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Abstract

A challenge involved in applying density-based clustering to categorical biomedical
data is that the “cube” of attribute values has no ordering defined, making the search
for dense subspaces slow. We propose the HIERDENC algorithm for hierarchical
density-based clustering of categorical data, and a complementary index for searching
for dense subspaces efficiently. The HIERDENC index is updated when new objects
are introduced, such that clustering does not need to be repeated on all objects.
The updating and cluster retrieval are efficient. Comparisons with several other
clustering algorithms showed that on large datasets HIERDENC achieved better
runtime scalability on the number of objects, as well as cluster quality. By fast
collapsing the bicliques in large networks we achieved an edge reduction of as much
as 86.5%. HIERDENC is suitable for large and quickly growing datasets, since it
is independent of object ordering, does not require re-clustering when new data
emerges, and requires no user-specified input parameters.
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1 Introduction

Categorical datasets are frequently clustered in biomedical informatics. Appli-
cations range from health information records to protein-protein interaction
and sequence similarity networks. Layered categorical clustering, where a clus-
ter consists of a center of similar objects and outer layers of less similar objects,
has acquired prominence. Layered clusters are useful in bioinformatics for find-
ing protein modules, complexes, and for visualization purposes (1; 2; 3; 4; 5).
However, often, the focus is on the quality of the clusters, with a secondary
priority placed on the speed of the method, scalability to large datasets, and
its usability.

A categorical dataset with m attributes is viewed as an m-dimensional ‘cube’,
offering a spatial density basis for clustering. A cell of the cube is mapped to
the number of objects having values equal to its coordinates (6). Clusters in
such a cube are regarded as subspaces of high object density and are separated
by subspaces of low object density (7). Density-based clustering algorithms,
such as DBSCAN (8) or OPTICS (9), search for dense subspaces. A dense
subspace is defined by a radius of maximum distance from a central point,
and it has to contain many objects according to a threshold criterion (10).
With the radius gradually increasing to allow more objects in clusters, layered
clusters result. Our goal is to tackle some of the general challenges of existing
clustering approaches:

(i) The density of a subspace is often defined relative to a user-specified
radius ! . However, different radii are preferable for different subspaces of the
cube (9). In dense subspaces where no information should be missed, the
search is more accurately done ‘cell by cell” with a low radius of 1. In sparse
subspaces a higher radius may be preferable to aggregate information.

(17) The time requirement is often a problem in density-based clustering,
since it may be too slow to find the densest subspace in a high-dimensional
dataset, and the dataset may change often. In particular, since there is no
ordering of attribute values, the cube cells have no ordering either. The search
for dense subspaces could have to consider several orderings of each dimension
of the cube to identify the best clustering (11; 12; 13).

(171) Other challenges include: re-clustering needed when new objects are
introduced, difficulty finding clusters within clusters, sensitivity to order of
object input, or user-specified input parameters required with wrong values
affecting the end result (14; 15; 16; 17).

We present the HIERDENC' algorithm for “hierarchical density-based cluster-

L Although the term ‘radius’ is borrowed from geometrical analogies that assume
circular constructs, we use the term in a looser way and it is not a Euclidean
distance.



ing of categorical data”, which addresses the above challenges. HIERDENC
clusters the m-dimensional cube representing the spatial density of a set of ob-
jects with m categorical attributes. To find its dense subspaces, HIERDENC
considers an object’s neighbors to be all objects that are within a radius of
maximum dissimilarity. Figure 1 shows that the radius is the maximum num-
ber of dimensions by which neighbors can differ. The cube search starts from
a low radius and gradually moves to higher radii. With the clustering radius
gradually increasing, layered clusters result, as Figure 2 shows. Figure 3 shows
examples of creating and expanding clusters in a 3-dimensional dataset.

For scalability to large categorical datasets, we propose the HIERDENC' in-
dex, which supports efficient retrieval of dense subspaces relative to a radius.
When new objects are introduced, HIERDENC is updated efficiently. The
neighborhood of an object is insensitive to attribute or value ordering. A user
can study the layered cluster structure at different levels of granularity, detect
subclusters within clusters, and know the central densest area of each cluster.

