
Satisficing the Conflicting Software Qualities of
Maintainability and Performance at the Source Code Level

Bill Andreopoulos
Department of Computer Science, York University, Toronto, Ontario, Canada, M3J 1P3

billa@cs.yorku.ca

Abstract. The major contributions of our work include adopting the NFR framework
to represent and analyze two software qualities that often conflict with each other:
maintainability and performance. We identified and described many heuristics that
can be implemented in a system's source code to achieve either quality. We
implemented some of the heuristics in two medium-sized software systems and then
collected measurements to determine the effect of the heuristics on maintainability
and performance. A general methodology is described for evaluating and selecting
the heuristics that will improve a system’s software quality the most. The results of
our research were also encoded in XML files, and made available on the World
Wide Web for use by software developers. The WWW address is:
http://www.cs.yorku.ca/~billa/SIG/SIG.xml

Keywords: Maintainability, Performance, NonFunctional Requirement, Software
Quality, Optimization.

1. Introduction

Developers should consider the conflicting qualities of maintainability and
performance early in the process of developing a software system. Failing to integrate
either quality into the system will later increase costs exponentially when maintaining or
expanding the system. Thus, it is necessary to be able to represent and analyze software
quality effectively throughout the entire software lifecycle. We propose a general
methodology for evaluating and improving the quality of a software system. We focus on
the maintainability and performance software qualities, because these qualities often
conflict with one another and achieving one quality might affect the other negatively. An
important part of our work was to examine how the two qualities conflict with each other.

In requirements engineering, a requirement can be described as a condition or
capability to which a system must conform, and which is either derived directly from user
needs, or stated in a contract, standard, specification, or other formally imposed
document. [1] Requirements can be classified into:

• Functional requirements, which are externally visible behaviors, showing what
the system must do, and

• Non-functional requirements (or software qualities), which are constraints on
the design and/or implementation of the solution.

Software qualities describe not what the software will do, but how the software will do it,
by specifying constraints on the system design and/or implementation. [1] Unfortunately,
software qualities are usually specified briefly and vaguely for a particular system.

We adopt the NFR Framework to represent the qualities of maintainability and
performance, the software characteristics that affect them and the heuristics that can be
implemented in source code to achieve them. The NFR framework for representing
software qualities was developed by Lawrence Chung, Brian Nixon, Eric Yu and John
Mylopoulos at the University of Toronto. [1] The NFR framework represents quality
requirements as softgoals. Softgoals are goals with no clear-cut criterion for their
fulfillment. Instead, a softgoal may only contribute positively or negatively towards
achieving another softgoal. By using this logic, a softgoal can be satisficed or not;

satisficing refers to satisfying at some level a goal or a need, but without necessarily
producing the optimal solution. [1] The NFR framework represents information about
softgoals using primarily a graphical representation, called the softgoal interdependency
graph. A softgoal interdependency graph represents each softgoal as an individual node
(or cloud). A softgoal interdependency graph records all softgoals being considered, as
well as the interdependencies between them. [1] Figure 1 shows an example of a softgoal
interdependency graph.

The results of our research were also encoded in XML files, and made available
on the World Wide Web for use by software developers. The WWW address is:
http://www.cs.yorku.ca/~billa/SIG/SIG.xml . The purpose of this website is to provide a
tool that can be used by software developers for optimizing a system‘s source code. This
website provides descriptions of all heuristics and can assist in selecting the subset of
heuristics that will benefit the system's maintainability and/or performance the most,
while minimizing the negative side-effects.

2. Maintainability and performance

We used the NFR framework to analyze the maintainability and performance
qualities. Sections 2.1 and 2.2 describe the softgoal interdependency graphs that we built
for maintainability and performance respectively. Section 2.3 explains how the qualities
of maintainability and performance can be satisficed in a system by implementing
selected heuristics in source code.

