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Abstract. A challenge involved in applying density-based clustering to
categorical datasets is that the ‘cube’ of attribute values has no ordering
defined. We propose the HIERDENC algorithm for hierarchical density-
based clustering of categorical data. HIERDENC offers a basis for design-
ing simpler clustering algorithms that balance the tradeoff of accuracy
and speed. The characteristics of HIERDENC include: (i) it builds a
hierarchy representing the underlying cluster structure of the categorical
dataset, (ii) it minimizes the user-specified input parameters, (iii) it is in-
sensitive to the order of object input, (iv) it can handle outliers. We eval-
uate HIERDENC on small-dimensional standard categorical datasets,
on which it produces more accurate results than other algorithms. We
present a faster simplification of HIERDENC called the MULIC algo-
rithm. MULIC performs better than subspace clustering algorithms in
terms of finding the multi-layered structure of special datasets.

1 Introduction

A growing number of clustering algorithms for categorical data have been pro-
posed in recent years, along with interesting applications, such as partitioning
large software systems and protein interaction data [6,13,29]. In the past, poly-
nomial time approximation algorithms have been designed for NP-hard parti-
tioning algorithms [9]. Moreover, it has recently been shown that the “curse of
dimensionality” involving efficient searches for approximate nearest neighbors
in a metric space can be dealt with, if and only if, we assume a bounded di-
mensionality [12,21]. Clearly, there are tradeoffs of efficiency and approximation
involved in the design of categorical clustering algorithms. Ideally, a set of prob-
abilistically justified goals for categorical clustering would serve as a framework
for approximation algorithms [20,25]. This would allow designing and comparing
categorical clustering algorithms on a more formal basis.

Our work is motivated by density-based clustering algorithms, such as
CLIQUE [1], CLICKS [28], CACTUS [10], COOLCAT [5], DBSCAN [8], OP-
TICS [4], Chameleon [19], ROCK [14], DENCLUE [15], and others. Although
most of these approaches are efficient and relatively accurate, we go beyond
them and approach the problem from a different viewpoint. Many of these al-
gorithms require the user to specify input parameters (with wrong parameter
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values resulting in a bad clustering), may return too many clusters or too many
outliers, often have difficulty finding clusters within clusters or subspace clusters,
or are sensitive to the order of object input [6,12,13,28]. We propose a categor-
ical clustering algorithm that builds a hierarchy representing a dataset’s entire
underlying cluster structure, minimizes user-specified parameters, and is insen-
sitive to object ordering. This offers to a user a dataset’s cluster structure as
a hierarchy, which is built independently of user-specified parameters or object
ordering. A user can cut its branches and study the cluster structure at differ-
ent levels of granularity, detect subclusters within clusters, and know the central
densest area of each cluster. Although such an algorithm is slow, it inspires faster
simplifications that are useful for finding the rich cluster structure of a dataset.

A categorical dataset with m attributes is viewed as an m-dimensional ‘cube’,
offering a spatial density basis for clustering. A cell of the cube is mapped to
the number of objects having values equal to its coordinates. Clusters in such
a cube are regarded as subspaces of high object density and are separated by
subspaces of low object density. Clustering the cube poses several challenges:

(i) Since there is no ordering of attribute values, the cube cells have no or-
dering either. The search for dense subspaces could have to consider several
orderings of each dimension of the cube to identify the best clustering (unless
all attributes have binary values).

(ii) The density of a subspace is often defined relative to a user-specified value,
such as a radius. However, different radii are preferable for different subspaces
of the cube [4]. In dense subspaces where no information should be missed, the
search is more accurately done ‘cell by cell’ with a low radius of 1. In sparse
subspaces a higher radius may be preferable to aggregate information. The cube
search could start from a low radius and gradually move to higher radii. Al-
though the term ‘radius’ is borrowed from geometrical analogies that assume
circular constructs, we use the term in a looser way and it is not a Euclidean
distance.

We present the HIERDENC algorithm for hierarchical density-based cluster-
ing of categorical data, that addresses the above challenges. HIERDENC clusters
the m-dimensional cube representing the spatial density of a set of objects with
m categorical attributes. To find its dense subspaces, HIERDENC considers an
object’s neighbors to be all objects that are within a radius of maximum dis-
similarity. Object neighborhoods are insensitive to attribute or value ordering.
Clusters start from the densest subspaces of the cube. Clusters expand outwards
from a dense subspace, by connecting nearby dense subspaces. Figure 1 shows
examples of creating and expanding clusters in a 3-d dataset. The radius is the
maximum number of dimensions by which neighbors can differ.