Applications of HIERDENC to biomedical informatics abound. One applica-
tion is clustering networks to find bicliques. A network’s adjacency matrix is a
boolean-valued categorical dataset, where rows and columns represent objects
and ‘1’ is a connection; a biclique is a network whose objects can be divided
into two disjoint sets, such that every object of the first set is connected to
every object of the second set. Finding bicliques in a network has several ap-
plications to biological problems; in protein-protein interaction networks the
bicliques can be visualized, or correlated with structural knowledge to find
the structures that induce observed interactions (1; 5). Furthermore, HIER-
DENC is applicable to biomedical images and literature; we demonstrate a
fast image retrieval system and a PubMed document clustering that we built.
We also applied HIERDENC to clustering of Force-Distance curves from high-
throughput proteomic studies, by aligning curves on the basis of their detected
peaks to one another.

This paper is organized as follows. Section 2 gives an overview of related work
on dissimilarity metrics and density-based clustering for categorical data. Sec-
tions 3 and 4 present the HIERDENC clustering algorithm and index. Section
5 discusses our performance evaluations. Applications to categorical datasets
show runtime scalability and clustering quality. In section 6 we discuss biomed-
ical applications. We apply HIERDENC to large networks, such that bicliques
are collapsed, comfirming the runtime scalability. Section 7 concludes that our
method amends some of the weaknesses of previous categorical density-based
clustering approaches, and has promising utilities in biomedical informatics.
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Fig. 1. Two HIERDENC ‘hyper-cubes’ for radius r=1, in a 3D cube. All
neighbors of the central object for each hyper-cube differ from it in one
dimension.

Fig. 2. A layered network cluster has a center surrounded by outer layers.

2 Background and Related Work

Section 2.1 describes the Hamming Distance, and section 2.2 provides an
overview of density-based clustering algorithms for categorical data.

2.1 The Hamming Distance in Categorical and Binary Data

For a fixed length m, the Hamming distance is a metric on the vector space
of the words of that length. Figure 4 shows an example of HDs in the zoo
dataset (18). The serpent tuatara is within a relatively small HD from the
other serpents; the maximum distance is H D(tuatara < seasnake) = 5. On
the other hand, H D(tuatara < gorilla) = 8, and gorilla is unlikely to belong
to the class of serpents. For binary strings a and b the HD is equivalent to the
number of ones in a xor b. The metric space of length-m binary strings, with



Fig. 3. A cluster is a dense subspace with a ‘central’ cell marked with a dot. The radius
starts from 1 and changes when neither a cluster can be expanded, nor a new cluster can
be formed. (a) radius=1, two new clusters. (b) radius=1, clusters expand. The radius did
not change since a, but fewer objects are found within a radius of 1 than in a, implying a
less dense subspace. (¢) radius=2, clusters expand. (d) radius=2, one new cluster.

the HD, is known as the Hamming cube.
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Fig. 4. Example of Hamming distances on the
zoo categorical dataset.

2.2 Density-based Clustering

General desirable features of clustering algorithms include: a. Linear scalability
on the size of the dataset, b. Insensitivity to object ordering, c¢. No re-clustering
needed when new objects are introduced, and d. No user-specified input pa-
rameters required. Several density-based clustering algorithms for categorical
data have been proposed.

Projected (or subspace) clustering is motivated by high-dimensional feature



spaces, in which many algorithms tend to break down since clusters often exist
only in specific attribute subsets of the original space (19). Projected clustering
methods are density-based algorithms that form clusters in subspaces in high-
dimensional datasets, by finding the clusters’ relevant attributes (20). For
each cluster, projected clustering determines a set of “relevant attributes”.
The rationale of projected clustering is that only a subset of attributes is
relevant to each cluster and each cluster can have a different set of relevant
attributes. An attribute is relevant to a cluster if it helps identify its member
objects. This means the values at the relevant attributes are distributed around
some specific values in the cluster, while the objects of other clusters are less
likely to have such values. The drawback is that clustering depends on some
user parameters for determining the relevant attributes of each cluster; such
parameters are the number of clusters or the average number of dimensions for
each cluster (14; 16; 21; 22). Projected clustering may distinguish the center
of a cluster based on higher density or the relevant attributes (23). PROCLUS
is a well-known projected clustering algorithm (24).

CACTUS uses a minimum size for the relevant attribute sets, and assumes that
a cluster is identified by a unique set of attribute values that seldom occur
in other clusters. The relevant attributes are extended to candidate cluster
projections (25). Many real world datasets might not have one minimum size
of relevant attribute sets applicable for all clusters (17).

STIRR looks for relationships between all attribute values in a cluster (26).
Two sets of attribute values, one with positive and another with negative
weights, define two clusters. STIRR is sensitive to the input ordering and
lacks a definite convergence. The notion of weights is non-intuitive and several
operators are left to the user to define. The final detected clusters are often
incomplete (17; 25).

