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Abstract. The major contributions of our work include adopting the NFR framework 
to represent and analyze two software qualities that often conflict with each other: 
maintainability and performance. We identified and described many heuristics that 
can be implemented in a system's source code to achieve either quality. We 
implemented some of the heuristics in two medium-sized software systems and then 
collected measurements to determine the effect of the heuristics on maintainability 
and performance. A general methodology is described for evaluating and selecting 
the heuristics that will improve a system’s software quality the most. The results of 
our research were also encoded in XML files, and made available on the World 
Wide Web for use by software developers. The WWW address is:    
http://www.cs.yorku.ca/~billa/SIG/SIG.xml 
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1. Introduction 
 

Developers should consider the conflicting qualities of maintainability and 
performance early in the process of developing a software system. Failing to integrate 
either quality into the system will later increase costs exponentially when maintaining or 
expanding the system. Thus, it is necessary to be able to represent and analyze software 
quality effectively throughout the entire software lifecycle. We propose a general 
methodology for evaluating and improving the quality of a software system. We focus on 
the maintainability and performance software qualities, because these qualities often 
conflict with one another and achieving one quality might affect the other negatively. An 
important part of our work was to examine how the two qualities conflict with each other. 

In requirements engineering, a requirement can be described as a condition or 
capability to which a system must conform, and which is either derived directly from user 
needs, or stated in a contract, standard, specification, or other formally imposed 
document. [1] Requirements can be classified into: 

• Functional requirements, which are externally visible behaviors, showing what 
the system must do, and 

• Non-functional requirements (or software qualities), which are constraints on 
the design and/or implementation of the solution. 

Software qualities describe not what the software will do, but how the software will do it, 
by specifying constraints on the system design and/or implementation. [1] Unfortunately, 
software qualities are usually specified briefly and vaguely for a particular system. 

We adopt the NFR Framework to represent the qualities of maintainability and 
performance, the software characteristics that affect them and the heuristics that can be 
implemented in source code to achieve them. The NFR framework for representing 
software qualities was developed by Lawrence Chung, Brian Nixon, Eric Yu and John 
Mylopoulos at the University of Toronto. [1] The NFR framework represents quality 
requirements as softgoals. Softgoals are goals with no clear-cut criterion for their 
fulfillment. Instead, a softgoal may only contribute positively or negatively towards 
achieving another softgoal. By using this logic, a softgoal can be satisficed or not; 



satisficing refers to satisfying at some level a goal or a need, but without necessarily 
producing the optimal solution. [1] The NFR framework represents information about 
softgoals using primarily a graphical representation, called the softgoal interdependency 
graph. A softgoal interdependency graph represents each softgoal as an individual node 
(or cloud). A softgoal interdependency graph records all softgoals being considered, as 
well as the interdependencies between them. [1] Figure 1 shows an example of a softgoal 
interdependency graph. 

The results of our research were also encoded in XML files, and made available 
on the World Wide Web for use by software developers. The WWW address is:    
http://www.cs.yorku.ca/~billa/SIG/SIG.xml . The purpose of this website is to provide a 
tool that can be used by software developers for optimizing a system‘s source code. This 
website provides descriptions of all heuristics and can assist in selecting the subset of 
heuristics that will benefit the system's maintainability and/or performance the most, 
while minimizing the negative side-effects. 
 
2. Maintainability and performance 
 

We used the NFR framework to analyze the maintainability and performance 
qualities. Sections 2.1 and 2.2 describe the softgoal interdependency graphs that we built 
for maintainability and performance respectively. Section 2.3 explains how the qualities 
of maintainability and performance can be satisficed in a system by implementing 
selected heuristics in source code. 
 
