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Abstract. We present a framework for mining frequent trajectories,
which are translated and/or rotated with respect to one another. We
then discuss a multiresolution methodology, based on the wavelet trans-
formation, for speeding up the discovery of frequent trajectories. We
present experimental results using noisy protein unfolding trajectories
and synthetic datasets. Our results demonstrate the effectiveness of the
proposed approaches for finding frequent trajectories. A multiresolution
mining strategy provides significant mining speed improvements.

1 Introduction

There exist many situations where we are confronted with trajectories describing
the movement of various objects. We are often interested in mining the frequent
trajectories that groups of such objects go through. Trajectory datasets arise in
many real world situations, such as discovering biological patterns, mobility ex-
periments, and surveillance [9,7,4]. Of special interest are trajectories representing
protein unfolding pathways, which have been derived from high-throughput single
molecule force spectroscopy experiments [8]. Such trajectories are represented on
a two-dimensional force×distance grid. The y axis corresponds to the force (pN)
involved in pulling the protein out of the cellular membrane via the tip of a mechan-
ical cantilever; the x axis corresponds to the force-induced distance (nm) on the un-
folding pathway of the protein. Such trajectories are often very noisy, which makes
it difficult to distinguish the frequent subtrajectories from the deluge of irrelevant
trajectories. Moreover, frequent subtrajectories may be translated or rotated with
respect to one another. Our aim is to find such frequent subtrajectories in datasets
resulting from high-throughput experiments. This is useful for identifying differ-
ent protein unfolding pathways and, therefore, classifying proteins based on their
structure. The contributions of this paper are as follows: (i) We present a frame-
work for finding frequent trajectories whose sampling interval is small enough to
estimate their first and second order derivatives. (ii) We propose a robust frame-
work for mining frequent translated trajectories and frequent trajectories that are
both rotated and translated with respect to each other. (iii) We apply our method
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to find frequent trajectories in protein unfolding pathways. (iv) We present a mul-
tiresolution framework to speed up the mining process.

This paper is organized as follows. Section 2 presents some related
work. Section 3 introduces the general framework we use for mining trajecto-
ries. Section 4 describes a method for mining translated and rotated trajectories.
Section 5 offers an approach for optimizing the mining speed of frequent trajec-
tories and dealing with noisy trajectories. Section 6 presents experiments testing
the proposed approaches. Section 7 concludes the paper.

2 Related Work

In sequential pattern mining we are typically given a database containing se-
quences of transactions and we are interested in extracting the frequent se-
quences, where a sequence is frequent if the number of times it occurs in the
database satisfies a minimum support threshold. Popular methods for mining
such datasets include the GSP algorithm [2] - which is an Apriori [1] based algo-
rithm - and the PrefixSpan [10] algorithm. GSP can suffer from a high number
of generated candidates and multiple database scans. Pattern growth methods
such as PrefixSpan are more recent approaches for dealing with sequential pat-
tern mining problems. They avoid the candidate generation step, and focus the
search on a restricted portion of the initial database making them more effi-
cient than GSP [2,10]. The problem that is most related to frequent trajectory
mining is sometimes referred to as frequent spatio-temporal sequential pattern
mining in the literature. The main difference between our work and previous
work [9,7,4,5] is that our method assumes that we are dealing with densely sam-
pled trajectories - trajectories whose sampling interval is small enough to allow
us to extract from a trajectory its first and second derivative. This allows us to
define a neighborhood relation between the cells making up our trajectories, al-
lowing us to perform various optimizations. There has been a significant amount
of research on defining similarity measures for detecting whether two trajecto-
ries are similar [13,3]. However, this research has not focused on mining frequent
trajectories. The previous work closest to our approach is given in the innova-
tive work described in [5] where the authors match two candidate subgraphs by
comparing the set of angles made by the graph edges. This measure is similar
to the curvature measure that we use later on to detect rotation and translation
invariant trajectories. However, [5] is not suited for detecting trajectories that
are translated but not rotated with respect to each other and does not address
various robustness and speed improvements that are introduced in this paper.