2.1 Decomposing maintainability into softgoals

Maintainability is defined as the characteristics of the software, its history, and
associated environments that affect the maintenance process and are indicative of the
amount of effort necessary to perform maintenance changes. It can be measured as a
quantification of the time necessary to make maintenance changes to the product. [2, 5]
Figure 1 shows the full softgoal interdependency graph for maintainability. This graph
attempts to illustrate the specific software attributes that affect maintainability. In some
cases there exist conflicting views of how attributes affect the maintainability of
software.

It is important to note that in this work we only describe softgoals relevant to the
source code of the target system. It is possible to identify softgoals irrelevant to source
code that contribute towards satisficing maintainability. Such softgoals may be related to
other environmental factors, such as `Management' or the `Operational Environment'. [2]
However, identifying such heuristics would require knowledge about the specific
environment in which the software system is embedded, and thus describing them is
outside the scope of our work.

The maintainability quality is decomposed into the softgoals
• high source code quality [2], and
• high documentation quality [3].

This decomposition is shown in Figure 1. Both softgoals of high source code and
documentation quality must be satisficed for a system to have high maintainability. This
is referred to as an AND contribution of the offspring softgoals towards their parent
softgoal, and is shown by grouping the interdependency lines with an arc. The rationale
behind this AND contribution is that a software system with clear source code but bad
documentation will be hard to maintain, since maintainers will need to study
requirements and design documents in order to understand how the system works. A
software system with clear documentation but badly-written code will also be hard to
maintain, since maintainers will need to understand how the source code works in order
to make changes to it.

The high source code quality softgoal is further decomposed into the softgoals
• high control structure quality [2],

• high information structure quality [2], and
• high code typography, naming and commenting quality [6, 7].

This decomposition is shown in Figure 1. As shown, this is also an AND contribution, i.e.
all three sub-softgoals must be satisficed to achieve the high source code quality softgoal.
The rationale behind this AND contribution is that source code will be hard to understand
if it is badly commented, or is laid out in a bad manner (typography qualities). But source
code will also be hard to understand if characteristics such as modularity, encapsulation
or cohesion have not been achieved (control structure and information structure
qualities).

Figure 1 - Maintainability softgoal interdependency graph, including all heuristics.

2.2 Decomposing performance into softgoals

As with maintainability, we also view performance as a softgoal (see Section
1.2) that can be broken down into more specific softgoals. Figure 2 shows the full
softgoal interdependency graph for performance.

Figure 2 - Performance softgoal interdependency graph, including all heuristics.

The high performance quality can be decomposed into softgoals

• good time performance [4], and
• good space performance [4].

This decomposition is shown in Figure 2. As shown, this is an AND contribution, i.e. both
softgoals must be satisficed to achieve the performance softgoal. The rationale behind
this AND contribution is that both softgoals of good time and space performance must be
satisficed for a system to achieve good performance. It is inconceivable for a system that
is fast but makes bad memory-utilization to be characterized by good performance. It is
also inconceivable for a system that makes good memory-utilization but is slow to be
characterized by good performance. Thus, software developers must try to satisfice both
softgoals in a system. If there is a tradeoff involved between achieving both of them then
that tradeoff must be balanced.

In turn, the good space performance softgoal can be decomposed into the
following sub-softgoals:

• low main memory utilization, and
• low secondary storage utilization.

This decomposition is shown in Figure 2. As shown, this is also an AND contribution, i.e.
both sub-softgoals must be satisficed to achieve the good space performance softgoal.
The rationale behind this AND contribution is that the system may be stored either in
main memory or in secondary storage, and the term "space" is used interchangeably to
refer to both types of storage.