2.1 Decomposing maintainability into softgoals 
 

Maintainability is defined as the characteristics of the software, its history, and 
associated environments that affect the maintenance process and are indicative of the 
amount of effort necessary to perform maintenance changes. It can be measured as a 
quantification of the time necessary to make maintenance changes to the product. [2, 5] 
Figure 1 shows the full softgoal interdependency graph for maintainability. This graph 
attempts to illustrate the specific software attributes that affect maintainability. In some 
cases there exist conflicting views of how attributes affect the maintainability of 
software.  

It is important to note that in this work we only describe softgoals relevant to the 
source code of the target system. It is possible to identify softgoals irrelevant to source 
code that contribute towards satisficing maintainability. Such softgoals may be related to 
other environmental factors, such as `Management' or the `Operational Environment'. [2] 
However, identifying such heuristics would require knowledge about the specific 
environment in which the software system is embedded, and thus describing them is 
outside the scope of our work. 

The maintainability quality is decomposed into the softgoals 
• high source code quality [2], and 
• high documentation quality [3]. 

This decomposition is shown in Figure 1. Both softgoals of high source code and 
documentation quality must be satisficed for a system to have high maintainability. This 
is referred to as an AND contribution of the offspring softgoals towards their parent 
softgoal, and is shown by grouping the interdependency lines with an arc. The rationale 
behind this AND contribution is that a software system with clear source code but bad 
documentation will be hard to maintain, since maintainers will need to study 
requirements and design documents in order to understand how the system works. A 
software system with clear documentation but badly-written code will also be hard to 
maintain, since maintainers will need to understand how the source code works in order 
to make changes to it.  

The high source code quality softgoal is further decomposed into the softgoals 
• high control structure quality [2], 



• high information structure quality [2], and 
• high code typography, naming and commenting quality [6, 7]. 

This decomposition is shown in Figure 1. As shown, this is also an AND contribution, i.e. 
all three sub-softgoals must be satisficed to achieve the high source code quality softgoal. 
The rationale behind this AND contribution is that source code will be hard to understand 
if it is badly commented, or is laid out in a bad manner (typography qualities). But source 
code will also be hard to understand if characteristics such as modularity, encapsulation 
or cohesion have not been achieved (control structure and information structure 
qualities). 

 
Figure 1 - Maintainability softgoal interdependency graph, including all heuristics. 

 
2.2 Decomposing performance into softgoals 
 

As with maintainability, we also view performance as a softgoal (see Section 
1.2) that can be broken down into more specific softgoals. Figure 2 shows the full 
softgoal interdependency graph for performance. 
 



 
Figure 2 - Performance softgoal interdependency graph, including all heuristics.  

 
The high performance quality can be decomposed into softgoals 

• good time performance [4], and 
• good space performance [4]. 

This decomposition is shown in Figure 2. As shown, this is an AND contribution, i.e. both 
softgoals must be satisficed to achieve the performance softgoal. The rationale behind 
this AND contribution is that both softgoals of good time and space performance must be 
satisficed for a system to achieve good performance. It is inconceivable for a system that 
is fast but makes bad memory-utilization to be characterized by good performance. It is 
also inconceivable for a system that makes good memory-utilization but is slow to be 
characterized by good performance. Thus, software developers must try to satisfice both 
softgoals in a system. If there is a tradeoff involved between achieving both of them then 
that tradeoff must be balanced. 

In turn, the good space performance softgoal can be decomposed into the 
following sub-softgoals: 

• low main memory utilization, and 
• low secondary storage utilization. 

This decomposition is shown in Figure 2. As shown, this is also an AND contribution, i.e. 
both sub-softgoals must be satisficed to achieve the good space performance softgoal. 
The rationale behind this AND contribution is that the system may be stored either in 
main memory or in secondary storage, and the term "space" is used interchangeably to 
refer to both types of storage. 
 