3 Apriori Based Mining of Frequent Trajectories

We define a trajectory c as a continuous function c(s) = [x(s), y(s)] in the 2D case
and as c(s) = [x(s), y(s), z(s)] in the 3D case. Similar extensions follow for higher
dimensional trajectories. The function c(s) is an arc-length parameterization of
a curve/trajectory. In other words, the parameter s denotes the length along
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the trajectory and c(s) denotes the position of the trajectory after traversing
distance s. In other words our trajectories do not depend on time, or the speed
with which the object/person traverses the trajectory. We assume independence
from time and speed for mining the frequent trajectories and subtrajectories.

A trajectory c is frequent, if the number of the trajectories {c1, c2, ..., co}
that pass through the path described by c satisfy a minimum support count
(minsup). This definition requires only that there exist minsup subtrajectories
of all trajectories in {c1, c2, ..., co} that are identical to c; but it does not require
that c = ci for a sufficient number of ci’s. More formally, we say that trajectory c
over interval [0, τ ] is frequent with respect to a dataset of trajectories if there exist
a minsup number of compact intervals [α1, α1+τ ], · · · , [αminsup, αminsup+τ ] such
that for all i ∈ {1, · · · , minsup} and for all 0 ≤ s ≤ τ we have c(s) = cπ(i)(αi +s)
(where π is a permutation function of {1, · · · , o}).
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Fig. 1. A cell sequence representation of a dense trajectory. The cell sequence represen-
tation of the dense trajectory consists of the gray cells (in order) that are intersected
by the dense trajectory.

The frequent trajectory mining problem for 2D trajectories can be formulated
as a sequential pattern mining problem in the following way. The 3D case is
similar to the 2D case. Assume that we are observing a square region of size
N × N over which all the trajectories occur. By splitting the region into a grid
of square cells, as shown in Figure 1, we denote by (xi, yj) the cell located at
the ith column and jth row. A potential way of discretizing a region into a grid
is by uniformly sampling along the two dimensions. In this paper we create the
grid by uniform sampling, even though square cells are not necessary for our
approach to work. Then we define:

(i) A trajectory c(s) is referred to as a dense trajectory if it is represented
by a densely sampled set of points. The sampling interval depends on the
problem at hand and should be small enough to obtain accurate first and
second derivatives.

(ii) A dense trajectory’s cell sequence refers to the sequence of cells
((xπx(1), yπy(1)), · · · , (xπx(n), yπy(n))) intersected by the dense trajectory
(where πx is a permutation function). The following conditions must hold:
a. πx(i) �= πx(i + 1) or πy(i) �= πy(i + 1), and b. |πx(i) − πx(i + 1)| ≤ 1
and |πy(i) − πy(i + 1)| ≤ 1. Thus, we encode the order in which the dense
trajectory intersects the cells. As we discuss below, in some situations it
is preferable to also associate with each cell (xi, yj) from the sequence the
arclength/distance over which the trajectory falls in this cell.
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(iii) The number of cells in a trajectory’s cell sequence is its length. For example,
the cell sequence ((x4, y3), (x3, y2), (x3, y3), (x3, y4), (x2, y5)) has length 5.

(iv) A continuous subsequence ω of a trajectory c’s cell sequence ((xπx(1),
yπy(1)), . . . , (xπx(n), yπy(n))) must satisfy ω = ((xπx(i), yπy(i)), (xπx(i+1),
yπy(i+1)), . . ., (xπx(j), yπy(j))) where 1 ≤ i ≤ j ≤ n.

Sometimes a trajectory c(s) might be represented by a small number of sample
points. We can interpolate those points and subsample the interpolated trajec-
tory, to obtain the dense representation of those trajectories.

Using the cell representation method to represent trajectories, the problem of
mining frequent trajectories is defined as finding all the contiguous subsequences
of the cell sequences in a database that satisfy a support threshold. We first
point out that frequent trajectories satisfy the Apriori property: Any continuous
subsequence of a frequent trajectory’s cell sequence is frequent. We exploit this
property to implement efficient algorithms for mining frequent cell sequences.