2.3 Identifying heuristics to achieve software quality

Up to now we have been providing more precise definitions for the broad
qualities of maintainability and performance. There exist heuristics that can be
implemented in source code to satisfice the software quality requirements of high
maintainability and performance. The NFR framework treats these heuristics as softgoals
because this allows developers to decompose heuristics into more specific ones.
Heuristics are often referred to as operationalizing softgoals. Like other softgoals,
heuristics also make a contribution towards one or more parent softgoals. In this case the
contribution types are positive/negative. This is represented with a "+", "++", or "-", "--"
symbol. [1]

As shown in Figure 1, an example of a heuristic that can be implemented in a
system's source code to contribute towards satisficing the maintainability quality
requirement is elimination of global data types and data structures. This means to make
global data types and data structures local. Implementing this heuristic makes a "++"
contribution towards meeting the low data coupling softgoal.

As shown in Figure 2, an example of a heuristic that can be implemented in a
system's source code to contribute towards satisficing the performance quality
requirement is integer divide optimization. This means to replace integer divide
instructions with power-of-two denominators and other bit patterns with faster
instructions, such as shift instructions. Implementing this heuristic makes a "+"
contribution towards meeting the low user CPU time softgoal.

As shown in Figures 1 and 2, some heuristics such as dead code elimination and
elimination of GOTO statements contribute to both maintainability and performance and
they might affect one quality positively while affecting the other negatively. We examine
these conflicting heuristic contributions towards different qualities in the next section.

3. Maintainability and performance measurements

 We performed maintainability and performance optimization activities, by
implementing different heuristics at the source code level. Each optimization activity that
we performed corresponds directly to a specific heuristic that is shown in Figures 1 and 2.
We evaluated the effect of applying each optimization heuristic on the maintainability
and performance of the source code. For each optimization activity, a set of
maintainability metrics models were applied to the source code, both before and after the
optimization activity took place.

The C++ source code of two different software systems was modified for our
experiments; WELTAB, an election tabulation system, and the AVL GNU tree and
linked list libraries. Both systems were originally written in C, but a reengineering tool
was used to migrate the procedural C code to the object-oriented C++ language. The
primary reason for reengineering WELTAB and AVL from C to C++ was our desire to
produce object-oriented code that was of very low quality. This low quality was desirable
for our experiments, because it gave us many opportunities to improve the source code by
implementing optimization heuristics.

3.1 Maintainability metrics models

In order for maintenance processes to be improved and for the amount of effort
expended in software maintenance activities to be reduced, it is first necessary to be able
to measure software maintainability. [8] Certain maintainability metrics were extracted
from the WELTAB and AVL C++ source code to evaluate the effects of optimizations. In
each case the metrics were extracted automatically using DATRIX, a tool for assessing
the quality of C and C++ source code.

MI1 is computed as: 125 - 10 * LOG(avg-E)
The term avg-E is the average Halstead Volume V per module.

MI2 is computed as: 171 - 5.44 * ln(avg-E) - 0.23 * avg-V(G) - 16.2 * ln(avg-
LOC) + 50 * sin(sqrt(2.46 * (avg-CMT / avg-LOC)
The coefficients are derived from actual usage. Avg-E is the average Halstead Volume V
per module. Avg-V(G) is the average extended McCabe's cyclomatic complexity per
module. Avg-LOC = the average count of lines of code (LOC) per module. Avg-CMT =
average percent of lines of comments per module

MI3 is computed as: 171 -3.42*ln(avg-E) - 0.23*avg-V(G) - 16.2*ln(avg-LOC)
+ 0.99*avg-CMT
The coefficients are defined above.

3.2 A study of the optimization activities

The analysis of the maintainability and performance metrics was performed on
nine different source code optimization heuristics, as described below. Five of these
heuristics focused on improving maintainability and the other four focused on improving
performance.

Some of these activities were applied to WELTAB only, others to AVL only,
and others to both systems. We first extracted maintainability and performance metrics
on the original WELTAB and AVL C++ source code before any of the optimization
activities took place. After each distinct optimization activity took place, we extracted
maintainability and performance metrics on either WELTAB or AVL or both. Detailed
results are described next for each optimization.