2.3 Identifying heuristics to achieve software quality 
 

Up to now we have been providing more precise definitions for the broad 
qualities of maintainability and performance. There exist heuristics that can be 
implemented in source code to satisfice the software quality requirements of high 
maintainability and performance. The NFR framework treats these heuristics as softgoals 
because this allows developers to decompose heuristics into more specific ones. 
Heuristics are often referred to as operationalizing softgoals. Like other softgoals, 
heuristics also make a contribution towards one or more parent softgoals. In this case the 
contribution types are positive/negative. This is represented with a "+", "++", or "-", "--" 
symbol. [1]  

As shown in Figure 1, an example of a heuristic that can be implemented in a 
system's source code to contribute towards satisficing the maintainability quality 
requirement is elimination of global data types and data structures. This means to make 
global data types and data structures local. Implementing this heuristic makes a "++" 
contribution towards meeting the low data coupling softgoal. 

As shown in Figure 2, an example of a heuristic that can be implemented in a 
system's source code to contribute towards satisficing the performance quality 
requirement is integer divide optimization. This means to replace integer divide 
instructions with power-of-two denominators and other bit patterns with faster 
instructions, such as shift instructions. Implementing this heuristic makes a "+" 
contribution towards meeting the low user CPU time softgoal. 

As shown in Figures 1 and 2, some heuristics such as dead code elimination and 
elimination of GOTO statements contribute to both maintainability and performance and 
they might affect one quality positively while affecting the other negatively. We examine 
these conflicting heuristic contributions towards different qualities in the next section. 
 
3. Maintainability and performance measurements 
 
               We performed maintainability and performance optimization activities, by 
implementing different heuristics at the source code level. Each optimization activity that 
we performed corresponds directly to a specific heuristic that is shown in Figures 1 and 2. 
We evaluated the effect of applying each optimization heuristic on the maintainability 
and performance of the source code. For each optimization activity, a set of 
maintainability metrics models were applied to the source code, both before and after the 
optimization activity took place. 

The C++ source code of two different software systems was modified for our 
experiments; WELTAB, an election tabulation system, and the AVL GNU tree and 
linked list libraries. Both systems were originally written in C, but a reengineering tool 
was used to migrate the procedural C code to the object-oriented C++ language. The 
primary reason for reengineering WELTAB and AVL from C to C++ was our desire to 
produce object-oriented code that was of very low quality. This low quality was desirable 
for our experiments, because it gave us many opportunities to improve the source code by 
implementing optimization heuristics. 
 
3.1 Maintainability metrics models 
 

In order for maintenance processes to be improved and for the amount of effort 
expended in software maintenance activities to be reduced, it is first necessary to be able 
to measure software maintainability. [8] Certain maintainability metrics were extracted 
from the WELTAB and AVL C++ source code to evaluate the effects of optimizations. In 
each case the metrics were extracted automatically using DATRIX, a tool for assessing 
the quality of C and C++ source code. 

MI1 is computed as: 125 - 10 * LOG(avg-E) 
The term avg-E is the average Halstead Volume V per module. 



MI2 is computed as: 171 - 5.44 * ln(avg-E) - 0.23 * avg-V(G) - 16.2 * ln(avg-
LOC) + 50 * sin(sqrt(2.46 * (avg-CMT / avg-LOC) 
The coefficients are derived from actual usage. Avg-E is the average Halstead Volume V 
per module. Avg-V(G) is the average extended McCabe's cyclomatic complexity per 
module. Avg-LOC = the average count of lines of code (LOC) per module. Avg-CMT = 
average percent of lines of comments per module 

MI3 is computed as: 171 -3.42*ln(avg-E) - 0.23*avg-V(G) - 16.2*ln(avg-LOC) 
+ 0.99*avg-CMT 
The coefficients are defined above. 
 
3.2 A study of the optimization activities 
 

The analysis of the maintainability and performance metrics was performed on 
nine different source code optimization heuristics, as described below. Five of these 
heuristics focused on improving maintainability and the other four focused on improving 
performance. 

