

Clustering Mixed Numerical and Low Quality Categorical
Data: Significance Metrics on a Yeast Example

Bill Andreopoulos
Department of Computer
Science, York University,

Toronto, Canada, M3J1P3

billa@cs.yorku.ca

 Aijun An
Department of Computer
Science, York University,

Toronto, Canada, M3J1P3

aan@cs.yorku.ca

Xiaogang Wang
Department of Mathematics and

Statistics, York University, Toronto,
Canada, M3J1P3

stevenw@mathstat.yorku.ca

ABSTRACT
We present the M-BILCOM algorithm for clustering mixed
numerical and categorical data sets, in which the categorical
attribute values (CAs) are not certain to be correct and have
associated confidence values (CVs) from 0.0 to 1.0 to represent
their certainty of correctness. M-BILCOM performs bi-level
clustering of mixed data sets resembling a Bayesian process. We
have applied M-BILCOM to yeast data sets in which the CAs were
perturbed randomly and CVs were assigned indicating the
confidence of correctness of the CAs. On such mixed data sets M-
BILCOM outperforms other clustering algorithms, such as
AutoClass. We have applied M-BILCOM to real numerical data
sets from gene expression studies on yeast, incorporating CAs
representing Gene Ontology annotations on the genes and CVs
representing Gene Ontology Evidence Codes on the CAs. We
apply novel significance metrics to the CAs in resulting clusters, to
extract the most significant CAs based on their frequencies and
their CVs in the cluster. For genomic data sets, we use the most
significant CAs in a cluster to predict gene function.

1. INTRODUCTION
 Clustering aims to partition a set of objects into clusters, so that
objects with similar characteristics are clustered together and
different clusters contain objects with dissimilar characteristics. A
high quality clustering tool produces clusters with high intra-class
similarity between objects and low inter-class similarity between
objects [11, 13, 15, 17]. Many numerical data sets have CAs
associated with them, but not all CAs are certain to be correct. For
many of these data sets CVs can be extracted on the CAs,
representing the certainty about the CAs’ correctness [8, 20].
 We designed the M-BILCOM clustering tool for numerical data
sets that incorporates in the clustering process CAs and CVs
indicating the confidence that the CAs are correct. M-BILCOM
was mainly inspired by numerical gene expression data sets from
DNA microarray studies, where CAs and CVs can be derived
from Gene Ontology annotations and Evidence Codes [4-10, 12,
14, 21-22]. One of the main advantages of this algorithm is that it
offers the opportunity to apply novel significance metrics for
spotting the most significant CAs in a cluster when analyzing the

results [3]. In genomic data sets, our significance metrics allow
significant CAs to be extracted from a cluster based on their CVs
and their frequencies and to be used for predicting the functions of
other genes in the cluster. This provides a different insight for
predicting gene function by giving the ‘full picture’ of the data
set, because the significant CAs are extracted from genes that may
have been appended to the cluster on the basis of numerical or
categorical similarity or both.
 This approach offers several advantages over other approaches:
• Our clustering algorithm may cluster data sets where all

genes have numerical attribute values but not all genes have
CAs. Each CA has a CV associated - a real number between
0.0 and 1.0 - indicating our confidence about its correctness.

• During the clustering process, this method starts from CAs
and CVs at the lower level and then moves to numerical
clustering at a higher level. The CAs and CVs are actually
used in the clustering process, instead of just annotating the
clusters afterwards [1, 3]. The method of Wu et al. as applied
previously to high-throughput biological data, starts from the
numerical clustering, then adds CAs at a higher level and
finally CVs are calculated (P-values) [25].

• During the clustering process, objects having CAs with high
confidence to be correct, get clustered by emphasizing more
the categorical similarity and less the numerical similarity.
On the other hand, objects having CAs with low confidence
to be correct get clustered by emphasizing more the
numerical similarity [1].

• Our clustering algorithm allows us to define significance
metrics indicating the significance of a CA in a cluster. Such
metrics are calculated on the basis of how frequently a CA
appears in a cluster as well as how strongly the CVs support
the CA’s correctness in that cluster [3].

• For genomic data sets CVs can be derived from GO evidence
codes to point out the most reliable CAs to be used for gene
functional prediction purposes [8, 12]. This is in contrast to
previous methods, where CVs were calculated at the end to
indicate the reliability of a CA’s belonging to a cluster [25].