We present the MULIC algorithm, which is a faster simplification of HIER-
DENC. MULIC is motivated by clustering of categorical datasets that have a
multi-layered structure. For instance, in protein interaction data a cluster often
has a center of proteins with similar interaction sets surrounded by peripheries of
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Fig. 1. A cluster is a dense subspace
with a ‘central’ cell marked with a
dot. (a) radius=1, two new clusters.
(b) radius=1, clusters expand. (c)
radius=2, clusters expand. (d) ra-
dius=2, one new cluster.

Fig. 2. Two HIERDENC
‘hyper-cubes’ in a 3D cube,
for r=1

proteins with less similar interaction sets [7]. On such data, MULIC outperforms
other algorithms that create a flat clustering.

This paper is organized as follows. Section 2 presents the HIERDENC algo-
rithm. Section 3 describes the MULIC clustering algorithm and its relation to
HIERDENC. Section 4 discusses the experiments. Section 5 concludes the paper.

2 HIERDENC Clustering

Basics. We are given a dataset of objects S (which might contain duplicates)
with m categorical attributes, X1, · · · , Xm. Each attribute Xi has a domain Di

with a finite number of di possible values. The space Sm includes the collection of
possibilities defined by the cross-product (or cartesian product) of the domains,
D1 ×· · ·×Dm. This can also be viewed as an m-dimensional ‘cube’ with

∏m
i=1 di

cells (positions). A cell of the cube represents the unique logical intersection in
a cube of one member from every dimension in the cube. The function λ maps
a cell x = (x1, · · · , xm) ∈ Sm to the nonnegative number of objects in S with
all m attribute values equal to (x1, · · · , xm):

λ : {(x1, · · · , xm) ∈ Sm} → N.

We define the HIERDENC hyper-cube C(x0, r) ⊂ Sm, centered at cell x0
with radius r, as follows:

C(x0, r) = {x : x ∈ Sm and dist(x,x0) ≤ r and λ(x) > 0}.
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The dist(·) is a distance function. The Hamming distance is defined as follows:

HD(x,y) =
m∑

i=1

δ(xi, yi) where δ(xi, yi) =

{
1, if xi �= yi

0, if xi = yi

HD is viewed as the most natural way to represent distance in a categorical
space. People have looked for other distance measures but HD has been widely
accepted for categorical data and is commonly used in coding theory.

Figure 2 illustrates two HIERDENC hyper-cubes in a 3-dimensional cube.
Since r=1, the hyper-cubes are visualized as ‘crosses’ in 3D and are not shown
as actually having a cubic shape. A hyper-cube excludes cells for which λ returns
0. Normally, a hyper-cube will equal a subspace of Sm. A hyper-cube can not
equal Sm, unless r = m and ∀x ∈ Sm λ(x) > 0.

The density of a subspace X ⊂ Sm, where X could equal a hyper-cube
C(x0, r) ⊂ Sm, involves the sum of λ evaluated over all cells of X :

density(X) =
∑

c∈X

λ(c)
|S| .

This density can also be viewed as the likelihood that a hyper-cube contains a
random object from S, where |S| is the size of S. HIERDENC seeks the densest
hyper-cube C(x0, r) ⊂ Sm. This is the hyper-cube centered at x0 that has the
maximum likelihood of containing a random object from S. The cell x0 is a
member of the set {x ∈ Sm : Max(P (Ω ∈ C(x, r)))}, where Ω is a discrete
random variable that assumes a value from set S.

The distance between two clusters Gi and Gj is the distance between the
nearest pair of their objects, defined as:

D(Gi, Gj) = min{dist(x,y) : x ∈ Gi and y ∈ Gj}.

Clusters Gi and Gj are directly connected relative to r if D(Gi, Gj) ≤ r. Clusters
A and B are connected relative to r if: A and B are directly connected relative
to r, or if: there is a chain of clusters C1, · · · , Cn, A = C1 and B = Cn, such that
Ci and Ci+1 are directly connected relative to r for all i such that 1 ≤ i < n.

HIERDENC Algorithm and Discussion. Figure 3 shows the HIERDENC
clustering algorithm. The default initial value of radius r is 1. Gk represents
the kth cluster formed. The remainder set, R = {x : x ∈ Sm and x /∈ Gi, i =
1, · · · , k}, is the collection of unclustered cells after the formation of k clusters.

