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Abstract

In this Letter, a new complex network model is established for reputation computation in virtual organizations, and its dynamics is investigated.
Several sufficient conditions have been derived to ensure the global asymptotical stability of the new complex network model by using Lyapunov
method and linear matrix inequality (LMI) technique, where the stability means that the reputation degrees of entities can tend to some fixed
constants as time evolves. Also, for this new model, some other dynamical phenomena such as bifurcation and chaos synchronization are proposed
for our consideration in the future. This may open a new research branch in the area.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The next generation of the internet is called the semantic web or semantic grid [1–3], which provides an environment that
allows more intelligent knowledge management and data mining. The semantic web or semantic grid is becoming popular for
sharing information and resources over the internet through web services or grid services, which are being developed based on
the semantic grid [4,5]. Semantic grid allows anyone around the world to develop their own tools to interact with the resources on
semantic grid easily. A virtual organization (VO) is a collection of users in the same administrative domain. A user can belong to
many virtual organizations and has a different role (user, client, administrator and so on) in each of them. The main problem in
virtual organization is its security, which includes how to identify a user and how to evaluate the actions that a user can perform.
Virtual organizations [6,7], which allow access to large amount of computing resources, have become increasingly popular. The real
and specific problem that underlies the grid concept is to coordinate resources-sharing and problem-solving dynamically among
multi-institutional virtual organizations. The sharing that we are concerned with is not primarily files exchange, but rather, direct
access to computers, software, data, and other resources, as is required by a range of collaborative problem-solving and resource-
brokering strategies emerging in industry, engineering, and technology. For implementing secure and reliable high-performance
computing services, it is necessary to know how to support the security infrastructure for virtual organizations. Security in virtual
organizations [8–10] has attracted increasing attentions from various research communities in recent years due to the unique ability
of marshalling collections of heterogeneous computers and resources, enabling easy access to diverse resources and services that
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otherwise could not be possible without a good computational model. However, the concept of virtual organizations does introduce
its own set of security challenges, as users and resource providers can come from mutually distributed administrative domains and
some participants can behave maliciously. These malicious attacks can generally compromise the resource provider node and the
shared resources node may be malicious or compromised to harm the user’s job running on the supporting platform.

Recently, in [10], the reputation has been recognized as an important factor for security of virtual organization. However, to the
best of our knowledge, no models have been given for integrating computational systems into virtual organizations. In this Letter
we establish a new complex network model for the reputation computation of virtual organizations.

It is well known that complex networks (which include world wide web, food webs, telephone call graphs, electrical power
grids, neural networks, co-authorship and citation networks of scientists, cellular and metabolic networks, etc.) exist in all fields of
sciences and humanities, and have been intensively studied [11–14]. Some properties of real-world complex networks can be well
understood by considering internal interactions or coupling of the network, and their basic properties are mainly determined by the
way of the connections among the nodes. Based on sound reasoning or evidence, we can use complex network model to study the
reputation degrees for virtual organizations. Recently, in [15,16], the authors studied a dynamical complex network model and also
discussed its synchronization. For the concerned issue of synchronization, there exist some recent publications, refer to [17–28].
In this Letter, we will try to propose a new complex network model for solving the problem of reputation computation in virtual
organizations.

2. Preliminaries and model formulation

In order to establish a new model for reputation computation in virtual organizations, the concept of trust and reputation [29] are
introduced.

The notion of trust is a complex subject relating to a firm belief in attributes such as reliability, honesty, and competence of the
trusted entity. Here, we use the definition of the trust from [29]:

Definition 1. Trust is the firm belief in the competence of an entity to act as expected such that this firm belief is not a fixed value
associated with the entity but rather it is subject to the entity’s behavior and applies only within a specific context at a given time.

That is, the firm belief is a dynamic value and spans over a set of values ranging from very trustworthy to every untrustworthy.
The trust level is built on past experiences, given for a specific context and specified for a given time because the trust level today
between two entities may not be necessarily the same trust lever a year ago.

When making trust-based decisions, entities can rely on others for information pertaining to a specific entity. For example, if
entity x wants to make a decision whether to have a transaction with entity y, which is unknown to x, then x can rely on the
reputation of y. The definition of reputation that we will use is also introduced in [29] as follows:

Definition 2. The reputation of an entity is an expectation of its behavior based on other entities’ observations or the collective
information about the entity’s past behavior within a specific context at a given time.