 Section 2 describes the k-Modes clustering algorithm. Section 3
discusses the M-BILCOM clustering algorithm, which is a
combination of MULICsoft and BILCOM. Section 4 proposes
two significance metrics for the CAs in the resulting clusters and
discusses their utility for gene functional prediction on a real yeast
data set. Sections 5 and 6 describe the results for applying M-
BILCOM to highly noisy yeast data sets and its ability to
reproduce the correct cluster structure. Sections 7 and 8 discuss
implications of the significance metrics for biologists and gene
functional prediction. Finally, Section 9 concludes the paper.

© ACM, (2005). This is the author's version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of:

IQIS’05, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/105050.

2. BACKGROUND ON K-MODES
 k-Modes is a clustering algorithm that deals with categorical data
only [18,19]. The k-Modes clustering algorithm requires the user
to specify from the beginning the number of clusters to be
produced and the algorithm builds and refines the specified
number of clusters. Each cluster has a mode associated with it.
Assuming that the objects in the data set are described by m
categorical attributes, the mode of a cluster is a vector Q={q1, q2,
…, qm} where qi is the most frequent value for the ith attribute in
the cluster of objects.
 Given a data set and the number of clusters k, the k-Modes
algorithm clusters the set as follows:

1. Select initial k modes for k clusters.
2. For each object X

a. Calculate the similarity between object X and the modes
of all clusters.

b. Insert object X into the cluster c whose mode is the most
similar to object X.

c. Update the mode of cluster c
3. Retest the similarity of objects against the current modes. If

an object is found to be closer to the mode of another
cluster rather than its own cluster, reallocate the object to
that cluster and update the modes of both clusters.

4. Repeat 3 until no or few objects change clusters after a full
cycle test of all the objects.

 A similarity metric is needed to choose the closest cluster to an
object by computing the similarity between the cluster’s mode and
the object. Let X={x1, x2, … ,xm} be an object, where xi is the
value for the ith attribute, and Q={q1, q2, …, qm} be the mode of a
cluster. The similarity between X and Q can be defined as:

similarity(X , Q)= ∑
=

m

i

ii qx
1

),(δ

where
⎩
⎨
⎧

≠
=

=
).(0
);(1

),(
ii

ii
ii qx

qx
qxδ

 Given the similarity measure and k, the clustering result
produced by the k-Modes algorithm on a set of data depends on
the initial modes and the ordering of the objects presented to k-
Modes. In [18] two methods for selecting the initial modes are
discussed and compared.
 In the descriptions that follow we assume that C represents the
total number of clusters and we use c to index the clusters. We
assume that m represents the number of attributes in an object of
the data set and N represents the number of objects in the data set.

3. THE M-BILCOM CLUSTERING
ALGORITHM
 M-BILCOM is a combination of MULICsoft [2] and BILCOM
[1]. The basic idea of our algorithm is to do clustering at two
levels, where the first level clustering imposes an underlying
framework for the second level clustering, thus simulating a
Bayesian prior as described in [1]. The categorical similarity is
emphasized at the first level and the numerical similarity at the
second level. The level one clusters are given as input to level two
and the level two clusters are the output of the clustering process.
The process looks as in Figure 1. As shown, both level one and
level two involve the same number of clusters, four in this
example. The level two clusters consist of subclusters. Data object

A was assigned to different level one and level two clusters,
because the numerical similarity at the second level was stronger
than the categorical similarity at the first level. Thus, in the case
of Figure 1 the following relationship holds for object A:

)3,(_)3,(_

)2,(_)2,(_

clusterAsimilaritynumericalclusterAsimilaritylcategorica

clusterAsimilaritynumericalclusterAsimilaritylcategorica

+

>+

On the other hand, data object B was assigned to the same clusters
in both levels one and two, because both numerical and
categorical similarity supported this classification. Thus, this
algorithm considers both categorical and numerical similarity of a
data object to the clusters to which it may be allocated.

Figure 1. Overview of M-BILCOM clustering.