Step 1 retrieves the densest hyper-cube C ⊂ Sm of radius r. Step 1 checks that
the densest hyper-cube represents more than one object (density(C(x0, r)) >
1
|S|), since otherwise the cluster will not expand, ending up with one object. If the
hyper-cube represents zero or one object, then r is incremented. Step 2 creates
a new leaf cluster at level r ≥ 1. Starting from an existing leaf cluster, step 3
tries to move to the densest hyper-cube of radius r nearby. If a dense hyper-
cube is found near the cluster, then in step 4 the cluster expands by collecting
the hyper-cube’s cells. This is repeated for a cluster until no such connection
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Input: space Sm.
Output: a hierarchy of clusters.
Method:

r = 1. //radius of hyper-cubes
R = Sm. //set of unclustered cells
k = 0. //number of leaf clusters
kr = 0. //number of clusters at level r
Gk = null. //kth cluster
U = null. //set of hyper-cube centers

Step 1:Find x0 ∈ R such that max
x0

density(C(x0, r)).

If density(C(x0, r)) ≤ 1
|S| , then:

(1) r = r + 1.
(2) If kr−1 > 1, then:
(3) Merge clusters that are connected relative to r.
(4) kr = #merged + #unmerged clusters.
(5) Repeat Step 1.

Step 2: Set xc = x0, k = k + 1, Gk = C(xc, r), R = R − C(xc, r) and U = U ∪ {xc}.

Step 3: Find x∗ ∈ C(xc, r) such that x∗ /∈ U and max
x∗

density(C(x∗, r)).

Step 4: If density(C(x∗, r)) > 1
|S| , then:

Update current cluster Gk: Gk = Gk ∪ C(x∗, r).
Update R: R = R − C(x∗, r).
Update U : U = U ∪ {x∗}.
Re-set the new center: xc = x∗.
Go to Step 3.

Otherwise, move to the next step.

Step 5: Set kr = kr + 1.
If kr > 1, then execute lines (3) − (4).
If r < m and density(R) > 1%, then go to Step 1.

Step 6: While r < m, execute lines (1) − (4).

Fig. 3. The HIERDENC algorithm

can be made. New objects are clustered until r = m, or density(R) ≤ 1% and
the unclustered cells are identified as outliers (step 5 ). For many datasets, most
objects are likely to be clustered long before r = m.

Initially r = 1 by default, since most datasets contain subsets of similar ob-
jects. Such subsets are used to initially identify dense hyper-cubes. When r is
incremented, a special process merges clusters that are connected relative to r.
Although the initial r = 1 value may result in many clusters, similar clusters are
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Fig. 4. The HIERDENC tree resulting
from clustering the zoo dataset. A link
(circle) represents two or more merged
clusters.

Fig. 5. A cluster has
a center surrounded
by peripheral areas
(CAIDA)

merged gradually. As Figure 4 shows, a merge is represented as a link between
two or more links or leaf clusters, created at a level r ≥ 1. A link represents a
group of merged clusters. This process gradually constructs one or more cluster
tree structures, resembling hierarchical clustering [18,24]. The user specifies a
cut-off level (e.g. r = 3) to cut tree branches; links at the cut-off level are
extracted as merged clusters. Step 5 checks if a newly formed cluster is connected
to another cluster relative to r and if so links them at level r. Step 6 continues
linking existing clusters into a tree, until r = m. By allowing r to reach m, an
entire tree is built. At the top of the tree, there is a single cluster containing all
objects of the dataset.

In [3] we propose and evaluate several methods for setting the HIERDENC
tree cut-off level. One method involves cutting the HIERDENC tree at level r
such that the average connectivity of the resulting merged clusters is minimized.
The connectivityr of a merged cluster (a set of connected leaf clusters) relative
to r is the fraction of its objects that have another object within distance r in
a different leaf cluster in the same connected set. Another method useful for
finding clusters within clusters is to set the cut-off(s) for a branch of links from
leafs to root at the level(s) r ≥ 1 such that the resulting merged cluster has
0.0 < connectivityr < 1.0. Another method is to balance the number of clusters
with the entropy of the partition [22]. This involves setting the cut-off at level r
such that the Akaike’s Information Criterion (AIC) is minimized [2]. The AIC
of a partition is entropy + 2k, where k is the number of clusters.