Now we try to establish a new complex network model for computing reputation degrees in virtual organizations. In [15,16]
a complex dynamical network, which consists of N linearly and diffusively coupled identical nodes, is considered with each node
being an n-dimensional dynamical system of the form:

(1)ẋi (t) = f
(
xi(t)

) + c

N∑
j=1,j �=i

GijΓ
(
xj (t) − xi(t)

)
, i = 1,2, . . . ,N,

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ R

n is the state vector representing the state vectors of node i, i = 1,2, . . . ,N , f : Rn →
R

n is continuously differentiable, the constant c is the coupling strength, Γ = diag(γ1, γ2, . . . , γn) ∈ R
n×n is a constant 0–1 matrix

linking the coupled variables with γi = 1 for a specific i and γj = 0 (j �= i), that is, there is only one 1 in the diagonal of matrix
Γ and all the other components of Γ are zeros, G = (Gij )N×N is the coupling configuration matrix representing the coupling
strengths and topological structure of the network, in which Gij is defined as follows: if there is a connection from node i to nodej
(j �= i), then the elements of coupling matrix Gij = Gji = 1; otherwise, Gij = Gji = 0 (j �= i), and the diagonal elements of
matrix G are defined by

(2)Gii = −
N∑

j=1,j �=i

Gij = −
N∑

j=1,j �=i

Gji .
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Then, in this case, the complex network (1) reduces to the model

(3)ẋi (t) = f
(
xi(t)

) + c

N∑
j=1

GijΓ xj (t), i = 1,2, . . . ,N.

Hereafter, suppose that the network (3) is connected in the sense that there are no isolated clusters, so the coupling configuration G

is an irreducible matrix.
In [25], a time-varying coupling was introduced into the complex network model, thus the network (3) can be extended as:

(4)ẋi (t) = f
(
xi(t)

) +
N∑

j=1

Gij (t)A(t)xj (t), i = 1,2, . . . ,N.

As a special case, the coupling linking matrix A(t) can be a constant 0–1 matrix in the form Γ = diag(γ1, γ2, . . . , γn) ∈ R
n×n and

the coupling configuration matrix G(t) = c(Gij )N×N for all time t , where c is a constant and Gij satisfies the following condition:
if there is a connection between node i and node j (i �= j), then Gij = Gji = 1; otherwise, Gij = Gji = 0 (j �= i). Then, in this
case, the time-varying network (4) reduces to the model (3).

It is noted that most of the real-world complex dynamical networks are time-varying evolving networks, which implies that the
coupling configuration matrix G(t) = (Gij (t))N×N and the inner coupling matrix A(t) = (aij (t))N×N are functions with respect to
time t . Moreover, real-world complex dynamical networks may be directed networks, such as WWW, whose coupling configuration
G(t) is not symmetric.

Although model (3) reflects the complexity from the structure of networks, it is a simple uniform dynamical network without
time-varying or delay coupling. Considering the existence of delays in spreading due to the finite speeds of transmission as well
as traffic congestions, so it is inevitable that time delays should be modelled or introduced for simulating more realistic networks.
In [24], the following complex dynamical network model with delay coupling is formulated:

(5)ẋi (t) = f
(
xi(t)

) + c

N∑
j=1

GijΓ xj (t − τ), i = 1,2, . . . ,N,

where τ is a time delay. As the coupling matrix G is irreducible, symmetric, all the off-diagonal elements of G are nonnegative
and satisfying (2), in [24–26], the local stability or local synchronization has been studied via linearized technique. In [20,21],
a distance between any point and synchronization manifold is defined, which was used to discuss global convergence for complete
regular coupling configuration, and a synchronization scheme is considered for an array of linearly coupled dynamical systems. In
[17–19], the global asymptotical synchronization is investigated for the following complex network of the form:

(6)ẋi (t) = −Cxi(t) + Af
(
xi(t)

) + Bf
(
xi(t − τ)

) + I (t) + c

N∑
j=1

GijΓ xj (t), i = 1,2, . . . ,N,

where C = diag(c1, c2, . . . , cn) ∈ R
n×n is a diagonal matrix with positive diagonal entries ci > 0, i = 1,2, . . . , n, A = (aij )n×n

and B = (bij )n×n are weight and delayed weight matrices, respectively, I (t) = (I1(t), I2(t), . . . , In(t))
T ∈ R

n is the external input
vector, Γ = diag(γ1, γ2, . . . , γn) ∈ R

n×n, f (xi(t)) = (f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))
T ∈ R

n are the activation functions of
the nodes.

Equivalently, the system (6) can be written as:

ẋik(t) = −ckxik(t) +
n∑

l=1

aklfl

(
xil(t)

) +
n∑

l=1

bklfl

(
xil(t − τ)

) + Ik(t) + c

N∑
j=1

Gijγkxjk(t),

(7)i = 1,2, . . . ,N; k = 1,2, . . . , n.