Elimination of GOTO statements. The objective of this maintenance optimization
activity was to minimize the number of GOTO statements in WELTAB. This
optimization falls into the category of perfective maintenance since the software
environment was not changed, no new functionality was added and no defects were fixed.
 The maintainability measurements taken on the new optimized
version of WELTAB are shown in the Table below.

Metric Pre-value Post-value
M1
M2
M3

71.9263
36.6910
61.3768

71.6085
35.4542
60.2877

All the Maintainability Indexes (MIs) decreased. These descreases can be

attributed to the fact that all Halstead's metrics, McCabe's Cyclomatic Complexity and
lines of code (variables that affect the MIs) increased. It is important to note that
maintainability did get improved by eliminating GOTO statements. Elimination of
GOTO statements is the only way to minimize the number of unconditional branches in
source code. Decreasing the number of unconditional branches is a key factor in
improving maintainability, as it can assist a maintainer in understanding the source code
of a system. [2]

The performance measurements showed that performance was improved in
some cases and was affected negatively in other cases. Thus, the results do not provide
sufficient evidence that elimination of GOTO statements affects performance in a
specific way.

Dead Code Elimination. The objective of this maintenance optimization activity was
to eliminate dead code that was unreachable or that did not affect the program. This
optimization falls into the category of perfective maintenance since the software
environment was not changed, no new functionality was added and no defects were fixed.
 It is important to note that the original WELTAB C++ source code contained
a large amount of dead code. It cannot be certain that all dead code was eliminated.
However, after dead code was eliminated on some source files, the size of the files
decreased by almost half their original size. This fact alone points out the importance of

dead code elimination, not only for maintainability purposes, but also for space
performance purposes.
 This heuristic was implemented in WELTAB only. The maintainability
measurements taken on the new optimized version of WELTAB are shown in the Table
below. As can be seen, dead code elimination had as a result that maintainability was
affected positively in the optimized system.

Metric Pre-value Post-value
M1
M2
M3

71.9263
36.6910
61.3768

77.2713
56.6653
78.8650

Some of the performance measurements taken are shown in the Table below. As

we can see, performance was improved after applying this heuristic.

WELTAB Function Pre-performance Post-performance
weltab 0.69 0.61

Elimination of Global Data Types and Data Structures. The objective of this
maintenance optimization activity was to turn global data types and data structures to
local. This optimization falls into the category of perfective maintenance since the
software environment was not changed, no new functionality was added and no defects
were fixed.
 This heuristic was implemented in WELTAB only. The maintainability
measurements taken are shown in the Table below. All measurements show an increase
in maintainability after eliminating global data types and data structures.

Metric Pre-value Post-value
M1
M2
M3

71.9263
36.6910
61.3768

71.9391
36.7616
61.4414

Some of the performance measurements taken are shown in the Table below. As

we can see, performance was affected negatively after applying this heuristic.

WELTAB Function Pre-performance Post-performance
weltab 0.78 0.79

Maximization of Cohesion. The objective of this maintenance optimization activity
was to split a class with low cohesion into many smaller classes, each of which has
higher cohesion. This optimization falls into the category of perfective maintenance since
the software environment was not changed, no new functionality was added, and no
defects were fixed.
 This heuristic was implemented in AVL only. The maintainability
measurements taken are shown in the Table below. All measurements show an increase
in maintainability after maximizing cohesion.

Metric Pre-value Post-value
M1
M2
M3

70.43
36.22
61.43

76.32
55.32
73.67

Some of the performance measurements taken are shown in the Table below. As

we can see, performance was affected negatively after applying this heuristic.

AVL Function Pre-performance Post-performance
SampleRec 0.67 0.69

Minimization of Coupling Through ADTs. The objective of this maintenance
optimization activity was to eliminate variables declared within a class, which have a
type of ADT that is another class definition. This optimization falls into the category of
perfective maintenance since the software environment was not changed, no new
functionality was added, and no defects were fixed.
 This heuristic was implemented in AVL. The maintainability measurements
taken are shown in the Table below. All measurements show an increase in
maintainability after this optimization.