Although HIERDENC has similarities to CLIQUE [1], the two have signifi-
cant differences. HIERDENC is intended for categorical data while CLIQUE for
numerical data. HIERDENC minimizes input parameters, while CLIQUE takes
as input parameters the grid size and a global density threshold for clusters.
HIERDENC retrieves the densest hyper-cube relative to the radius. The radius
relaxes gradually, implying that HIERDENC can find clusters of different densi-
ties. HIERDENC can often distinguish the central hyper-cube of a cluster from
the rest of the cluster, because of its higher density. HIERDENC creates a tree
representing the entire dataset structure, including subclusters within clusters.
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3 MULIC as a Simplification of HIERDENC

MULIC stands for multiple layer clustering of categorical data. MULIC is a faster
simplification of HIERDENC. MULIC balances clustering accuracy with time
efficiency. The MULIC algorithm is motivated by datasets the cluster structure
of which can be visualized as shown in Figure 5. In such datasets a cluster often
has a center of objects that are similar to one another, along with peripheral
objects that are less similar to the central objects. Such datasets include protein
interaction data, large software systems and others [7].

MULIC does not store the cube in memory and makes simplifications to de-
crease the runtime. A MULIC cluster starts from a dense area and expands
outwards via a radius represented by the φ variable. When MULIC expands a
cluster it does not search all member objects as HIERDENC does. Instead, it
uses a mode that summarizes the content of a cluster. The mode of cluster c is
a vector μc = {μc1, · · · , μcm} where μci is the most frequent value for the ith
attribute in the given cluster c [16]. The MULIC clustering algorithm ensures
that when an object o is clustered it is inserted into the cluster c with the least
dissimilar mode μc. The default dissimilarity metric between o and μc is the
Hamming distance presented in Section 2.1, although any metric could be used.
A MULIC cluster consists of layers formed gradually, by relaxing the maximum
dissimilarity criterion φ for inserting objects into existing clusters. MULIC does
not require the user to specify the number of clusters and can identify outliers.
Figure 6 shows the main part of the MULIC clustering algorithm. An optional
final step merges similar clusters to reduce the number of clusters and find more
interesting structures.

Merging of Clusters. Sometimes the dissimilarity of the top layers of two
clusters is less than the dissimilarity of the top and bottom layers of one of the
two clusters. To avoid this, after the clustering process MULIC can merge pairs
of clusters whose top layer modes’ dissimilarity is less than the maximum layer
depth of the two clusters. For this purpose, MULIC preserves the modes of the
top layers of all clusters. The default merging process, detailed in [3], merges
clusters in a non-hierarchical manner such that clusters have a clear separation.
However, a hierarchical cluster merging process is also proposed [3].

MULIC Discussion. MULIC is a simplification of HIERDENC. The tradeoffs
between accuracy and time efficiency are as follows:

(i) When creating a cluster, HIERDENC searches the cube to retrieve the
densest hyper-cube relative to r representing two or more objects, which is costly.
MULIC creates a cluster if two or more objects are found within a dissimilarity
distance of φ from each other, likely indicating a dense subspace. Clusters of size
one are filtered out. MULIC’s φ variable is motivated by HIERDENC’s radius r.
The initial objects clustered with MULIC affect the modes and the clustering.
For this issue we propose in [3] an optional preprocessing step that orders the
objects by decreasing aggregated frequency of their attribute values, such that
objects with more frequent values are clustered first and the modes will likely
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Input: a set S of objects.
Parameters: (1) δφ : the increment for φ.

(2) threshold for φ : the maximum number of values that
can differ between an object and the mode of its cluster.

Default parameter values: (1) δφ = 1.
(2) threshold = the number of categorical attributes m.

Output: a set of clusters.
Method:

1. Order objects by decreasing aggregated frequency of their attribute values.
2. Insert the first object into a new cluster, use the

object as the mode of the cluster, and remove the object from S.
3. Initialize φ to 1.
4. Loop through the following until S is empty or φ > threshold

a. For each object o in S
i. Find o’s nearest cluster c by using the dissimilarity metric

to compare o with the modes of all existing cluster(s).
ii. If the number of different values between o and c’s mode

is larger than φ, insert o into a new cluster
iii. Otherwise, insert o into c and update c’s mode.
iv. Remove object o from S.

b. For each cluster c, if there is only one object
in c, remove c and put the object back in S.

c. If in this iteration no objects were inserted in
a cluster with size > 1, increment φ by δφ.