Based on above discussions and descriptions, to formulate or compute the reputation degrees in virtual organizations, we propose
a new model of the following array of N nonlinearly coupled complex network model of the type:

ẋi (t) = −Cxi(t) + Af
(
xi(t)

) + B

t∫
−∞

K(t − s)f
(
xi(s)

)
ds + Ii

+
N∑

j=1,j �=i

dij

[
Γ

(
g
(
xj (t)

) − g
(
xi(t)

)) + Λ

( t∫
−∞

K(t − s)g
(
xj (s)

)
ds −

t∫
−∞

K(t − s)g
(
xi(s)

)
ds

)]
,

(8)i = 1,2, . . . ,N,
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or equivalently,

ẋik(t) = −ckxik(t) +
n∑

l=1

aklfl

(
xil(t)

) +
n∑

l=1

bkl

t∫
−∞

Kl(t − s)fl

(
xil(s)

)
ds + Iik

+
N∑

j=1

dij

[
γk

(
gk

(
xjk(t)

) − gk

(
xik(t)

)) + λk

( t∫
−∞

Kk(t − s)gk

(
xjk(s)

)
ds −

t∫
−∞

Kk(t − s)gk

(
xik(s)

)
ds

)]
,

(9)i = 1,2, . . . ,N; k = 1,2, . . . , n,

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ R

n is the state vector of the ith node of the network, i = 1,2, . . . ,N , C =
diag(c1, c2, . . . , cn) ∈ R

n×n is a diagonal matrix with positive diagonal entries ci > 0, i = 1,2, . . . , n, A = (aij )n×n and
B = (bij )n×n are weight and delayed weight matrices, respectively, f (xi(t)) = (f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))

T ∈ R
n

and g(xj (t)) = (g1(xj1(t)), g2(xj2(t)), . . . , gn(xjn(t)))
T ∈ R

n represent the output of the node i and j, respectively, Ii =
(Ii1, Ii2, . . . , Iin)

T ∈ R
n is an external input vector, Γ = diag(γ1, γ2, . . . , γn) ∈ R

n×n and Λ = diag(λ1, λ2, . . . , λn) ∈ R
n×n are

diagonal matrices, which implies that the r th state variable of the ith node of the network is only affected by the r th state vari-
ables of the other nodes of the networks, and the weight function K(t) = diag(K1(t),K2(t), . . . ,Kn(t)) ∈ R

n×n is a nonnegative
bounded function defined on [0,+∞) reflecting the influence of the past states on the current dynamics, and the coupling matrix
D = (dij )N×N is the coupling configuration matrix representing the coupling strengths and topological structure of the network, in
which dij is defined as follows: if there is a connection from node i to node j (j �= i), then the coupling strength dij ∈ [0,1], and
the diagonal elements of matrix D is defined similarly as (2) by

(10)dii = −
N∑

j=1,j �=i

dij .

The coupled complex network model (8) can be rewritten as:

ẋi (t) = −Cxi(t) + Af
(
xi(t)

) + B

t∫
−∞

K(t − s)f
(
xi(s)

)
ds + Ii +

N∑
j=1

dij

[
Γ g

(
xj (t)

) + Λ

t∫
−∞

K(t − s)g
(
xj (s)

)
ds

]
,

(11)i = 1,2, . . . ,N,

or equivalently,

ẋik(t) = −ckxik(t) +
n∑

l=1

aklfl

(
xil(t)

) +
n∑

l=1

bkl

t∫
−∞

Kl(t − s)fl

(
xil(s)

)
ds + Iik

(12)+
N∑

j=1

dij

[
γkgk

(
xjk(t)

) + λk

t∫
−∞

Kk(t − s)gk

(
xjk(s)

)
ds

]
, i = 1,2, . . . ,N; k = 1,2, . . . , n.

In fact, the proposed complex model (8) can describe the dynamical evolution of the reputation for virtual organizations, in which
let xi(t) denote the reputation degree of the ith entity at time t , xij (t) (j = 1,2, . . . , n) be the j th index of the reputation degree
xi(t), C, A, B be the inner coupling matrices, where C is the restraint of the reputation degree, A is the weight matrix representing
the influence of the present reputation degree and B is the weight matrix representing the influence of the past reputation degree.
Also, let I be the external influence, the coupling configuration matrix D describe the interaction between entities, Γ be the weight
matrix of the influence of other entities’s reputation degree compared to a certain entity’s own reputation degree at present time, and
Λ be the weight matrix of the influence of other entities’s past reputation degree compared to a certain entity’s own past reputation
degree, assume that Γ and Λ are the diagonal matrices for simplicity which imply that the index of the reputation degree of each
entity is mostly influenced by the same indexes of the other entities.

From new model (8), one can see that the reputation degree that an entity holds is based on its own present reputation degree,
past reputation degree, and the relationships with other entities as well as their reputation degrees and past reputation degrees.

Now we define several special kernel matrix functions K(·).
Let

(13)Ki(s) = δ(s − τ), τ > 0, i = 1,2, . . . , n,
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where δ(·) is the Dirac function, then the system (11) can be written as:

(14)ẋi (t) = −Cxi(t) + Af
(
xi(t)

) + Bf
(
xi(t − τ)

) + Ii +
N∑

j=1

dij

[
Γ g

(
xj (t)

) + Λg
(
xj (t − τ)

)]
, i = 1,2, . . . ,N,

which is a model of delay coupling.
Let

(15)Ki(s) =
{

0, s � τ,

1, s < τ,
i = 1,2, . . . , n,

where τ is a positive constant, then the model (11) can be written as:

ẋi (t) = −Cxi(t) + Af
(
xi(t)

) + B

t∫
t−τ

K(t − s)f
(
xi(s)

)
ds + I +

N∑
j=1

dij

[
Γ g

(
xj (t)

) + Λ

t∫
t−τ

K(t − s)g
(
xj (s)

)
ds

]
,

(16)i = 1,2, . . . ,N,

which implies that the long-term past reputation degree of an entity is not considered. Also, Ki(·) could be a decaying function,
which is decreasing with the time variable, such as

(17)Ki(s) = αe−αs, α > 0, i = 1,2, . . . , n,

which satisfies

(18)

+∞∫
0

Ki(s) ds = 1, i = 1,2, . . . , n.