CLICKS creates a graph representation; vertices are categorical values and
an edge is a co-occurrence of values in an object. A cluster is a k-partite
maximal clique such that most pairs of vertices are connected by an edge (17).
A merging process is proposed to reduce the number of clusters or outliers.

CLOPE for categorical and transactional data uses a heuristic method of
increasing the height-to-width ratio of the cluster histogram (27). CLOPE’s
advantages include fast performance and scalability to large data sets with
high dimensions.

ROCK is an adaptation of a hierarchical clustering algorithm for categorical
data. It does not require the user to specify the number of clusters. Initially,
each tuple is assigned to a separate cluster and then clusters are merged re-
peatedly according to the closeness between clusters. The algorithm exhibits
cubic complexity in the number of objects, which makes it unsuitable for large



data sets (11; 14; 16; 17).

DBSCAN regards clusters as dense regions of objects in space that are sepa-
rated by regions of low density. For each point of a cluster, the neighborhood
of a given radius (€) has to contain at least a minimum number of points
(MinPts) where € and MinPts are input parameters. Every object not con-
tained in any cluster is considered noise (28). The computational complexity
of DBSCAN is O(NlogN). The main advantage of DBSCAN is that it can
discover clusters of arbitrary shape. DBSCAN is resistant to noise and pro-
vides a means of filtering for noise if desired. The main drawback of DBSCAN
is that the user needs to specify parameter values, such as radius, that will
affect the result (21) DBSCAN is not suitable for high-dimensional data; as
dimensionality increases, so does the relative distance between points making
it harder to perform density analysis (20).

OPTICS considers that different parts of space could require different param-
eters. OPTICS covers a spectrum of all different ¢ < e. OPTICS has the same
complexity as DBSCAN, O(NlogN). OPTICS finds an ordering of data that is
consistent with DBSCAN (9). For sequence clustering, OPTICS was extended
into SEQOPTICS, to support users choosing parameters (29). DBSCAN and
OPTICS have difficulty identifying clusters within clusters (15; 16).

3 Categorical Data Clustering with HIERDENC

Section 3.1 presents the basic concepts. Section 3.2 describes the HIERDENC
clustering algorithm. Clusters start from the densest subspaces of the cube,
and expand by connecting nearby dense subspaces.

3.1 Basics

We are given a dataset of objects S (which might contain duplicates) with m
categorical attributes, Xy, -+, X,,. Each attribute X; has a domain D; with
a finite number of d; possible values. The space S™ includes the collection
of possibilities defined by the cross-product (or cartesian product) of the do-
mains, Dy X --- X D,,. This can also be viewed as an m-dimensional ‘cube’
with [T, d; cells (positions). A cell of the cube represents the unique logical
intersection in a cube of one member from every dimension in the cube. The
function A\ maps a cell x = (x1,--- ,x,,) € S™ to the nonnegative number of
objects in S with all m attribute values equal to (xy, -, Z):

A A{(xy, -y x,) € S™F — N



We define the HIERDENC hyper-cube C(xq,r) C S™, centered at cell xo with
radius r, as follows:

C(xo,r) = {x:x € S™ and dist(x,Xo) < r and A\(x) > 0}.

The dist(-) is a distance function. The Hamming distance is defined as follows:

- Loif @i # ys
HD(x,y) = > 6(xi,y:) where 6(z;,y;) =
(x,y) (i, 9) where d(zi,y:) {o, o= g,

=1

HD is viewed as the most natural way to represent distance in a categorical
space. People have looked for other distance measures but HD has been widely
accepted for categorical data and is commonly used in coding theory.

Figure 1 illustrates two HIERDENC hyper-cubes in a 3-dimensional cube.
Since r=1, the hyper-cubes are visualized as ‘crosses’ in 3D and are not shown
as actually having a cubic shape. A hyper-cube excludes cells for which A
returns 0. Normally, a hyper-cube will equal a subspace of S™. A hyper-cube
can not equal S™, unless r = m and Vx € 5™ A(x) > 0.

The density of a subspace X C S™, where X could equal a hyper-cube
C(x0,7) C S™, involves the sum of A\ evaluated over all cells of X:

Ac)

density(X) = > IGE

ceX

This density can also be viewed as the likelihood that a hyper-cube contains
a random object from S, where |S| is the size of S. HIERDENC seeks the
densest hyper-cube C(xg, ) C S™. This is the hyper-cube centered at xo that
has the maximum likelihood of containing a random object from S. The cell
Xp is a member of the set {x € S™ : Max(P(2 € C(x,r)))}, where Q is a
discrete random variable that assumes a value from set S.