Fig. 6. The MULIC clustering algorithm

contain the most frequent values. This object ordering process has been evalu-
ated in [3], which showed that it is better than a random ordering of objects; we
do not include the same results here.

(ii) When expanding a cluster HIERDENC searches the member cells to find
dense hyper-cubes relative to r, which is costly. MULIC instead uses a ‘mode’ as
a summary of a cluster’s content and only clusters objects within a distance of
φ from the mode. MULIC increases φ by δφ when no new objects can be clus-
tered, which is motivated by HIERDENC’s increasing r. MULIC can create new
clusters at any value of φ, just as HIERDENC can create new clusters at any
value of r. Although MULIC can find clusters of arbitrary shapes by increasing
φ, it loses some of HIERDENC’s ability in this realm.

(iii) MULIC’s cluster merging is motivated by HIERDENC’s merging. The
MULIC cluster merging process can organize clusters into a tree structure as
HIERDENC does. For MULIC applications, such as the one on protein interac-
tion data discussed in [3], we do not construct a tree since we prefer the clusters
to have a clear separation and not to specify a cut-off.

MULIC has several differences from traditional hierarchical clustering, which
stores all distances in an upper square matrix and updates the distances after
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each merge [18,24]. MULIC clusters have a clear separation. MULIC does not
require a cut-off to extract the clusters, as in hierarchical clustering; this is of
benefit for some MULIC applications, such as the one on protein interaction
data discussed in [3]. One of the drawbacks of hierarchical clustering is that the
sequence of cluster mergings will affect the result and ‘bad’ mergings can not
be undone later on in the process. Moreover, if several large clusters are merged
then interesting local cluster structure is likely to be lost. MULIC, on the other
hand, does not merge clusters during the object clustering. Instead, any cluster
mergings that may be desirable for the particular application are done after
object clustering has finished. MULIC aims not to lose cluster structure caused
by several large clusters being merged during the clustering process.

Computational Complexity. The best-case complexity of MULIC has a
lower bound of Ω(mNk) and its worst-case complexity has an upper bound
of O(mN2 threshold

δφ ). The cost is related to the number of clusters k and the
number of objects N . Often k 	 N , m 	 N , and all objects are clustered in
the initial iterations, thus N often dominates the cost. The worst-case runtime
would occur for the rather uncommon dataset where all objects were extremely
dissimilar to one another, such that the algorithm had to go through all m iter-
ations and all N objects were clustered in the last iteration when φ = m. The
MULIC complexity is comparable to that of k-Modes of O(mNkt), where t is
the number of iterations [16].

4 Performance Evaluation

To evaluate the applicability of HIERDENC and MULIC to the clustering prob-
lem, we first use the zoo and soybean-data categorical datasets. These datasets
were obtained from the UCI Repository [23]. Objects have class labels defined
based on some domain knowledge. We ignore class labels during clustering. We
compare the HIERDENC and MULIC results to those of several other density-
based algorithms, ROCK [14], CLICKS [28], k-Modes [16], and AutoClass [26].
CLICKS was shown to outperform STIRR [11] and CACTUS [10]. To evaluate
the clustering quality we use HA Indexes [17] and Akaike’s Information Cri-
terion (AIC) [2]. HA Indexes is a class-label-based evaluation, which penalizes
clustering results with more or fewer clusters than the defined number of classes.
Since the class labels may or may not be consistent with the clustering structure
and dissimilarity measure used, we also estimate the AIC of each clustering. AIC
penalizes non-uniformity of attribute values in each cluster and too many clus-
ters. In [3] we discuss MULIC with non-hierarchical and hierarchical merging of
clusters applied to protein interaction data and large software systems.

For MULIC we set δφ = 1, threshold = m, and we order the objects as de-
scribed in [3]. We applied the other algorithms (except HIERDENC) on more
than 10 random orderings of the objects. For k-Modes and ROCK we set the
number of clusters k to the number of classes, as well as larger numbers. Auto-
Class considers varying numbers of clusters from a minimum of 2.
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Table 1. HA Indexes (higher is better), Entropy, and AIC measures (lower is better)

zoo (7 classes) soybean-data (19 classes)
Tool HAI. Entr. AIC k sec HAI. Entr. AIC k sec