For this new model (11), there are some interesting dynamical phenomena such as stability, synchronization, bifurcation and
chaos. As a start on this new model, here we only discuss its stability which implies the reputation degree of all entities tend to
some fixed constants. Also, chaos means that the reputation degree of entities are random and changeable, which will be discussed
in the near future.

We impose the following assumption:

(A1) fi(·), gj (·) (i, j = 1,2, . . . , n) are nondecreasing and Lipschitz continuous; that is, there exist constants Fi,Gj such that

(19)
∣∣fi(x) − fi(y)

∣∣ � Fi |x − y|, |gj (x) − gj (y)| � Gj |x − y| ∀x, y ∈ R.

Assume that the model (16) has an equilibrium x∗ = (x∗
1 , x∗

2 , . . . , x∗
N) for a given I . To simplify the proofs, we shift the equilib-

rium point x∗ of (16) to the origin. Using the following transformation

yi(t) = xi(t) − x∗
i , i = 1,2, . . . ,N.

The model (16) can be transformed into the following form:

ẏi (t) = −Cyi(t) + Ah
(
yi(t)

) + B

t∫
t−τ

K(t − s)h
(
yi(s)

)
ds +

N∑
j=1

dij

[
Γ l

(
yj (t)

) + Λ

t∫
t−τ

K(t − s)l
(
yj (s)

)
ds

]
,

(20)i = 1,2, . . . ,N,

where h(yi(t)) = (h1(yi1(t)), h2(yi2(t)), . . . , hn(yin(t)))
T ∈ R

n, h(yi(t)) = f (yi(t) + x∗
i ) − f (x∗

i ), h(0) = 0 and l(yi(t)) =
(l1(yi1(t)), l2(yi2(t)), . . . , ln(yin(t)))

T ∈ R
n, l(yi(t)) = g(yi(t) + x∗

i ) − g(x∗
i ), l(0) = 0 (i = 1,2, . . . ,N). Moreover, from (19),

we know that

(21)
∣∣hk(yik)

∣∣ � Fk|yik| ∀yik ∈ R, i = 1,2, . . . ,N, k = 1,2, . . . , n,

(22)
∣∣lk(yik)

∣∣ � Gk|yik| ∀yik ∈ R, i = 1,2, . . . ,N, k = 1,2, . . . , n.

In this Letter, the following two elementary lemmas are needed:

Lemma 1 (Schur complement [30]). The following linear matrix inequality (LMI)(
Q(x) S(x)

S(x)T R(x)

)
> 0,

where Q(x) = Q(x)T , R(x) = R(x)T , is equivalent to one of the following conditions:
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(i) Q(x) > 0, R(x) − S(x)T Q(x)−1S(x) > 0,
(ii) R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0.

Lemma 2 (Jensen inequality [31]). For any constant matrix W ∈ R
m×m, W = WT , scalar r > 0, vector function ω: [0, r] ∈ R

m×m

such that the integrations concerned are well defined, then

r

r∫
0

ω(s)Wω(s) ds �
( r∫

0

ω(s) ds

)T

W

( r∫
0

ω(s) ds

)
.

3. Stability in the complex network model

In this section, several new global stability criteria are derived for the complex network (20) satisfying (17), which means that
the long-term past reputation degrees of entities are not under consideration.

To simplify the proof, we give some notations, let A ⊗ B denote the Kronecker product of matrices A and B , let

(23)C̄ = EN ⊗ C, Ā = EN ⊗ A, B̄ = EN ⊗ B, Γ̄ = D ⊗ Γ, Λ̄ = D ⊗ Λ, K̄ = EN ⊗ K,

(24)yi(t) = (
yi1(t), yi2(t), . . . , yin(t)

)T
, ∀i = 1,2, . . . ,N,

(25)y(t) = (
yT

1 (t), yT
2 (t), . . . , yT

N(t)
)T

,

(26)h̄
(
y(t)

) = (
hT

(
y1(t)

)
, hT

(
y2(t)

)
, . . . , hT

(
yN(t)

))T
,

(27)l̄
(
y(t)

) = (
lT

(
y1(t)

)
, lT

(
y2(t)

)
, . . . , lT

(
yN(t)

))T
,

where EN is the N -dimensional identity matrix.
Then the complex network (20) can be rewritten as

(28)ẏ(t) = −C̄y(t) + Āh̄
(
y(t)

) + B̄

t∫
t−τ

K̄(t − s)h̄
(
y(s)

)
ds + Γ̄ l̄

(
y(t)

) + Λ̄

t∫
t−τ

K̄(t − s)l̄
(
y(s)

)
ds, i = 1,2, . . . ,N.