If (xi, yj) is our current cell position, the next allowable cell position (xk, yl)
must be one of its 8 neighboring cells, such that |i−k| ≤ 1 and |j−l| ≤ 1. We use
this constraint to modify the GSP algorithm and generate a much lower number
of candidates than the GSP algorithm would generate without this constraint.

Figure 2 shows the pseudocode for the Apriori based mining of frequent tra-
jectories where Lk is the set of frequent length-k cell sequences found in the grid
and Ck is the set of candidate length-k cell sequences. The main difference be-
tween this algorithm and GSP lies in the trajectory() function for generating
candidates of length k from frequent cell sequences of length k − 1. (Figure 2b).
When finding the candidate length-2 cell sequences, it suffices to only join two

Fig. 2. (a) Apriori based mining of frequent trajectories. (b) The trajectory()
function.
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length-1 cell sequences i.e., single cells, if the cells are neighboring/adjacent to
each other, resulting in a much smaller number of candidates than if we had
used GSP to accomplish this without using this neighborhood constraint. For
k ≥ 2, when joining length-k cell sequences to find length-(k + 1) candidate
cell sequences, it suffices to only join cell sequences a with b if the last k − 1
cells of a and first k − 1 cells of b are identical. We notice that by joining two
continuous paths, the resulting path is also continuous. Also, notice that there
is no pruning step in the candidate generation process of our algorithm. This is
because pruning may cause the loss of good candidates since we are mining for
frequent contiguous subsequences. This is another major difference between the
stardard GSP algorithm and this algorithm.

Assume there are r cells into which our N × N region has been split and
there are b neighboring cells for each non-boundary cell. In our case b = 8, since
each cell is surrounded by at most 8 other cells. Then, the upper bound on the
number of length-(k + 1) candidate cell sequences generated is |Lk| × b since
every sequence in Lk can only be extended by its b neighboring cells on one end
of the sequence. This is lower than the upper bound of |Lk| × r that GSP might
generate if we were dealing with a sequential pattern mining problem where we
could not apply this neighborhood constraint, since typically b << r. Because
of our definitions, a cell sequence of length n has O(n2) subsequences, implying
that a brute force approach for finding the support count of each candidate
would run in polynomial time. However, the number of database scans would be
greater than the number of database scans needed by the Apriori based method.

4 Translational and Rotational Invariant Mining

In this section we present two trajectory mining techniques. The first is a method
for mining frequent trajectories that are translated with respect to each other.
The second method is for mining frequent trajectories that are both translated
and rotated with respect to each other. Figures 3(e) and 3(f) show examples of
translated and rotated trajectories, respectively. Such algorithms are useful in
situations where we are interested in detecting more complex motion patterns.
For example in surveillance situations, the camera which extracts the motion pat-
terns might be rotated and translated by an unknown amount over the course
of acquiring the motion patterns. In such situations the best we can hope to
accomplish, in terms of frequent trajectory mining, is to make the frequent tra-
jectory extraction invariant to the unknown amount by which the camera and
subsequently the trajectories were translated and rotated.

Assume c1(s) = [x(s), y(s)] and c2(s) = [x(s) + 5, y(s) + 3]. In other words c2
is a translated version of path c1. If we take the derivatives c′1(s), c′2(s) of these
two paths then we notice that c′1(s) = c′2(s) for all values of s. We use this fact
to mine for frequent trajectories that are translated with respect to each other.
An issue to keep in mind is that derivatives tend to magnify noise. In other
words, two trajectories that are slightly different due to noise would have an
even more different derivative. Below we will discuss methods for dealing with
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Fig. 3. (a) A trajectory given by function c(s) = (s, sin(4s)). (b) The derivative space
c′(s) = (1, 4cos(4s)). We mine for such patterns to find translated patterns. (c) A
trajectory that is not differentiable everywhere. (d) The derivative space of this func-
tion consists of two isolated and non-neighboring cells. We either have to smooth the
function in (c) to have a continuous derivative space, or we are forced to use standard
Apriori to do the mining, which is much slower. (e) Trajectories that are translated
with respect to each other. (f) Trajectories that are both translated and rotated.