HIERDENC (leaf clusters) 85.5% 2.15 36.15 17 0.04 92.2% 4.4 182.4 89 2.1
HIERDENC (after tree cut) 94% 2.3 18.3 8 0.04 95% 7.5 47.5 20 2.1
MULIC (no merging) 84% 2.5 40.5 19 0 92% 4.6 182.6 89 0.05
MULIC (after merging) 91.5% 2.8 22.8 10 0.03 93% 11.5 61.5 25 0.08
k-Modes 90% 3.5 23.5 10 0.005 80% 16.12 66.12 25 0.03
ROCK 73% 3.7 23.7 10 0.008 69.2% 19.5 69.5 25 0.04
AutoClass 79.5% 4.8 16.8 6 0.04 77.6% 25 39 7 0.13
CLICKS 91.5% 2.5 20.5 9 0.01 70% 10 90 40 1
Chameleon (wCluto part.) 72% 3.8 23.8 10 0 79% 16.5 66.5 25 0.1

HIERDENC Results. Table 1 shows the HIERDENC results for these
datasets before and after cutting the tree. After cutting the HIERDENC tree for
zoo, its HA Indexes, Entropy, and AIC are slightly better than CLICKS. The
HIERDENC results for soybean-data are significantly better than CLICKS. The
Entropy is naturally lower (better) in results with many clusters; by comparing
results of algorithms with similar numbers of clusters, the HIERDENC Entropy
is often lower. The drawback we notice is that the HIERDENC runtime is sig-
nificantly higher on soybean-data than on zoo.

Figure 4 illustrates the HIERDENC tree for zoo. There are 17 leaf clusters
in total in the HIERDENC tree. Except for the last 3 created leaf clusters, all
other leaf clusters are homogeneous with regards to the class labels of member
objects. The last 3 leaf clusters were created for high r values of 7, 6, and 4. The
rest of the leaf clusters were created for lower r values. For zoo we cut off the
HIERDENC tree at level r = 1; zoo is a rather dense cube with many nonzero
cells and we do not want to aggregate information in the cube. The r = 1 cut-off
minimizes the connectivity relative to r of the resulting clusters. By cutting the
HIERDENC zoo tree at r = 1, there are 8 resulting clusters. There are a few
cases of incorrectly clustered objects by cutting at r = 1. However, the lower
number of clusters results in improved HA Indexes.

For the soybean-data set, there are 89 leaf clusters in total in the HIERDENC
tree. The leaf clusters created for r ≤ 9 are homogeneous with regards to the class
labels of member objects. For leaf clusters created for r > 9, the homogeneity
of the class labels decreases. Only 23 objects are clustered for r > 9, so these
could be labeled as outliers. For soybean-data we cut off the HIERDENC tree at
r = 4; soybean-data is a sparse cube of mostly ‘0’ cells, since the dataset has 35
dimensions but only 307 objects. The r = 4 cut-off minimizes the connectivity
relative to r of the resulting clusters. By cutting the HIERDENC soybean-data
tree at r = 4, there are 20 resulting merged clusters.

MULIC Results. Table 1 shows the MULIC results for these datasets with
and without merging of clusters. MULIC has good Entropy measures and HA In-
dexes, because the attribute values are quite uniform in clusters. It is interesting
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how MULIC finds subclusters of similar animals; for example, the animals
‘porpoise’, ‘dolphin’, ‘sealion’, and ‘seal’ are clustered together in one MULIC
cluster. MULIC with non-hierarchical merging of clusters has as a result that
the number of clusters decreases, which often improves the quality of the result
according to the HA Indexes. After merging the MULIC clusters, the number
of clusters for zoo and soybean-data is close to the class-label-based number of
classes. After merging the MULIC clusters for zoo, the HA Indexes, Entropy,
and AIC are as good as CLICKS. The MULIC results for soybean-data are bet-
ter than CLICKS. The Entropy is naturally lower (better) in results with many
clusters; by comparing results of algorithms with similar numbers of clusters, the
MULIC Entropy is often lower. MULIC runtimes are lower than HIERDENC.

5 Conclusion

We have presented the HIERDENC algorithm for categorical clustering. In HI-
ERDENC a central subspace often has a higher density and the radius relaxes
gradually. HIERDENC produces good clustering quality on small-dimensional
datasets. HIERDENC motivates developing faster clustering algorithms.

MULIC balances clustering accuracy with time efficiency. MULIC provides a
good solution for domains where clustering primarily supports long-term strate-
gic planning and decision making, such as analyzing protein-protein interaction
networks or large software systems [3]. The tradeoffs involved in simplifying
HIERDENC with MULIC point us to the challenge of designing categorical
clustering algorithms that are accurate and efficient.
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