surely estimated for
time series. In Ref. 19, synchronization based parameter
identification of dynamical systems from time series is care-
fully revisited. A linear independence condition is pointed
out, which is sufficient for such parameter identification of
general dynamical systems.
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