The distance between two clusters G; and G, is the distance between the
nearest pair of their objects, defined as:

D(G;, G,;) = min{dist(x,y) : x € G; and y € G;}.

Clusters G; and G; are directly connected relative to r it D(G;, G;) < r. Clus-
ters A and B are connected relative to r if: A and B are directly connected
relative to r, or if: there is a chain of clusters C4,--- ,C,, A= Cy and B = C,,,
such that C; and C;;, are directly connected relative to r for all 2 such that
1< <n.



Input: space S™.
Output: a hierarchy of clusters.
Method:
r=1. //radius of hyper-cubes
R=2S5m. //set of unclustered cells
k= 0. //number of leaf clusters
k. = 0. //number of clusters at level r
Gr =null. //kth cluster
U =null. //set of hyper-cube centers
Step 1:Find x¢ € R such that max density(C(xo,1)).

If density(C(xq,7)) < |—;|, then:

(1) r=r+1.

(2) If k,_1 > 1, then:

(3) Merge clusters that are connected relative to r.
(4) k, = #merged 4+ #unmerged clusters.

(5) Repeat Step 1.

Step 2: Set xc =x0, k=k+ 1, G = C(Xc,7), R=R — C(Xc,7) and U = U U {x.}.
Step 3: Find x* € C(xc,r) such that x* ¢ U and max density(C(x*,1)).
Step 4: If density(C(x*,r)) > \%\7 then:
Update current cluster Gy: Gy, = G U C(x*,r).
Update R: R =R — C(x*,r).
Update U: U = U U {x*}.
Re-set the new center: x;, = x*.
Go to Step 3.
Otherwise, move to the next step.
Step 5: Set k, = k, + 1.
If k, > 1, then execute lines (3) — (4).
If r < m and density(R) > 1%, then go to Step 1.
Step 6: While r < m, execute lines (1) — (4).

Fig. 5. The HIERDENC clustering algorithm.
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3.2 HIERDENC Clustering Algorithm and Discussion

Figure 5 shows the HIERDENC clustering algorithm. The default initial value
of radius r is 1. G represents the kth cluster formed. The remainder set,
R={x:x¢e€S8"and x ¢ G;,i = 1,--- k}, is the collection of unclustered
cells after the formation of k clusters.

Step 1 retrieves the densest hyper-cube C' C S™ of radius r; to achieve this
fast, we use the index that is described in the next Section. Step 1 checks that
the densest hyper-cube represents more than one object (density(C(xg,r)) >
ﬁ), since otherwise the cluster will not expand, ending up with one object.
If the hyper-cube represents zero or one object, then r is incremented. Step
2 creates a new leaf cluster at level r > 1. Starting from an existing leaf
cluster, step 3 tries to move to the densest hyper-cube of radius r nearby.
If a dense hyper-cube is found near the cluster, then in step 4 the cluster
expands by collecting the hyper-cube’s cells. This is repeated for a cluster
until no such connection can be made. New objects are clustered until » = m,
or density(R) < 1% and the unclustered cells are identified as outliers (step
5). For many datasets, most objects are likely to be clustered long before
r=m.

Initially » = 1 by default, since most datasets contain subsets of similar ob-
jects. Such subsets are used to initially identify dense hyper-cubes. When r is
incremented, an optional special process merges clusters that are connected
relative to r 2. Although the initial 7 = 1 value may result in many clusters,
similar clusters can be merged gradually. As Figure 6 shows, a merge is rep-
resented as a link between two or more links or leaf clusters, created at a
level » > 1. A link represents a group of merged clusters. This process grad-
ually constructs one or more cluster tree structures, resembling hierarchical
clustering (30; 31). The user specifies a cut-off level (e.g. 7 = 3) to cut tree
branches; links at the cut-off level are extracted as merged clusters. Step &
checks if a newly formed cluster is connected to another cluster relative to r
and if so links them at level r. Step 6 continues linking existing clusters into
a tree, until » = m. By allowing r to reach m, an entire tree is built. At the
top of the tree, there is a single cluster containing all objects of the dataset.