this problem. We mine for frequent translated trajectories in the following way.
For every dense trajectory ci(s) = [xi(s), yi(s)] in our database of trajectories
we use finite differences to find its derivative c′i(s) = [x′

i(s), y
′
i(s)]. We then use

equiwidth binning to discretize the space of derivatives for the x-coordinates and
y-coordinates into a number of bins (cells). We then represent every c′i(s) by a
sequence of tuples (dxi, dyi), each of which denotes the current derivative cell in
which the trajectory is located. A new tuple (dx′

i, dy′
i) is added to the sequence

of tuples whenever the trajectory’s derivative changes significantly enough to
be part of a new derivative cell (Figure 3). For example, a linear trajectory is
encoded by a sequence of length 1 (a single derivative cell) since its slope is
constant. With each such tuple we could also associate a number denoting the
arclength/distance over which the cell occurs. We use this measure, as described
below, to detect translated trajectories. We can apply on this new trajectory
representation the trajectory mining algorithms to find frequent trajectories that
are translated with respect to each other.

Note that in our test cases we make the assumption that we are dealing with
differentiable functions that do not change abruptly. Figures 3(c) and 3(d) show
problems that might arise otherwise. If we wish to mine such trajectories, we
could either apply some sort of smoothing such as the wavelet transformation
described in the next section to make the function better behaved, or we could
apply some sort of standard Apriori/GSP/PrefixSpan mining which does not
make the neighborhood assumption for adjacent cells in our cell sequence repre-
sentation. This would likely be detrimental to our trajectory mining speed.

The curvature of an arclength parameterized path (f(s), g(s)) at s is given by
the derivative with respect to s of the angle θ the path makes with the x axis.

κ =
dθ

ds
=

∣
∣
∣
∣

f ′ g′

f ′′ g′′

∣
∣
∣
∣
= f ′g′′ − f ′′g′ (1)
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Intuitively, the curvature gives us a measure of the rate with which a curve is
changing direction. It is straightforward to show that any rotation and transla-
tion of (f(s), g(s)) results in the same curvature measure. In other words curva-
ture for 2D trajectories is rotation and translation invariant. We can, therefore,
use this measure to detect rotationally and translationally invariant patterns in
a similar way as we did with translated trajectories. To encode each trajectory
ci(s) we follow the same procedure that we followed for the translationally invari-
ant mining. We can use equiwidth or equidepth binning to discretize the space
of curvature measures and encode each trajectory using a sequence of curvature
cells. We could also associate a number with each curvature cell, denoting the ar-
clength/distance over which the trajectory belongs in this cell before it changes
significantly to warrant using another cell in the sequence to encode it.

We wish to point out a potential problem which we have not discussed so far.
The problem arises in the above cell sequence representation of derivatives and
curvatures if we do not associate the distance over which each dense trajectory
belongs to a particular cell. It is possible, for example, to have two trajectories
whose cell derivative representation consists of the same two cells. If the distance
over which each dense trajectory belongs to each cell is very different, the two
trajectories might be very different and should not lead to a match. A solution
to this problem is to associate with each cell the distance over which the dense
trajectory belongs to the cell and mine this data as an extra dimension in our
trajectory, or to simply use a brute force approach to refine the mined frequent
trajectories. From our experiments we notice that a brute force approach is
feasible in most cases due to the significantly decreased number of trajectories
that need to be processed after the initial mining.

It should also be pointed out that because we are dealing with arclength
parameterized curves c(s) = [x(s), y(s)] we have

∫ s

0

√

(x′(t))2 + (y′(t))2dt = s

which implies
√

(x′(s))2 + (y′(s))2 = 1 which in turn implies |x′(s)| ≤ 1 and
|y′(s)| ≤ 1. In other words, arclength parameterized curves do not change
abruptly, implying that this parameterization makes it feasible for us to dis-
cretize the space of derivatives, since all derivative values will be in the range
of -1 to 1. If we did not have such a bound on the space of derivatives this
approach would be problematic in our opinion, since it would be too difficult to
appropriately discretize the real line using a finite number of cells.

