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Abstract

Recently, Yu et al. presented a new cryptographic scheme based on delayed chaotic neural networks. In this letter, a
fundamental flaw in Yu’s scheme is described. By means of chosen plaintext attack, the secret keystream used can easily
be obtained.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic systems possess many interesting properties such as ergodicity, mixing and sensitivity to initial conditions
which match with the requirements for a good cryptosystem. Recently, there are an increasing number of researchers
working in this field, resulting in a variety of designs of cryptosystems based on chaotic systems [1–3,5].

Recently, Yu et al. designed a cryptosystem based on delayed chaotic neural networks [6]. This cryptosystem makes
use of the chaotic trajectories of two neurons to generate basic binary sequences for encrypting plaintext according to
some rules. Yu et al. claimed that it is difficult to synchronize the unknown chaotic neural networks through classical
attacks since neural networks usually possess complicated parameters [6]. However, a detailed analysis on the encryp-
tion algorithm shows that the cipher behaves as a stream cipher indeed [9, p. 20] although it looks like a block cipher.
Moreover, every new encryption process has the same basic binary sequences. This weakness leads to the re-generation
of the keystream under chosen plaintext attacks. By the fact that knowing the keystream generated by certain neural
networks is equivalent to knowing the parameters of the neural networks, the cipher is broken.

In this letter, we will first give a brief introduction to Yu et al.’s cryptographic scheme. Then the flaw of this scheme
will be analyzed in detail. The method on how to obtain the keystream under chosen plaintext attacks will also be
described. Finally, a conclusion of our findings will be drawn.
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2. A brief introduction to Yu’s cryptography

Yu et al.’s cryptosystem is governed by the following Hopfield neural networks [6]:
Plea
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where s(t) = 1 + 0.1sin(t), the initial condition of (1) is given by xi(t) = /i(t) when �r 6 t 6 0, where r = maxt2R{s(t)},
/(t) = (0.4,0.6)T.

The set of delayed differential equations is solved by the fourth-order Runge–Kutta method with time step size
h = 0.01. Suppose that x1(t) and x2(t) are the trajectories of delayed neural networks (1). The ith iterations of the cha-
otic neural networks are x1i = x1(ih), x2i = x2(ih).

In Yu et al.’s cryptosystem, an approach proposed in [10] was adopted to generate a sequence of independent and
identical (i.i.d.) binary random variables from a class of ergodic chaotic maps. For any x defined in the interval
I = [d,e], we can express the value of (x � d)/(e � d) 2 [0,1] in the following binary representation:
x� d
e� d

¼ 0: b1ðxÞb2ðxÞ . . . biðxÞ . . . ; x 2 ½d; e�; biðxÞ 2 f0; 1g: ð2Þ
The ith bit bi(x) can be expressed as
biðxÞ ¼
X2i�1

r¼1

ð�1Þr�1Hðe�dÞðr=2iÞþdðxÞ ð3Þ
where Ht(x) is a threshold function defined by
HtðxÞ ¼
0; x < t

1; x P t

�
ð4Þ
By Eq. (3), a binary sequence Bk
i ¼ fbiðxkÞg1k¼0 is obtained, where xk is the kth iteration of the chaotic neural networks

(1).
After the basic binary sequence is generated by Eqs. (1)–(4), it can be used for encryption according to the following

procedures:

Step 1. Get the start point x0 from the last N0 transient iterations, x0 = x1(N0h). In this scheme, N0 is chosen as 1000.
Step 2. Divide the message p into subsequences Pj of length l bytes. In this scheme l is chosen as 4. Pj = plj + plj+1 +

plj+2 + plj+3, where + denotes concatenation.
Step 3. Iterate neural networks (1) for 38 times to generate two data sequences: x1 = x10x11 . . .x137 and x2 =

x20x21 . . .x237. Choose one of these data sequences to generate the binary sequence Aj ¼ B1
i B2

i . . . B32
i , Dj ¼

B33
i B34

i . . . B37
i , Sj ¼ B38

i based on Eq. (3), where i = 4. The choice is governed by the following rule: If the first
four bytes of the message sequence are being encrypted, choose x1 sequence. Otherwise choose the data
sequence according to the previous Sj. If Sj = 0, choose the x1 sequence. Otherwise, use the x2 sequence.