In (2) we propose and evaluate several methods for setting the HIERDENC
tree cut-off level (32). One method involves cutting the HIERDENC tree at
level r that minimises the average connectivity of the resulting merged clusters.
The connectivity, of a merged cluster (a set of connected leaf clusters) relative

2 For network clustering no tree structure is built. Also in the biomedical image,
PubMed clustering and curve alignment applications no parameters nor tree is used.
Clusters are produced without a tree, but the hierarchical organization of clusters
into a tree is still available as an option

11
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Fig. 6. The HIERDENC tree re-
sulting from clustering the zoo
dataset. A link (circle) represents
two or more merged clusters.

Updating, m=4:
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Retrieval:
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Fig. 7. HIERDENC updating and retrieval of
the densest subspaces. As objects A, B, C are
introduced, the lists A\g and A; are updated
accordingly. During retrieval, the bold entries
in A\g and \; are traversed in order.

to r is the fraction of its objects that have another object within distance r
in a different leaf cluster in the same connected set. Another method is to
balance the number of clusters with the entropy of the partition (33). This
involves setting the cut-off at level r that minimises the Akaike’s Information
Criterion (AIC) (34). The AIC of a partition is entropy + 2k, where k is the
number of clusters. Another method useful for finding clusters within clusters,
or nested clusters, is to cut-off a tree’s branches at various levels (31).

12



4 Efficient retrieval and updating of dense categorical subspaces

In this section we describe the index used in Step 1 of the HIERDENC algo-
rithm for efficient retrieval of the densest subspace C(xg,7) C S™ of radius
r. Figure 7 shows the updating and retrieval steps involved.

We conceptualize a categorical dataset as a graph consisting of m + 1 sets of
nodes, {Sp - - - S }. So represents the NV objects in the dataset. Sets { S - - - Sy, }
represent the m categorical attributes and their members are the attribute
values. An object x is connected via an edge to a node in each of the sets
St -+ Sm, representing x’s value for the corresponding attribute. The dissim-
ilarity of two objects x,,%g € So, Xo # Xg, is 0 < HD(X,,%x3) < m, and
represents the number of sets {S; - --S,,} in which x, and xz have dissimilar
attribute values.

For object x. and radius r, if we can retrieve in constant time all objects
{x|HD(x,x.) = r}, then we can retrieve the densest subspace relative to
r in time that is linear to the number of objects N. This could naively be
done by iterating through all objects in the dataset and keeping the object x¢
that maximizes [{x|H D(x,xo) = r}|. If we maintain for each r a list of objects
ordered by the sizes of their r-neighborhoods, then the runtime becomes faster
at the expense of updating the list.

Given this representation of categorical data as graphs, we proceed to describe
the HIERDENC index. Our goal is fast retrieval of the object € Sy that has
the most other objects € Sy with a dissimilarity of r. Given an object x € Sy,
Yy, 1s the number of other objects that have dissimilarity to x of r. We call
Uy, the density of subspace C'(x,r) C S™ that is centered at x relative to r.

We maintain, for each 0 < r < m, alist A\, of ranked objects € S from highest
to lowest according to their subspace density 1x,. Let A, (x) denote the rank
of object x in the list A,. For two objects x, and xg, if ¥, > 1/)ng > 0 then
Ar(Xa) > A (x5).

Updating the HIERDENC index

Updating the index when a new edge is added between x, € Sy and a €
{S1 -+ S} involves the following steps:

Increment As(x) and As(x,).

(1)

(2)

(3)  Decrement § = HD(x,X,).

(4)

(5)  Decrement A\si1(x) and Asi1(Xq)-

13



Retrieving the densest subspaces in order
Retrieval involves the following steps:

(1) S; = objects in Sy that have been returned; initially null.
(2) For r € range(0,--- ,m —1):

(3)  For xg € A, ordered by \.(x¢), if xg ¢ S;:

(4) Return C = {x € Sy|HD(x,%x¢) = r}.

4.1 Time and Space Complexity

The first time the HIERDENC index is populated with a dataset of N objects,
the average runtime is O(/N'm), where m is the number of categorical attributes
(usually m << N). For each of the N new objects the dissimilarities involving
m connected nodes are updated. When n new objects are introduced, the
updating of the index has a runtime of O(nm).

For the densest subspaces to be retrieved, the worst-case runtime is O(N); the
retrieval iterates until the subspaces centered at a maximum of N objects have
been retrieved. At a newly introduced object, some of the lists A\, 0 < r < m,
are updated.