Theorem 1. Under assumption (A1), the equilibrium point of model (28) is globally asymptotically stable if there are positive
definite diagonal matrices H̄ = diag(H̄1, H̄2, . . . , H̄Nn) ∈ R

Nn×Nn, J̄ = diag(J̄1, J̄2, . . . , J̄Nn) ∈ R
Nn×Nn, and positive definite

matrices P̄ = (p̄ij )Nn×Nn, Q̄ = (q̄ij )Nn×Nn, R̄ = (r̄ij )Nn×Nn, such that

(29)N =

⎛
⎜⎜⎜⎜⎝

−2P̄ C̄ P̄ Ā + F̄ H̄ P̄ B̄ P̄ Γ̄ + ḠJ̄ P̄ Λ̄

ĀT P̄ + H̄ F̄ τ 2K̄T (0)Q̄K̄(0) − 2H̄ 0 0 0

B̄T P̄ 0 −Q̄ 0 0

Γ̄ T P̄ + J̄ Ḡ 0 0 τ 2K̄T (0)R̄K̄(0) − 2J̄ 0

Λ̄T P̄ 0 0 0 −R̄

⎞
⎟⎟⎟⎟⎠ ,

where

F = diag(F1,F2, . . . ,Fn) ∈ R
n×n, F̄ = EN ⊗ F, G = diag(G1,G2, . . . ,Gn) ∈ R

n×n, Ḡ = EN ⊗ G.

Proof. Consider the following Lyapunov functional:

(30)V (t) =
i=3∑
i=1

Vi(t),

where

(31)V1(t) = yT (t)P̄ y(t),

(32)V2(t) = τ

0∫
−τ

t∫
t+s

(
K̄(t − θ)h̄

(
y(θ)

))T
Q̄

(
K̄(t − θ)h̄

(
y(θ)

))
dθ ds,

(33)V3(t) = τ

0∫
−τ

t∫
t+s

(
K̄(t − θ)l̄

(
y(θ)

))T
R̄

(
K̄(t − θ)l̄

(
y(θ)

))
dθ ds,
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where P̄ = (p̄ij )Nn×Nn, Q̄ = (q̄ij )Nn×Nn and R̄ = (r̄ij )Nn×Nn are positive definite matrices.
Computing the derivative of V (y) along the trajectory of system (28), we obtain

V̇1(t)
∣∣
(28)

= 2yT (t)P̄ ẏ(t)

= −2yT (t)P̄ C̄y(t) + 2yT (t)P̄ Āh̄
(
y(t)

) + 2yT (t)P̄ B̄

t∫
t−τ

K̄(t − s)h̄
(
y(s)

)
ds

+ 2yT (t)P̄ Γ̄ l̄
(
y(t)

) + 2yT (t)P̄ Λ̄

t∫
t−τ

K̄(t − s)l̄
(
y(s)

)
ds

= −2yT (t)P̄ C̄y(t) + yT (t)P̄ Āh̄
(
y(t)

) + h̄T
(
y(t)

)
ĀT P̄ y(t) + yT (t)P̄ B̄

t∫
t−τ

K̄(t − s)h̄
(
y(s)

)
ds

+
( t∫

t−τ

K̄(t − s)h̄
(
y(s)

)
ds

)T

B̄T P̄ y(t) + yT (t)P̄ Γ̄ l̄
(
y(t)

) + l̄ T
(
y(t)

)
Γ̄ T P̄ y(t)

(34)+ yT (t)P̄ Λ̄

t∫
t−τ

K̄(t − s)l̄
(
y(s)

)
ds +

( t∫
t−τ

K̄(t − s)l̄
(
y(s)

)
ds

)T

Λ̄T P̄ y(t).

According to Lemma 2, we have

V̇2(t)
∣∣
(28)

= τ

0∫
−τ

(
K̄(0)h̄

(
y(t)

))T
Q̄

(
K̄(0)h̄

(
y(t)

))
ds − τ

0∫
−τ

(
K̄(−s)h̄

(
y(t + s)

))T
Q̄

(
K̄(−s)h̄

(
y(t + s)

))
ds

+ 2τ

0∫
−τ

t∫
t+s

(
dK̄(t − θ)

dt
h̄
(
y(θ)

))T

Q̄
(
K̄(t − θ)h̄

(
y(θ)

))
dθ ds

= τ 2h̄T
(
y(t)

)
K̄T (0)Q̄K̄(0)h̄

(
y(t)

) − τ

t∫
t−τ

(
K̄(t − s)h̄

(
y(s)

))T
Q̄

(
K̄(t − s)h̄

(
y(s)

))
ds

− 2ατ

0∫
−τ

t∫
t+s

(
K̄(t − θ)h̄

(
y(θ)

))T
Q̄

(
K̄(t − θ)h̄

(
y(θ)

))
dθ ds

(35)� τ 2h̄T
(
y(t)

)
K̄T (0)Q̄K̄(0)h̄

(
y(t)

) −
( t∫

t−τ

K̄(t − s)h̄
(
y(s)

)
ds

)T

Q̄

( t∫
t−τ

K̄(t − s)h̄
(
y(s)

)
ds

)
.