Some of these activities were applied to WELTAB only, others to AVL only, 
and others to both systems. We first extracted maintainability and performance metrics 
on the original WELTAB and AVL C++ source code before any of the optimization 
activities took place. After each distinct optimization activity took place, we extracted 
maintainability and performance metrics on either WELTAB or AVL or both. Detailed 
results are described next for each optimization. 
 
Elimination of GOTO statements. The objective of this maintenance optimization 
activity was to minimize the number of GOTO statements in WELTAB. This 
optimization falls into the category of perfective maintenance since the software 
environment was not changed, no new functionality was added and no defects were fixed. 
 The maintainability measurements taken on the new optimized 
version of WELTAB are shown in the Table below. 
 

Metric Pre-value Post-value 
M1 
M2 
M3 

71.9263 
36.6910 
61.3768 

71.6085 
35.4542 
60.2877 

 
All the Maintainability Indexes (MIs) decreased. These descreases can be 

attributed to the fact that all Halstead's metrics, McCabe's Cyclomatic Complexity and 
lines of code (variables that affect the MIs) increased. It is important to note that 
maintainability did get improved by eliminating GOTO statements. Elimination of 
GOTO statements is the only way to minimize the number of unconditional branches in 
source code. Decreasing the number of unconditional branches is a key factor in 
improving maintainability, as it can assist a maintainer in understanding the source code 
of a system. [2] 

The performance measurements showed that performance was improved in 
some cases and was affected negatively in other cases. Thus, the results do not provide 
sufficient evidence that elimination of GOTO statements affects performance in a 
specific way. 
 
Dead Code Elimination. The objective of this maintenance optimization activity was 
to eliminate dead code that was unreachable or that did not affect the program. This 
optimization falls into the category of perfective maintenance since the software 
environment was not changed, no new functionality was added and no defects were fixed. 
                   It is important to note that the original WELTAB C++ source code contained 
a large amount of dead code. It cannot be certain that all dead code was eliminated. 
However, after dead code was eliminated on some source files, the size of the files 
decreased by almost half their original size. This fact alone points out the importance of 



dead code elimination, not only for maintainability purposes, but also for space 
performance purposes. 
                 This heuristic was implemented in WELTAB only. The maintainability 
measurements taken on the new optimized version of WELTAB are shown in the Table 
below. As can be seen, dead code elimination had as a result that maintainability was 
affected positively in the optimized system. 
 

Metric Pre-value Post-value 
M1 
M2 
M3 

71.9263 
36.6910 
61.3768 

77.2713 
56.6653 
78.8650 

 
Some of the performance measurements taken are shown in the Table below. As 

we can see, performance was improved after applying this heuristic. 
 

WELTAB Function Pre-performance Post-performance 
weltab 0.69 0.61 

 
Elimination of Global Data Types and Data Structures. The objective of this 
maintenance optimization activity was to turn global data types and data structures to 
local. This optimization falls into the category of perfective maintenance since the 
software environment was not changed, no new functionality was added and no defects 
were fixed.  
               This heuristic was implemented in WELTAB only. The maintainability 
measurements taken are shown in the Table below. All measurements show an increase 
in maintainability after eliminating global data types and data structures. 
 

Metric Pre-value Post-value 
M1 
M2 
M3 

71.9263 
36.6910 
61.3768 

71.9391 
36.7616 
61.4414 

 
Some of the performance measurements taken are shown in the Table below. As 

we can see, performance was affected negatively after applying this heuristic. 
 

WELTAB Function Pre-performance Post-performance 
weltab 0.78 0.79 

 
Maximization of Cohesion. The objective of this maintenance optimization activity 
was to split a class with low cohesion into many smaller classes, each of which has 
higher cohesion. This optimization falls into the category of perfective maintenance since 
the software environment was not changed, no new functionality was added, and no 
defects were fixed. 
               This heuristic was implemented in AVL only. The maintainability 
measurements taken are shown in the Table below. All measurements show an increase 
in maintainability after maximizing cohesion. 