4.2 Potential issues

While the runtime scales well on dataset size, the worst-case space complexity
is O(N?), which involves maintaining objects’ dissimilarities; an implementa-
tion may store information about all pairs of objects that exhibit the minimum
dissimilarity or maximum similarity. However, O(NN?) space would be needed
only for a dataset where all objects were equally dissimilar to all objects.
Unless it is an exceptional dataset of a special case, not all objects have the
same dissimilarity (are minimally dissimilar) to all other objects; in a typi-
cal real world dataset, most object pairs are highly dissimilar, and for each
object there is a subset of objects with the minimal dissimilarity. For large
datasets, most objects are dissimilar enough, such that their dissimilarities
are not stored and significantly less space is needed. Furthermore, a user must
be careful when implementing a HIERDENC index not to store information
on highly dissimilar object pairs, which is likely to denote outliers, since stor-
ing this information may hurt unnecessarily the HIERDENC index’s updating
performance.

14



Categorical objects attributes | classes Network objects | edges
700 101 16 7 Gavin06 (yeast) 2551 93881
soybean 376 35 19 Krogan(6 (yeast) 3670 14292
car 1728 6 4 Stelzl05 (human) 1529 2668
mushroom 8124 22 2 Rual05 (human) 1874 3618
nursery 12960 8 5 Internet topology 19938 59582
Pubmed gene co-occs 10704 53319

Table 1
The UCI datasets (categorical) and the networks (boolean).

5 Performance Evaluation

To evaluate the applicability of HIERDENC to the problem of efficient clus-
tering, we used large networks and categorical datasets obtained from the
UCI Machine Learning Repository (18). Table 1 shows details for all datasets.
Objects have class labels defined based on some domain knowledge that we
ignored during clustering.

5.1 Runtimes

Figures 8a and 9a show the runtime scalability across all of the datasets.
Updating scales linearly with the dataset size. This highlights the utility of
HIERDENC for a fastly growing database like PubMed. Retrieval of the dense
subspaces also scales linearly with dataset size.

Figure 8b shows that the cumulative updating and retrieval runtimes for the
largest categorical dataset scale with the number of objects. Figure 9b shows
the same for the largest network. The runtimes may decrease slightly later
in the process, because the retrieved subspaces are less dense and have fewer
objects. The runtimes for the other datasets looked similar and are not shown
here to avoid redundancy.

5.2 Performance on UCI categorical datasets

Table 2 compares the HIERDENC results and runtimes to several classical
algorithms for which we possessed the source code: k-Modes (35), ROCK (11),
AutoClass (36), CLOPE (27), CLICKS (17). To evaluate the clustering quality
we used Fl-measure, a class-label-based evaluation that penalizes more or

15
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Fig. 8. Runtimes. (a) All categorical UCI datasets: total runtimes (y-axis) for updat-
ing and retrieval by dataset size (z-axis). (b) Nursery categorical dataset: cumulative
runtimes (y-axis) for updating as new objects are introduced (z-axis), and retrieving
the densest subspace centered at each object (z-axis).

fewer clusters than the number of classes. For k-Modes, we set the convergence
threshold to 1 and we set the modes of the initial clusters equal to the first
objects clustered. For ROCK, we set § = 0.5. For k-Modes and ROCK we set
the number of clusters k£ to the number of classes, as well as larger numbers,
and we report the best result. AutoClass considers various numbers of clusters
starting from 2. For CLICKS we set a = 0.1 and minsup = 0.1.

On small datasets HIERDENC took slightly more time than the other algo-
rithms, but on the larger datasets the HIERDENC runtime was lower, high-
lighting its scalability. In comparison, we notice how CLICKS took signifi-
cantly more time on the larger datasets. ROCK with its cubic complexity ex-
hibited the worst runtimes. CLOPE’s performance suffered on these datasets
with the implementation we had available. CLICKS’ clustering quality was
shown to outperform previous methods like ROCK, STIRR and CACTUS
(17). Note that Table 2 reports HIERDENC total clustering runtimes, and
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L1

Dataset

200 soybean-large car mushroom nursery
objects 101 x 16 376 x 35 1728 x 6 8124 x 22 12960 x 8
attribs
Algorithm || F k secs || F' k secs || F k secs | F k secs | F' k secs
HIERDENC| 96 8 0.08 || 97 37 0.31 || 90 5 0.33 || 100 | 22 1.81 | 90 5 1.841
k-Modes 80 7 0.01 || 85 20 0.03 || 60 7 0.1 || 65 20 8.69 || 65 20 10.6
ROCK <60|7 ~ 10| <60 40 ~ 10| <60 40 ~ 20| <60]| 40 ~ 300 <60 | 40 ~ 60(
AutoClass || <60 | 2 0.04 || 77 3 0.17 || <60 2 247 || <607 1.29 || <60 | 2 4.33
CLOPE <603 0.5 || <60|15 1 <60/ 23 1 <60/ 10 2 <60]| 15 4
CLICKS 85% | 12 0.5 || <601 1 <602 1 <602 11 <60| 2 35