Similarly,

(36)V̇3(t)
∣∣
(28)

� τ 2 l̄ T
(
y(t)

)
K̄T (0)R̄K̄(0)l̄

(
y(t)

) −
( t∫

t−τ

K̄(t − s)l̄
(
y(s)

)
ds

)T

R̄

( t∫
t−τ

K̄(t − s)l̄
(
y(s)

)
ds

)
.

From assumption (A1), it follows that

(37)h̄T
(
y(t)

)
H̄ F̄ y(t) − h̄T

(
y(t)

)
H̄ h̄

(
y(t)

)
� 0,

and

(38)l̄ T
(
y(t)

)
J̄ Ḡy(t) − l̄ T

(
y(t)

)
J̄ l̄

(
y(t)

)
� 0,

where

H̄ = diag(H̄1, H̄2, . . . , H̄Nn) ∈ R
Nn×Nn, J̄ = diag(J̄1, J̄2, . . . , J̄Nn) ∈ R

Nn×Nn,

F = diag(F1,F2, . . . ,Fn) ∈ R
n×n, F̄ = EN ⊗ F,
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G = diag(G1,G2, . . . ,Gn) ∈ R
n×n, Ḡ = EN ⊗ G

are positive definite diagonal matrices.
Combining (34)–(38), we obtain

(39)V̇ (t)
∣∣
(28)

� ηT Nη,

where

η =
(

yT (t), h̄T
(
y(t)

)
,

( t∫
t−τ

K̄(t − s)h̄
(
y(s)

)
ds

)T

, l̄ T
(
y(t)

)
,

( t∫
t−τ

K̄(t − s)l̄
(
y(s)

)
ds

)T )T

.

Therefore, from (39), we know that under the given condition (29), V̇ (y(t)) = 0 if and only if y(t) = 0, otherwise V̇ (y(t)) � 0.
Moreover, on the other hand, V (y) is radially unbounded since V (y(t)) → ∞ as ‖y(t)‖ → ∞. So we conclude that the equilibrium
of (28) is globally asymptotically stable. This completes the proof. �

Note that the matrix given in condition (29) is a high dimension-matrix as the complex network is large (i.e., N is a large number).
In the following, we give another theorem which only need to verify a lower dimension matrix-condition based on Lemma 1.

Theorem 2. Under Assumption (A1), the equilibrium point of model (28) is globally asymptotically stable if there are positive
definite diagonal matrices H̄ = diag(H̄1, H̄2, . . . , H̄Nn) ∈ R

Nn×Nn, J̄ = diag(J̄1, J̄2, . . . , J̄Nn) ∈ R
Nn×Nn, and positive definite

matrices P̄ = (p̄ij )Nn×Nn, Q̄ = (q̄ij )Nn×Nn, R̄ = (r̄ij )Nn×Nn, such that

−2P̄ C̄ − (
ĀT P̄ + H̄ F̄

)(
τ 2K̄T (0)Q̄K̄(0) − 2H̄

)−1(
ĀT P̄ + H̄ F̄

)T + (
B̄T P̄

)
Q̄−1(B̄T P̄

)T

(40)− (
Γ̄ T P̄ + J̄ Ḡ

)(
τ 2K̄T (0)R̄K̄(0) − 2J̄

)−1(
Γ̄ T P̄ + J̄ Ḡ

)T + (
Λ̄T P̄

)
R̄−1(Λ̄T P̄

)T
< 0,

(41)τ 2K̄T (0)Q̄K̄(0) − 2H̄ < 0,

(42)τ 2K̄T (0)R̄K̄(0) − 2J̄ < 0,

where

F = diag(F1,F2, . . . ,Fn) ∈ R
n×n, F̄ = EN ⊗ F,

G = diag(G1,G2, . . . ,Gn) ∈ R
n×n, Ḡ = EN ⊗ G.

Proof. Let

Q = −2P̄ C̄, S = (P̄ Ā + F̄ H̄ , P̄ B̄, P̄ Γ̄ + ḠJ̄ , P̄ Λ̄),

and

R =

⎛
⎜⎜⎝

τ 2K̄T (0)Q̄K̄(0) − 2H̄ 0 0 0

0 −Q̄ 0 0

0 0 τ 2K̄T (0)R̄K̄(0) − 2J̄ 0

0 0 0 −R̄

⎞
⎟⎟⎠ .