5 Wavelet Based Optimization of Mining Speed

Multiresolution techniques are well known in the signal processing community
and are of great use for solving difficult problems such as image denoising and
image compression[6]. More recently, the applicability of such methods has been
demonstrated for various data mining problems. For example WaveCluster is a
multiresolution clustering algorithm that uses the Wavelet transform to trans-
form the original data and find dense regions in the transformed space [12]. We
now propose a method for speeding up the frequent trajectory mining phase
by mining for trajectories on multiple resolutions. Assume dwt is a function
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denoting the 1-D discrete wavelet transform. For example, given as input a vec-
tor x, dwt(x) returns a vector x′ denoting the lower resolution version of vector
x. At the pre-processing stage when the original dense trajectories are processed
in order to convert them to their cell sequence representation, we apply dwt
to each dense trajectory in order to get its lower resolution version. Then, we
convert the lower resolution trajectory to a lower resolution cell sequence repre-
sentation, where the cells now have twice the width and height they previously
had. The effect of this is that the lower resolution cell sequence representation
has approximately half the length of the original cell sequence representation.
We refer to these new cell sequence representations as scaled down and we re-
fer to their larger cells as scaled down cells. We can use these scaled down cell
sequence representations to mine the frequent trajectories in our database at a
coarser scale. This significantly decreases the length of our trajectories and the
number of cells used to represent our region. As we discuss below, this can lead
to significant improvements in the mining speed. A potential objection to this
procedure involves the need to apply the wavelet transform. Some might argue,
that in order to get a smaller cell representation, it suffices to simply double the
cell size used in our equiwidth/equidepth discretization of the trajectories. The
reason is to remove noise and high frequency components. This makes the deriva-
tive estimates more accurate. It also diminishes the risk that for various signals
whose dense representation has a localized high frequency component passing
near a cell border, we would needlessly add cells to a trajectory’s cell sequence
representation. Furthermore, by ‘smoothing’ a function we decrease the risk of
dealing with functions which are not differentiable everywhere (Figures 3(c),
3(d)). A drawback of this method is that we lose precision on the localization
of the trajectory since the scaled down cell sequence representations consist of
larger cells. We now propose a method for obtaining a better localization of the
coordinates through which frequent trajectories pass. When mining for frequent
trajectories we are often only interested in finding trajectories that have a mini-
mum non-scaled down length of m. Let S denote the set of all scaled down cells
through which a frequent scaled down trajectory of length at least �m

2 � passes.
Then, we are guaranteed that the frequent trajectories with a non-scaled down
cell sequence representation of length over m pass through the scaled down cells
in S. This means that to refine the accuracy of mining frequent scaled down cell
sequence representations, it suffices to consider only the non-scaled down cell se-
quence representations that pass through some cells in S. For datasets that have
very spread out trajectories with a few paths through which frequent trajectories
pass, this can also result in significant improvements in mining speed.

6 Experiments

We experimentally evaluated the above mentioned algorithms using a real world
dataset containing 139 protein unfolding trajectories, acquired using single
molecule force spectroscopy [8]. We also use a dataset of 4,000 synthetic
trajectories. In both cases, we are interested in mining translation invariant
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trajectories. We generated the synthetic trajectories with the same trajectory
simulator that was used by the inventors of the TPR-tree algorithm [11] for
indexing moving objects. We used MATLAB 7.01 running on an Intel Xeon
3Ghz with 3GB RAM to run our experiments. We utilized progressively larger
subsets of the above mentioned trajectories to investigate the accuracy of our
algorithms, their scaling properties, and their robustness to noise.

The distinguishing characteristic of the protein unfolding dataset was its
extremely noisy trajectories. Moreover, in this dataset it is desirable to find
subtrajectories that are translation invariant. The dataset consisted of 139 tra-
jectories which we denoised, before applying the translation invariant methodol-
ogy to detect the frequent translation invariant subtrajectories. We discretized
the derivative space into 8x8 cells, and each trajectory’s derivative representation
consisted of around 200 cells on average. This served to demonstrate the practi-
cality of our approach on a real world problem and to obtain quantitative results
of our translation invariant method’s performance on a very noisy dataset.