Table 2. F1-measures and runtimes achieved on the UCI categorical datasets for various clustering algorithms.
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Fig. 9. Runtimes. (a) All networks: total runtimes (y-axis) for updating and re-
trieval by network size (x-axis). (b) Pubmed human gene co-occurrences network:
cumulative runtimes (y-axis) for updating as new objects are introduced (z-axis),
and retrieving the densest subspace centered at each object (z-axis).

not the dense subspace retrieval runtimes of Figures 8 and 9.

Figure 6 shows the HIERDENC tree for zoo, with 17 leaf clusters. Except for
the last 3 created leaf clusters, all other leaf clusters are homogeneous with
regards to the class labels of member objects. The last 3 leaf clusters were
created for high r > 4 values. The rest of the leaf clusters were created for
lower < 4 values. We cut off the HIERDENC zoo tree at level r = 1, resulting
in 8 clusters. A low number of clusters results in improved F1-measures. There
are a few cases of incorrectly clustered objects by cutting at » = 1.
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6 Overview of Biomedical Informatics Applications

In this section we provide an overview of the diverse biomedical problems to
which we applied HIERDENC. These applications show that HIERDENC is
useful for biomedical datasets that grow quickly, requiring scalable runtimes
as well as good results.

6.1 Application#1: Clustering networks to find bicliques

HIERDENC clustering is suitable for finding bicliques in a network, since it
can find fast nodes with any given number of common neighbors. We use the
Hamming distance for binary strings (section 2.1), such that the similarity of
two nodes in a network is defined as the number of their common neighbors.

In our network representation, each node is represented as a row by its unique
name followed by the names of its neighbors, i.e., the node(s) to which it is
connected:

node : connected to node(s)
nodel : nodeA nodeC ... nodeZ
nodeN : nodeA nodeB ... nodeZ

In our biclique representation, a cluster or biclique is represented by two at-
tributes, includes lists the member nodes, and comm _net represents common
neighbors of all the member nodes:

clusterC includes: nodel ... nodelN
clusterC comm_nei: nodeA ... nodeZ

A node that appears twice or more in the second column of the network
representation should appear in at least one biclique’s comm_nei row; the
corresponding nodes in the first column of the network representation should
appear together in at least one biclique’s includes row.

The clustering process ensures that if nodel and node2 have one or more
common neighbors, then nodel and node2 will be together in a cluster and
their common neighbors collapsed.

(1) For o € range(size(network) —1,--- ,1):

(2)  For xg € A\, ordered by A,(xg):

(3) C = {x € network|similarity(x,xo) = 0 }.
(4) Collapse o common neighbors of (x, Xg).
(5) Return C'.
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Network original removed collapsed edge  re-
edges bicliques duction
Gavin06 93881 84526 3258 86.5%
Krogan06 14292 13808 2803 7%
Stelzl05 2668 2464 653 67.87%
Rual05 3618 3202 849 65%
Internet topology 59582 51068 5322 76.77%
Pubmed gene co-occs 53319 51496 9899 78%

Table 3
Edge reduction achieved on the networks with HIERDENC.

Figure 10 illustrates an example of HIERDENC network clustering, where
every common neighbor is collapsed. For visualization, we can remove any
duplicates, where a cluster is a subset of other cluster(s) that have the same
comm_nei nodes.

We evaluate our success in finding bicliques in a network via the edge reduction
achieved, since many edges are collapsed. Edge reduction in a network will be
high if every biclique is found and collapsed. Table 3 shows the edge reduc-
tion that HIERDENC achieved for all networks, which was as high as 86.5%.
Figure 11 shows the edges reduced along the process of iterating through all
nodes. As shown, initially the highest edge reduction is achieved for a low
number of indirect second-level neighbors; the reason is that there are few
objects that share the largest neighborhood in a network (power-law). As the
clustering progresses, a similar edge reduction is achieved for progressively
larger numbers of indirect second-level neighbors that have smaller shared
neighborhoods.