Metric Pre-value Post-value
M1
M2
M3

76.86
98.77
108.44

79.31
102.67
111.45

The performance measurements taken are shown in the Table below. As we can

see, this heuristic affected performance negatively.

AVL Function Pre-performance Post-performance
Ubi_cacheRoot
Ubi_idbDB

0.67
0.56

0.68
0.58

Hoisting and Unswitching. The objective of this performance optimization activity
was to optimize run-time performance by minimizing the time spent during FOR loops,
by moving loop-invariant expressions out of FOR loops and transforming a FOR loop
containing a loop-invariant IF statement into an IF statement containing two FOR loops..

This heuristic was implemented in WELTAB only. The maintainability
measurements taken are shown in the Table below. All MIs decreased. These descreases
can be attributed to the fact that all Halstead's metrics and lines of code (variables that
affect the MIs) increased. Thus, Hoisting and Unswitching affected maintainability
negatively in the optimized system.

Metric Pre-value Post-value
M1
M2
M3

71.9263
36.6910
61.3768

71.9256
36.6757
61.3618

The performance measurements taken are shown in the Table below. As we can

see, performance was improved after applying the heuristic.

WELTAB Function Pre-performance Post-performance
Report-canv
Baselib-smove

0.32
0.83

0.28
0.69

Address Optimization. The objective of this performance optimization activity was to
fit all the global scalar variables of WELTAB in a global variable pool. Then, each of the
global scalar variables gets accessed via one pointer and an offset, instead of via constant
address. This way more expensive load and store sequences are avoided and code size is
reduced.

This heuristic was implemented in WELTAB only. The maintainability
measurements taken are shown in the Table below. All MIs decreased. Thus, Address
Optimization affected maintainability negatively in the optimized system.

Metric Pre-value Post-value
M1
M2
M3

71.9263
36.6910
61.3768

71.8982
36.6559
61.3547

Some of the performance measurements taken are shown in the Table below. As

we can see, performance was improved after applying the heuristic.

WELTAB Function Pre-performance Post-performance
cmprec-vfix
report-chead

0.98
0.76

0.87
0.63

Integer Divide Optimization. The objective of this performance optimization activity
was to replace integer divide expressions with power-of-two denominators with faster
integer shift instructions.

This heuristic was implemented in both WELTAB and AVL. The
maintainability measurements taken on WELTAB are shown in the Table below. All MIs
decreased slightly after this heuristic was applied. Thus, this optimization affected the
maintainability negatively.

Metric Pre-value Post-value
M1
M2
M3

71.9263
36.6910
61.3768

71.9256
36.6902
61.3763

The performance measurements taken on WELTAB are shown in the Table

below. As we can see, performance was improved after applying this heuristic.

WELTAB Function Pre-performance Post-performance
wcre-showdone
weltab-showdone

0.76
0.33

0.65
0.28

Function Inlining. The objective of this performance optimization activity was to
eliminate the overhead associated with calling and returning from a function, by
expanding the body of the function inline.

This heuristic was implemented in both WELTAB and AVL. The
maintainability measurements taken on WELTAB are shown in the Table below. All MIs
decreased after this heuristic was applied. These decreases can be attributed to the fact
that all Halstead’s metrics and lines of code increased. Thus, this optimization affected
the maintainability negatively.

Metric Pre-value Post-value
M1
M2
M3

71.9263
36.6910
61.3768

71.4982
35.5612
60.4460

The performance measurements taken on WELTAB are shown in the Table

below. As we can see, performance was improved after applying this heuristic.