Step 4. Left cyclic shift the message block Pj for Dj bits and right cyclic shift block Aj for Dj bits to generate P 0j and A0j,
respectively.

Step 5. Use P 0j and A0j to generate Cj according to the following equation:
Cj ¼ P 0j � A0j ð5Þ
where � is XOR operation.
Step 6. If all plaintext blocks have already been encrypted, the encryption process is completed. Otherwise, let

x0 ¼ xSjþ1ðð38þ DjÞhÞ, and go to step 2.

The decryption process is the same as the encryption one except that the shifted message block is obtained by
P 0j ¼ Cj � A0j ð6Þ
For more details, we highly suggest a thorough reading of [6].
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3. Analysis on Yu et al.’s cryptosystem

However, Yu’s scheme is found to have a fundamental flaw. As long as the key is fixed, the keystream A0j used in Eq.
(5) is independent of the plaintext. Then every new encryption process will be based on the same keystream. When this
algorithm is used to encrypt identical plaintexts at the same encryption position, identical ciphertexts are generated.
This situation will occur frequently, especially when encrypting files are of the same type. This is because those files
usually have the same header.

In step 3 of Yu et al.’s encryption algorithm, i is usually set to a relatively small value, i.e., a relatively heavy weight
bit, Aj, Dj and Sj vary little in the encryption process.

In order to illustrate this flaw, herein we give a part of the keystream according to Yu et al.’s encryption algorithm.

In [6] the parameters of neural networks (1) are chosen as A ¼ 1 0
0 1

� �
, W ¼ 2:0 �0:1

�5:0 3:0

� �
, B ¼ �1:5 �0:1

�0:2 �2:5

� �
,

h = 0.01, /(t) = (0.4,0.6)T in the time interval [�1.1,0].
Table 1 shows the first 10 keystreams obtained using Yu et al.’s encryption algorithm.
In every new encryption process, the same keystream is employed to encrypt the plaintext. To demonstrate

this situation, the results of encrypting two different plaintext sequences are shown in Tables 2 and 3. The two
plaintext sequences, P1 and P2, are arbitrarily generated as ‘512F7D86109A32C436AB95C28901A023’ and
‘60A398C2016540238AC0365236DC01B2’, respectively, expressed in hexadecimal format.
Table 1
A part of keystream

Encryption position Transient N0 Trajectory Start point x0 Aj (Hex) Dj (Hex) A0j ðHexÞ Sj (B)

1 1000 x1 �0.368 FFFFFFFF F FFFFFFFF 1
2 53 x2 2.245 FFFFFFFF F FFFFFFFF 1
3 53 x2 1.6205 00000000 0 00000000 0
4 38 x1 �0.2045 0FFFFFFF F FFFE1FFF 1
5 53 x2 1.9577 FFFFFFFF F FFFFFFFF 1
6 53 x2 2.8385 00000000 0 00000000 0
7 38 x1 �0.64754 0007FFFF F FFFE000F 1
8 53 x2 3.1357 C0000000 0 C0000000 0
9 38 x1 �0.33235 00000000 0 00000000 0
10 38 x1 �0.90302 0007FFFF F FFFE000F 1
� � � � � � � � � � � � � � � � � � � � � � � �

Table 3
Encryption process P2

Encryption position Plaintext Pj (Hex) Dj (Hex) P 0j ðHexÞ A0j ðHexÞ Cj (Hex)

1 60A398C2 F CC613051 FFFFFFFF 339ECFAE
2 01654023 F A0118DB2 FFFFFFFF 5FEE724D
3 8AC03652 0 8AC03652 00000000 8AC03652
4 36DC01B2 F 00D91B6E FFFE1FFF FF270491

Table 2
Encryption process for P1

Encryption position Plaintext Pj (Hex) Dj (Hex) P 0j ðHexÞ A0j ðHexÞ Cj (Hex)

1 512F7D86 F BEC32879 FFFFFFFF 413CD768
2 109A32C4 F 193A084D FFFFFFFF E6C5F7B2
3 36AB95C2 0 36AB95C2 00000000 36AB95C2
4 8901A023 F D011C480 FFFE1FFF 2FEFDB7F
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4. Chosen plaintext attack

There are four different levels of attacks presented in [9, p. 25] to test the security of various encryption algorithms.
Ordered by difficulty, they are, respectively, ciphertext-only attack, known plaintext attack, chosen plaintext attack, and
chosen ciphertext attack. If an algorithm is resistant to all known attacks under the assumption that the cryptanalyst
has the details of the algorithm [9, p. 25], it is proven to be secure.