Using Lemma 1, one can see that the condition (29) is equivalent to conditions (40)–(42). This completes the proof. �
Moreover, we note that the dimension of condition (29) in Theorem 1 is higher than (40)–(42) in Theorem 2, but it is solvable

using the LMI-toolbox in Matlab. The following theorem provides the tradeoff between the matrix-dimension and solving by LMI.

Theorem 3. Under assumption (A1), the equilibrium point of model (28) is globally asymptotically stable if there are positive
definite diagonal matrices H̄ = diag(H̄1, H̄2, . . . , H̄Nn) ∈ R

Nn×Nn, J̄ = diag(J̄1, J̄2, . . . , J̄Nn) ∈ R
Nn×Nn, and positive definite

matrices P̄ = (p̄ij )Nn×Nn, Q̄ = (q̄ij )Nn×Nn, R̄ = (r̄ij )Nn×Nn, such that

(43)N1 =
⎛
⎝ −P̄ C̄ P̄ Ā + F̄ H̄ P̄ B̄

ĀT P̄ + H̄ F̄ τ 2K̄T (0)Q̄K̄(0) − 2H̄ 0

B̄T P̄ 0 −Q̄

⎞
⎠ < 0,

(44)N2 =
⎛
⎝ −P̄ C̄ P̄ Γ̄ + ḠJ̄ P̄ Λ̄

Γ̄ T P̄ + J̄ Ḡ τ 2K̄T (0)R̄K̄(0) − 2J̄ 0

Λ̄T P̄ 0 −R̄

⎞
⎠ < 0,
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where

F = diag(F1,F2, . . . ,Fn) ∈ R
n×n, F̄ = EN ⊗ F,

G = diag(G1,G2, . . . ,Gn) ∈ R
n×n, Ḡ = EN ⊗ G.

Proof. Choose the same Lyapunov functional as in (30)–(33). Similar to (39), we can obtain

V̇ (t)|(28) �
(

yT (t) h̄T
(
y(t)

) ( t∫
t−τ

K̄(t − s)h̄
(
y(s)

)
ds

)T )T

N1

⎛
⎝ y(t)

h̄(y(t))∫ t

t−τ
K̄(t − s)h̄(y(s)) ds

⎞
⎠

(45)+
(

yT (t) l̄ T
(
y(t)

) ( t∫
t−τ

K̄(t − s)l̄
(
y(s)

)
ds

)T )T

N2

⎛
⎝ y(t)

l̄(y(t))∫ t

t−τ
K̄(t − s)l̄(y(s)) ds

⎞
⎠ .

The remaining proof is similar to the proof of Theorem 1, we omit it. This completes the proof. �
Moreover, in order to simplify the conditions in (43), we have the following theorem:

Theorem 4. Under assumption (A1), the equilibrium point of model (28) is globally asymptotically stable if there are positive
definite diagonal matrices H = diag(H1,H2, . . . ,Hn) ∈ R

n×n, J̄ = diag(J̄1, J̄2, . . . , J̄Nn) ∈ R
Nn×Nn, and positive definite matrices

P = (pij )n×n, Q = (qij )n×n, R̄ = (r̄ij )Nn×Nn, such that

(46)N ′
1 =

⎛
⎝ −PC PA + FH PB

AP + HF τ 2KT (0)QK(0) − 2H 0

BT P 0 −Q

⎞
⎠ < 0,

(47)N2 =
⎛
⎝ −P̄ C̄ P̄ Γ̄ + ḠJ̄ P̄ Λ̄

Γ̄ T P̄ + J̄ Ḡ τ 2K̄T (0)R̄K̄(0) − 2J̄ 0

Λ̄T P̄ 0 −R̄

⎞
⎠ < 0,

where

F = diag(F1,F2, . . . ,Fn) ∈ R
n×n, F̄ = EN ⊗ F,

G = diag(G1,G2, . . . ,Gn) ∈ R
n×n, Ḡ = EN ⊗ G.

Proof. Let P̄ = EN ⊗ P , H̄ = EN ⊗ H and Q̄ = EN ⊗ Q in Theorem 3, then we can easily get

(
yT (t) h̄T

(
y(t)Q

) ( t∫
t−τ

K̄(t − s)h̄
(
y(s)

)
ds

)T )T

N1

⎛
⎝ y(t)

h̄(y(t))∫ t

t−τ
K̄(t − s)h̄(y(s)) ds

⎞
⎠

=
i=N∑
i=1

(
yT
i (t) hT

(
yi(t)

) ( t∫
t−τ

K(t − s)h
(
yi(s)

)
ds

)T )T

N ′
1

⎛
⎝ yi(t)

h(yi(t))∫ t

t−τ
K(t − s)h(yi(s)) ds

⎞
⎠ .

The remaining proof is straightforward and hence omitted. �
Remark 1. Since N ′

1 in (46) and N1 in (43) are 3n × 3n and 3Nn × 3Nn matrices, respectively, one can see that Theorem 4 may
be more useful and simple as the nodes’ number N of the network is large.