WELTAB Function Pre-performance Post-performance
Weltab-poll
Weltab-spol

0.81
0.32

0.42
0.23

4. Discussion

For any potential optimization heuristic, a software developer should examine
the number of source code locations to which the heuristic can be applied, and the
chances that these source code locations will be maintained during the maintenance
process (for a maintainability optimization heuristic) or executed during run-time (for a
performance optimization heuristic). The 80-20 rule is often used to describe such
situations [4]. This rule states that 20% of the source code will be executed 80% of the
time; and similarly that 20% of the source code will be maintained 80% of the time.
Thus, in selecting the best combination of optimization heuristics, a developer should
attempt to select heuristics that can be applied to many source code locations falling
under the 80-20 category.

The set of heuristics, selected for implementation, must be the ones that will
benefit the system the most, by maximizing the ratio of gains to losses. When choosing a
set of heuristics to be implemented in the target system, an evaluation procedure can be
used to determine the degree to which each top-level quality requirement (i.e.
maintainability) will be achieved.

In the NFR Framework, the heuristics that are chosen to be implemented in the
target system are indicated by “√”. On the other hand, rejected candidates are represented
as “X”. Heuristics for which a decision has not been made are simply left blank. Figure 3
shows examples of these selections as check-marks (“√”) inside the nodes.

The developer has to evaluate the precise impact of the selected heuristics on
top-level quality requirements (i.e. maintainability) to find out if the top-level quality
requirements are achieved or not. The evaluation process can be viewed as working
bottom-up, starting with bottom leaves of the graph representing heuristics. The
evaluation process works towards the top of the graph, determining the impact of
offspring softgoals on parent softgoals. This impact is represented by assigning labels
(“√” and “X”) to the higher-level parent softgoals. The impact upon a parent softgoal is
computed from the contributions that all the offspring softgoals make towards it.

Figure 3 - Selecting among alternative combinations of heuristics.

As shown in Figure 3, the heuristic minimization of the number of direct
children that is satisficed (“√”) makes a negative contribution towards its parent softgoal
high module reuse, which is denied ("X"). On the other hand, it makes a positive
contribution towards low control flow complexity, which is satisficed (“√”). The heuristic
dead code elimination that is satisficed (“√”) makes a positive contribution towards its
parent softgoals high control flow consistency and high data consistency. Thus, both
softgoals are satisficed (“√”).

5. Conclusions

Our framework can be viewed as a generic methodology for selecting the set of
optimization heuristics that will improve the system's software quality the most, while
minimizing negative side effects. The major contributions of this work include using the
NFR framework to model two particular software qualities, maintainability and
performance. We identified and described many heuristics that affect these software
qualities and that can be implemented in a target system's source code. We conducted
experiments by implementing some of the heuristics in two medium-sized software
systems and then collecting measurements. Finally, we presented an evaluation procedure
for evaluating the effect of heuristics on software quality.

References

[1] L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. NonFunctional Requirements in Software
Engineering. Kluwer Publishing, 2000.

[2] J. R. Hagemeister, “A Metric Approach to Assessing the Maintainability of Software”,
Master’s thesis, University of Idaho, Moscow, Idaho, 1992.

[3] J. Arthur and K. Stevens, “Assessing the Adequacy of Documentation Through Document
Quality Indicators”, in Proceedings Conference on Software Maintenance, pp. 40-49, IEEE CS
Press, 1989.

[4] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach
(Morgan Kaufmann, San Mateo, CA, 1990).

[5] IEEE, Standard Glossary of Software Engineering Terminology, 1990.

[6] R. M. Baecker and A. Marcus, Human Factors and Typography for More Readable Programs,
(Addison Wesley, 1989)

[7] P. W. Oman and C. R. Cook, Typographic Style is More than Cosmetic, Communications of
the ACM (CACM)", Vol.33, pp. 506—520, Communications of the ACM (CACM), 1990.

[8] T. Pearse and P. Oman, "Maintainability Measurements on Industrial Source Code Maintenance
Activities", in Proceedings 1995 International Conference on Software Maintenance, pp. 295-303,
IEEE CS Press, 1995.