 
Metric Pre-value Post-value 
M1 
M2 
M3 

70.43 
36.22 
61.43 

76.32 
55.32 
73.67 

 
Some of the performance measurements taken are shown in the Table below. As 

we can see, performance was affected negatively after applying this heuristic. 
 



AVL Function Pre-performance Post-performance 
SampleRec 0.67 0.69 

 
Minimization of Coupling Through ADTs. The objective of this maintenance 
optimization activity was to eliminate variables declared within a class, which have a 
type of ADT that is another class definition. This optimization falls into the category of 
perfective maintenance since the software environment was not changed, no new 
functionality was added, and no defects were fixed. 
                  This heuristic was implemented in AVL. The maintainability measurements 
taken are shown in the Table below. All measurements show an increase in 
maintainability after this optimization. 
 

Metric Pre-value Post-value 
M1 
M2 
M3 

76.86 
98.77 
108.44 

79.31 
102.67 
111.45 

 
The performance measurements taken are shown in the Table below. As we can 

see, this heuristic affected performance negatively.  
 

AVL Function Pre-performance Post-performance 
Ubi_cacheRoot 
Ubi_idbDB 

0.67 
0.56 

0.68 
0.58 

 
Hoisting and Unswitching. The objective of this performance optimization activity 
was to optimize run-time performance by minimizing the time spent during FOR loops, 
by moving loop-invariant expressions out of FOR loops and transforming a FOR loop 
containing a loop-invariant IF statement into an IF statement containing two FOR loops.. 

This heuristic was implemented in WELTAB only. The maintainability 
measurements taken are shown in the Table below. All MIs decreased. These descreases 
can be attributed to the fact that all Halstead's metrics and lines of code (variables that 
affect the MIs) increased. Thus, Hoisting and Unswitching affected maintainability 
negatively in the optimized system. 
  

Metric Pre-value Post-value 
M1 
M2 
M3 

71.9263 
36.6910 
61.3768 

71.9256 
36.6757 
61.3618 

 
The performance measurements taken are shown in the Table below. As we can 

see, performance was improved after applying the heuristic.  
 

WELTAB Function Pre-performance Post-performance 
Report-canv 
Baselib-smove 

0.32 
0.83 

0.28 
0.69 

 
Address Optimization. The objective of this performance optimization activity was to 
fit all the global scalar variables of WELTAB in a global variable pool. Then, each of the 
global scalar variables gets accessed via one pointer and an offset, instead of via constant 
address. This way more expensive load and store sequences are avoided and code size is 
reduced. 

This heuristic was implemented in WELTAB only. The maintainability 
measurements taken are shown in the Table below. All MIs decreased. Thus, Address 
Optimization affected maintainability negatively in the optimized system. 
  



Metric Pre-value Post-value 
M1 
M2 
M3 

71.9263 
36.6910 
61.3768 

71.8982 
36.6559 
61.3547 

 
Some of the performance measurements taken are shown in the Table below. As 

we can see, performance was improved after applying the heuristic.  
 

WELTAB Function Pre-performance Post-performance 
cmprec-vfix 
report-chead 

0.98 
0.76 

0.87 
0.63 

 
Integer Divide Optimization. The objective of this performance optimization activity 
was to replace integer divide expressions with power-of-two denominators with faster 
integer shift instructions. 

This heuristic was implemented in both WELTAB and AVL. The 
maintainability measurements taken on WELTAB are shown in the Table below. All MIs 
decreased slightly after this heuristic was applied. Thus, this optimization affected the 
maintainability negatively. 
 

Metric Pre-value Post-value 
M1 
M2 
M3 

71.9263 
36.6910 
61.3768 

71.9256 
36.6902 
61.3763 

 
The performance measurements taken on WELTAB are shown in the Table 

below. As we can see, performance was improved after applying this heuristic. 
 