Fig. 4(a) shows a noisy protein unfolding trajectory. Fig. 4(b) shows the
denoised trajectory from (a) using wavelet analysis. As shown, wavelet anal-
ysis was successful in identifying peaks, associated with single potential barriers
stabilising segments within membrane proteins. Figures 4(c)-(f) show matched
subtrajectories between the red arrows. Matched subtrajectories may poten-
tially be manually annotated peaks, corresponding to three-dimensional protein
structures [8]. On close inspection of the results we notice that the algorithm is
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Fig. 4. (a):Noisy protein unfolding trajectory. (b):Denoised trajectory. Trajectories
where a translation invariant match was found, with support threshold 3% : (c,d):
the twin peaks with x-coordinates approximately in intervals [52, 55] in (c) and [2, 4.7]
in (d) (interval denoted with red arrows), are matched as frequent translated subtra-
jectories. (e,f): In (e) x-coordinate interval [74, 78] matches in (f) interval [43, 47]. The
y axes correspond to the force (pN) and the x axes correspond to the force-induced
distance (nm) on the unfolding pathway of the protein.



Translation and Rotation Invariant Mining of Frequent Trajectories 183

Table 1. Results using the 139 protein unfolding trajectories (translation invariant
with standard apriori/not translation invariant with standard apriori)

Number of Support %
Trajectories 1 2 3

T 22693/16054 7411/7579 3206/3792
D=139 L 39/61 28/43 25/35

F 45677/44937 15537/21507 6617/10105

Table 2. Results using the translation invariant/rotation invariant mining on a syn-
thetic dataset

Number of Support %
Trajectories 1 2 3

T 33351/13 12843/11 6565/11
D=1000 L 43/21 32/21 25/21

F 35117/338 11267/312 3205/288
T 53071/24 24984/22 12026/18

D =2000 L 33/21 30/21 12/19
F 27007/338 10705/312 2515/200
T 110824/44 47301/41 23934/35

D=4000 L 32/21 30/21 11/19
F 20128/312 9613/288 1832/200

successful at detecting translated subtrajectories. Table 1 presents some quan-
titative results with and without the translation invariant mining algorithm. It
shows the running time in seconds (T), the length of the longest frequent tra-
jectory discovered (L) and the total number of frequent trajectories discovered
(F). The “Support” columns show the minimum support used, as a percentage
of the number of trajectories (D).

The next set of experiments was designed to test the translation and rotation
invariant mining of trajectories (Section 4). For the translated trajectories, the
derivative values of the trajectories were discretized into a 32 × 32 grid using
equidepth bining and the curvature values were split into 32 bins using equi-
width bining. We first applied our mining method to mine these derivative cell
representations. See Table 2 for the results using the translation invariant algo-
rithm. The algorithm accurately detected the frequent translated trajectories. In
the next section we show how the mining speed could be improved. To test the
rotation invariant algorithm, we added to each of the above datasets 100 rotated
sinusoidal trajectories having various frequency values in order to obtain a better
understanding of how the algorithm performs for longer trajectories. The rota-
tion invariant algorithm is much faster than the other approaches. This is due to
the fact that the curvature at any point along a 2D curve is described by a single
number while the translation invariant approach and Standard Apriori mining
approach using 2D trajectories required two real numbers to describe each point
along the curve. Furthermore, on average the curvature cell trajectories were
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Table 3. Results using the wavelet based approach on a synthetic dataset. Shows the
running time with/without the optimization.

Number of Support %
Trajectories 1 2 3

T 224/630 131/344 95/240
D=1000 L 20/20 20/20 20/20

F 1057/1133 742/638 634/534
T 436/1270 262/671 192/474

D =2000 L 20/20 20/20 20/20
F 1008/1088 738/619 631/526
T 887/2563 542/1327 388/951

D=4000 L 20/20 20/20 20/20
F 998/1099 743/614 630/532

much shorter in length resulting in faster mining speeds. We also observe that
curvature is very sensitive to noisy trajectories, as expected. This indicates that
a preprocessing stage for denoising/smoothing the trajectories is a necessity.