Finding bicliques was used in the past for visualization of biological networks,
such as protein-protein interaction, homology, and gene regulatory networks.
The “power graphs” tool focuses on visualization of networks as hierarchically
organised bicliques, where the bicluges are collapsed “power” edges (5). How-
ever, the tool did not address the speed of finding bicliques nor dealing with
very large networks, which we have addressed.

6.2 Application#2: Clustering biomedical images and PubMed abstracts for
a query

We used 30,000 biomedical images published in BMC during 2000-2007. We
built an online HIERDENC-based system that is updated with image cap-
tions represented as word vectors. This system supports retrieving clusters
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remove
subcluster
duplicates

Fig. 10. Network clustering with HIER-
DENC that leads to finding bicliques.
The similarity criterion s decreases pro-
gressively. The solid clusters are created
at the corresponding step s, and the
dotted clusters remain to be created in
a future step. All common neighbors are
found and collapsed.
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of BMC biomedical images, by querying the captions http://141.30.193.
16/HIERDENC/images.html. Figure 12 shows that the system is updateable

efficiently with newly introduced image captions. All of our clusters for this
application were retrieved in less than 1 second.
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Fig. 12. a. HIERDENC index updating cumulative runtimes for 30,000 BMC
biomedical image captions, and b. Querying our online service with the question:
“What serum [PROTEINS]| change expression in association with high disease ac-
tivity in lupus?”. The clusters are listed on the right-hand sidebar.

The PubMed database of biomedical literature has become a data mining
resource. Given a query GO term, we want to quickly retrieve all relevant
PubMed articles, such that articles with similar sets of GO terms are clus-
tered together. Our HIERDENC application to this problem can prove useful
for navigating biomedical literature. Figure 13 shows visualizations of clusters
given a query on GO term “molecular transport”. As shown, most of these
abstracts are in clusters that are associated with a cellular meaning such as
“nucleus”, but a few abstracts are on a medical meaning such as “neuromus-
cular process controlling balance”. Thus, such a HIERDENC clustering appli-
cation could help a physician or bioresearcher navigate through the biomedical
literature.

6.3 Application#3: Clustering Force-Distance curves

Our last biomedical application involves applying HIERDENC to retrieve clus-
ters of aligned Force-Distance (FD) curves, which represent the force needed
to pull a protein structure from cellular membranes using special machines.
We first detect the peaks as long regions of an ascent and descent. Then, we
match peaks between curves that are close to one another. This application is
similar to the previous one, in that FD curves are analogous to image captions
or PubMed abstracts and peaks are like words. Figure 14 shows an example of
the FD curves that we cluster, and the runtimes for updating the HIERDENC
index with 4,000 such curves.
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Fig. 13. Visualization of clusters of PubMed abstracts retrieved with HIERDENC,
after querying with GO term “molecular transport”. Numbers are PubMed abstract
IDs and words are GO terms. All clusters are connected to another GO term, which
acts as the cluster label. Most clusters are labeled with cell-related meanings, such
as “protein transport”.
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with 4000 Force-Distance Curves

Curve: t220905.143.txt

200
250
240
20
220
210
200
120
120
170 \
100 i
150 |
150 Y
!
i
\
1 %
w0 \ k
7 A %
o i b
50 3 & i«
o \ | 9l
30 3 L1
20 -
o
10
20
0

Fig. 14. a. An example of an FD curve. Colored segments denote peaks. b. Run-
times for updating HIERDENC index with the peaks found in 4,000 FD curves. On
average the runtimes remain constant across curves, although there are some hikes
too.

Time (milliseconds)

100 2000 3000 4000
Curve

7 Conclusion

We presented the HIERDENC clustering algorithm for categorical data and
networks. In HIERDENC the radius relaxes gradually, resulting in layered
clusters where a central subspace often has a higher density. We presented the
complementary HIERDENC index that supports efficient clustering. The HI-
ERDENC index supports scalable runtimes for clustering categorical datasets
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and networks. On networks, HIERDENC resulted in efficient extraction of
bicliques. Further benefits of HIERDENC include: insensitivity to order of
object input, no re-clustering needed when new objects are presented, no user-
specified input parameters required, and ability to find clusters within clusters.
Future work will include applying HIERDENC on real-world quickly growing
databases for which it is suitable, such as PubMed images and documents, as
well as curves and large sequence databases (4).

Availability

Python source code, all test datasets, and experimental results, are available
under: http://www.cse.yorku.ca/~billa/HIERDENC/
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