Remark 2. For semantic grid or virtual organizations, there are very few models that can be used to discuss their reputation
computation. Since a node in the new complex network is a fundamental unit with detailed contents about an entity in the virtual
organizations, we can use it to study the reputation computation for virtual organizations. It is a new method to solve this problem
based on our new network model, which can well show the dynamics for reputation degrees in virtual organizations.

Remark 3. Stability of complex network model implies that the reputation degrees of entities converge to some fixed constants.
Also, as is known to all that there are some other dynamical behaviors in the complex network model such as bifurcation, chaos
which indicate that the reputation degrees of entities change irregularly. However synchronization means that we may consider
some entities as alliances. The reputation degree of the same alliances may change but they change in the same way.
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4. A numerical example

In this section, we give a simulation example to verify the results obtained in this Letter.

Example. Consider the following complex network:

ẋi (t) = −Cxi(t) + Af
(
xi(t)

) + B

t∫
t−τ

K(t − s)f
(
xi(s)

)
ds + Ii +

N∑
j=1

dij

[
Γ g

(
xj (t)

) + Λ

t∫
t−τ

K(t − s)g
(
xj (s)

)
ds

]
,

(48)i = 1,2, . . . ,N,

where

C =
(

1 0

0 1

)
, A =

(
0.2 −0.1

0.3 0.2

)
, B =

(
0.2 0.4

0.2 −0.1

)
, I1 =

(
0.1

0.2

)
, I2 =

(
0.7

0.6

)
, I3 =

(
0.4

0.3

)
,

f (xi) =
(

tanh(xi1)

tanh(xi2)

)
, g(xj ) =

(
tanh(xj1)

tanh(xj2)

)
(i, j = 1,2,3), τ = 1,

Γ =
(

1 0

0 1

)
, Λ =

(
1 0

0 1

)
, K(s) =

(
e−s 0

0 e−s

)
, D =

⎛
⎝−0.5 0.5 0

0.2 −0.6 0.4

0 0.3 −0.3

⎞
⎠ .

It is obvious to see that F = G = ( 1 0
0 1

)
. Using LMI toolbox in Matlab, from Theorem 1, we obtain

P̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

315.1818 0.7146 57.1610 4.3380 −9.8276 −2.5261

0.7146 303.8076 3.2680 52.9551 −2.4333 −9.3308

57.1610 3.2680 401.8530 16.5816 59.9312 6.8004

4.3380 52.9551 16.5816 365.7212 7.2141 54.2814

−9.8276 −2.4333 59.9312 7.2141 450.9577 24.1372

−2.5261 −9.3308 6.8004 54.2814 24.1372 419.0998

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Q̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

131.6387 −8.2155 17.0714 1.4625 −12.9198 0.4488

−8.2155 173.0465 1.4410 15.0339 0.4397 −9.4750

17.0714 1.4410 145.3723 −0.9967 11.5466 3.1216

1.4625 15.0339 −0.9967 194.7709 2.8133 11.8521

−12.9198 0.4397 11.5466 2.8133 191.1770 −2.5945

0.4488 −9.4750 3.1216 11.8521 −2.5945 234.9790

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

R̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

280.7083 2.3349 −102.5644 −21.4834 −4.1913 −2.8780

2.3349 273.4791 −23.0698 −85.2130 −2.2688 −3.3209

−102.5644 −23.0698 427.9622 17.6665 −128.6232 −27.1065

−21.4834 −85.2130 17.6665 392.6001 −26.9793 −102.3020

−4.1913 −2.2688 −128.6232 −26.9793 313.6618 2.7203

−2.8780 −3.3209 −27.1065 −102.3020 2.7203 301.0954

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

H̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

236.8081 0 0 0 0 0

0 225.7796 0 0 0 0

0 0 274.2453 0 0 0

0 0 0 249.1510 0 0

0 0 0 0 311.1474 0

0 0 0 0 0 295.2271

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

J̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

230.4325 0 0 0 0 0

0 232.4224 0 0 0 0

0 0 358.1391 0 0 0

0 0 0 338.1173 0 0

0 0 0 0 325.7547 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

0 0 0 0 0 310.4898
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Fig. 1. Trajectories of nodes in complex network.

By Theorem 1, we conclude the complex network model (48) is globally asymptotically stable. The simulation result is given in
Fig. 1, which shows the correctness of the results given in this Letter.

5. Conclusions

In recent years, the semantic grid and virtual organizations have become a hot topics, but the corresponding results especially
the dynamical models and convergence dynamics for their reputation computation of virtual organizations or semantic gird are
still lacking. In this Letter, a new complex network model has been built for computing or formulating the reputation degrees
for virtual organizations. Some simple convergence dynamics have been discussed for the reputation degrees of entities in virtual
organizations, and the stability have showed that the reputation degrees of entities can tend to some fixed constants as time evolves.
As a start on this new model, here we have only presented some simple analysis such as stability, further research on this new model
will be addressed in the near future.
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