WELTAB Function Pre-performance Post-performance 
wcre-showdone 
weltab-showdone  

0.76 
0.33 

0.65 
0.28 

 
Function Inlining. The objective of this performance optimization activity was to 
eliminate the overhead associated with calling and returning from a function, by 
expanding the body of the function inline. 

This heuristic was implemented in both WELTAB and AVL. The 
maintainability measurements taken on WELTAB are shown in the Table below. All MIs 
decreased after this heuristic was applied. These decreases can be attributed to the fact 
that all Halstead’s metrics and lines of code increased. Thus, this optimization affected 
the maintainability negatively. 
 

Metric Pre-value Post-value 
M1 
M2 
M3 

71.9263 
36.6910 
61.3768 

71.4982 
35.5612 
60.4460 

 
The performance measurements taken on WELTAB are shown in the Table 

below. As we can see, performance was improved after applying this heuristic. 
 

WELTAB Function Pre-performance Post-performance 
Weltab-poll 
Weltab-spol 

0.81 
0.32 

0.42 
0.23 

 



4. Discussion 
 

For any potential optimization heuristic, a software developer should examine 
the number of source code locations to which the heuristic can be applied, and the 
chances that these source code locations will be maintained during the maintenance 
process (for a maintainability optimization heuristic) or executed during run-time (for a 
performance optimization heuristic). The 80-20 rule is often used to describe such 
situations [4]. This rule states that 20% of the source code will be executed 80% of the 
time; and similarly that 20% of the source code will be maintained 80% of the time. 
Thus, in selecting the best combination of optimization heuristics, a developer should 
attempt to select heuristics that can be applied to many source code locations falling 
under the 80-20 category. 

The set of heuristics, selected for implementation, must be the ones that will 
benefit the system the most, by maximizing the ratio of gains to losses. When choosing a 
set of heuristics to be implemented in the target system, an evaluation procedure can be 
used to determine the degree to which each top-level quality requirement (i.e. 
maintainability) will be achieved. 

In the NFR Framework, the heuristics that are chosen to be implemented in the 
target system are indicated by “√”. On the other hand, rejected candidates are represented 
as “X”. Heuristics for which a decision has not been made are simply left blank. Figure 3 
shows examples of these selections as check-marks (“√”) inside the nodes. 

The developer has to evaluate the precise impact of the selected heuristics on 
top-level quality requirements (i.e. maintainability) to find out if the top-level quality 
requirements are achieved or not. The evaluation process can be viewed as working 
bottom-up, starting with bottom leaves of the graph representing heuristics. The 
evaluation process works towards the top of the graph, determining the impact of 
offspring softgoals on parent softgoals. This impact is represented by assigning labels 
(“√” and “X”) to the higher-level parent softgoals. The impact upon a parent softgoal is 
computed from the contributions that all the offspring softgoals make towards it.  
 

 
Figure 3 - Selecting among alternative combinations of heuristics. 

As shown in Figure 3, the heuristic minimization of the number of direct 
children that is satisficed (“√”) makes a negative contribution towards its parent softgoal 
high module reuse, which is denied ("X"). On the other hand, it makes a positive 
contribution towards low control flow complexity, which is satisficed (“√”). The heuristic 
dead code elimination that is satisficed (“√”) makes a positive contribution towards its 
parent softgoals high control flow consistency and high data consistency. Thus, both 
softgoals are satisficed (“√”).     



 
5. Conclusions 
 

Our framework can be viewed as a generic methodology for selecting the set of 
optimization heuristics that will improve the system's software quality the most, while 
minimizing negative side effects. The major contributions of this work include using the 
NFR framework to model two particular software qualities, maintainability and 
performance. We identified and described many heuristics that affect these software 
qualities and that can be implemented in a target system's source code. We conducted 
experiments by implementing some of the heuristics in two medium-sized software 
systems and then collecting measurements. Finally, we presented an evaluation procedure 
for evaluating the effect of heuristics on software quality.  
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