The chosen plaintext attack on the cryptosystem proposed in [6] is straightforward. Suppose that two pairs of plain-
text and the corresponding ciphertext with the same encryption position and desired length are obtained. Let Pj1 and
Cj1, respectively, denote the plaintext and the ciphertext of the first pair while Pj2 and Cj2 denote another pair. Since Pj1

and Pj2 are located at the same position j in the encryption process, they will left cyclic shift by the number of bits Dj and
are processed with the same keystream A0j.

From step 4 of the encryption algorithm, we know
Plea
Frac
P 0j1 ¼ P j1 � Dj ð7Þ
P 0j2 ¼ P j2 � Dj ð8Þ
where � denotes the left cyclic shift operation.
From step 5, we know
Cj1 ¼ P 0j1 � A0j
Cj2 ¼ P 0j2 � A0j
Cj1 � Cj2 ¼ P 0j1 � A0j � P 0j2 � A0j
Cj1 � Cj2 ¼ P 0j1 � P 0j2

ð9Þ
From Eqs. (7) and (8), we obtain
Cj1 � Cj2 ¼ ðP j1 � P j2Þ � Dj ð10Þ
Let Xj = Cj1 � Cj2, Zj = Pj1 � Pj2.
Since Xj and Yj are known, in order to get Dj, we only need to left cyclic shift Zj until Xj = Zj. At that time, the

number of shifts is Dj. Of course, we hope there exists a unique solution for Eq. (10). However, if Zj derives the type
of ‘aaa . . .a’, then there exist more than one solutions for Eq. (10) because Zj� n = Zj� n + k * L with ‘a’ having L

bits. So we cannot chose plaintext pairs which let Zj have the type of ‘aaa . . .a’.
When Dj is obtained, we can obtain P 0j1 from Eq. (7).
From Eq. (9)
A0j ¼ P 0j1 � Cj1 ð11Þ
Following this computationally inexpensive method, we can obtain the desirable keystream A0j. It is important to
note that knowing the keystream A0j generated by a certain key is equivalent to knowing the secret key [4,7,8].

To demonstrate the security loophole caused by this flaw, we choose two plaintexts from Tables 2 and 3 at the fourth
block, with P41 and P42 denoting them, respectively. The processes of chosen plaintext attack to the cryptosystem are
listed step by step as follows:

Step 1. From Tables 2 and 3, we get P41 = 8901A023H, P42 = 36DC01B2H, P 041 ¼ D011C480H, P 042 ¼ 00D91B6EH,
C41 = 2FEFDB7F H and C42 = FF270491H.

Step 2. Suppose we only know P41, P42, C41, and C42. According to Eqs. (7), (8) and (10), we compute Dj, A0j and Aj to
validate our result.

(i) C41 � C42 = D0C8DFEEH, and denote it as X4.
(ii) P41 � P42 = BFDDA191H, and denote it as Z4.

(iii) By left cyclic shifting Z4 until X4 = Z4, we can obtain the number of shifts D4 = FH which is the same as
the value listed in Tables 2 and 3.

(iv) According to Step 4 of Yu et al.’s algorithm, we can obtain P 041 ¼ D011C480H and P 042 ¼ 00D91B6EH.
(v) According to Eq. (11), we can obtain A04 ¼ FFFE1FFF H which is the same as the value listed in Tables 2

and 3.
(vi) According to Step 4 of Yu et al.’s algorithm, we get A4 = 0FFFFFFFH. It is also the same as the value

listed in Table 1.

From the above demonstration, we can easily obtain the keystream using only two pairs of plaintext and ciphertext.
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5. Conclusion

In this letter, Yu et al.’s cryptosystem as proposed in [6] is analyzed in detail. It is difficult to obtain the key of Yu
et al.’s cryptosystem through classical attacks because of large key space. However, as the same keystream is used in
every encryption process, it can be easily obtained by the chosen plaintext attack using two pairs of plaintext and
ciphertexts only. This makes this cryptographic scheme insecure.
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