We then proceeded to test the wavelet based method for optimizing the mining
speed (Section 4). Table 3 presents our results. The results demonstrate that
the wavelet based method significantly improves the mining speed if there are
clusters through which frequent trajectories of the desired length m pass, since it
provides a quick method of finding which trajectories should be eliminated from
further processing. However, if our trajectories are evenly spread out around the
region we do not expect to gain a lot in terms of mining speed in general.

To test the approach we used the Standard Apriori based algorithm to com-
pare the mining performance with and without the wavelet based method de-
scribed in Section 4. In order to demonstrate the effectiveness of the approach
we slightly modified the datasets we had used to test the Standard Apriori al-
gorithm. We translated one-fourth of the trajectories in each of the datasets so
that they are close to each other and form a cluster of trajectories that pass
close by each other and added to this cluster a sufficient number of duplicate
trajectories of length at least 15, so that they would end up being discovered as
frequent trajectories during the mining process. Note that these were also the
longest trajectories in our dataset. The other three-fourths of the trajectories
were positioned in locations away from this cluster and were spread out so that
it was unlikely to have many frequent trajectories in this group. We instructed
our algorithm to search for frequent trajectories of length at least 15. We used
a grid spacing of 32×32 cells to represent the scaled down cells and used a
64×64 grid to represent the non-scaled down cells. The algorithm located the
trajectories of length 15 while significantly improving the mining speed.

7 Conclusions

We presented various methods for mining frequent trajectories that are trans-
lated and/or rotated with respect to each other. We also presented approaches
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for optimizing the mining speed of such trajectories. The methods were success-
ful in finding peaks in protein unfolding pathways, which may correspond to
three-dimensional protein structures. More research needs to be done in using
intelligent methods for discretizing the continuous range of values that the tra-
jectories can assume, as this could potentially decrease the number of cells used
to encode trajectories.

Acknowledgements

The authors are grateful for the financial support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) through the PGS-D program
and the Ontario Graduate Scholarships program (OGS). We would also like to
thank Annalisa Marsico for kindly providing the protein unfolding dataset.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. Proc. 20th
Int. Conf. Very Large Data Bases (1994)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE (1995)
3. Cai, Y., Ng, R.: Indexing spatio temporal trajectories with chebyshev polynomials.

In: SIGMOD (2004)
4. Cao, H., Mamoulis, N., Cheung, D.: Mining frequent spatio-temporal sequential

patterns. In: Proceedings of the ICDM (2005)
5. Kuramochi, M., Karypis, G.: Discovering frequent geometric subgraphs. In: 2nd

IEEE Conference on Data Mining (ICDM) (2002)
6. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1999)
7. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.L.:

Mining, indexing, and querying historical spatiotemporal data. In: Conference on
Knowledge Discovery in Data (2004)

8. Marsico, A., Labudde, D., Sapra, T., Muller, D.J., Schroeder, M.: A novel pattern
recognition algorithm to classify membrane protein unfolding pathways with high-
throughput single molecule force spectroscopy. Bioinformatics (2006)

9. Morimoto, Y.: Mining frequent neighboring class sets in spatial databases. In:
Conference on Knowledge Discovery in Data (2001)

10. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In: Proc. Int. Conf. on Data Engineering (ICDE) (2001)

11. Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.: Indexing the positions of
continuously moving objects. In: SIGMOD, pp. 331–342 (2000)

12. Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: A multi-resolution
clustering approach for very large spatial databases. In: Proceedings of the 24th
International Conference on Very Large Databases (1998)

13. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multi-
dimensional time-series with support for multiple distance measures. In: SIGKDD
2003 (2003)


	Introduction
	Related Work
	Apriori Based Mining of Frequent Trajectories
	Translational and Rotational Invariant Mining
	Wavelet Based Optimization of Mining Speed
	Experiments
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