 We emphasize that different types of data are used at levels one
and two. At the first level the categorical data used represent
something that has been observed to be true about the data set
objects before the experiment takes place. For example the data at
the first level might look as follows: Class:LIVE; SEX:male;
STEROID:yes; FATIGUE:no; ANOREXIA:no . At the second
level, on the other hand, the numerical data used represent the
results of an experiment involving the data set objects. For
example the data at the second level might look as follows:
BILIRUBIN:0.39; ALBUMIN:2.1; PROTIME:10.
 Our clustering method has the following requirements:
1. The coherence of each cluster should be maximized,
considering both the numerical and categorical similarity of the
objects.
2. Only the objects with highest categorical similarity to a cluster
should form the basis for clustering at the first level.
3. The results of the first level clustering – which is the prior for
the process - should not exert an overly strong effect on the
second level, so that the second level clustering can escape a poor
prior.
4. It should be possible to form a flexible number of clusters.
5. The similarity formula for comparing a mode to an object
should increase an object’s likelihood to be attached to a cluster as
many CAs match the mode and as the CVs of those CAs increase.
 We combined MULICsoft [2] and BILCOM [1] into an
advanced clustering algorithm named M-BILCOM. This
algorithm is similar to BILCOM [1], except that at the first level it
also considers weights between 0.0 and 1.0 on the CAs - which
we refer to as confidence values or CVs. This combined algorithm
is especially useful in cases where the CAs have been perturbed
and a CV between 0.0 and 1.0 has been assigned to each CA to
indicate the certainty of correctness. Alternatively, M-BILCOM
could be used on biological yeast data sets – such as SGD - where
the certainty of correctness that exists on current knowledge is
expressed as GO evidence codes [8, 12, 20].

3.1 First Level Clustering: MULICsoft
 At the first level, clustering is performed using MULICsoft1
which has a special similarity metric that incorporates CVs in the
clustering process. MULICsoft is an extension of the k-Modes
clustering algorithm for categorical data sets [18]. MULICsoft
clusters only a subset of the data set objects. The number of
clusters resulting from this level equals the final number of
clusters desired, as illustrated in Figures 1 and 2.
 The purpose of MULICsoft is to maximize the following
similarity formula at each iteration, while ensuring that all objects
may eventually be inserted in clusters:

),(nn modeobjectsimilarity
where objectn is the nth object in the data set to be clustered and
moden is the mode of the cluster to which objectn is classified.
 MULICsoft starts by reading all objects from the input file and
storing them in a linked list S. The first object is inserted in a new
cluster, the cluster’s mode is set equal to the object’s CAs and the
object is removed from S. Then, it iterates over all objects that
have not been classified in a cluster yet, to find the closest cluster.
The closest cluster is determined for each unclassified object by
comparing all clusters’ modes with the object. The similarity
between a mode and an object is determined using a special
variation of the k-Modes similarity metric [2,18] that incorporates
CVs in the clustering process and is described in Section 3.1.1.
 The variable φ is maintained to indicate how strong the
similarity has to be between an object and the closest cluster’s
mode for the object to be inserted in the cluster – initially φ equals
0, meaning that the similarity has to be very strong between an
object and the closest cluster’s mode. If the number of different
CAs between the object and the closest cluster’s mode are greater
than φ, then, the object is inserted in a new cluster on its own and
the cluster’s mode is set equal to the object’s CAs. If the number
of different CAs between the object and the closest cluster’s mode
are less than or equal to φ, then, the object is inserted in the
closest cluster and the mode is updated.
 At the end of each iteration, all clusters with size one are
removed, so their objects will be re-clustered at the next iteration.
Thus, the clusters that persist are those containing at least two
objects for which the required similarity can be found. Objects
belonging to clusters with size greater than one are removed from
the linked list of objects S, so those objects are not re-clustered.
 At the end of each iteration, if no objects have been placed in
clusters of size greater than one, then, the variable φ is
incremented to represent how many CAs are allowed to differ
next time. Thus, at the next iteration it will be more flexible and
eventually more objects will be placed in clusters. Eventually, all
objects will be given the opportunity to be placed in clusters, even
if the closest cluster is not so similar. The iterative process may
stop when all objects have been placed in clusters of size greater
than one, or when φ is greater than a user-specified threshold.
 The MULICsoft algorithm gives the opportunity for all objects
to be eventually placed in clusters, because φ may continue
increasing until all objects are classified. Even if, in the extreme
case, an object with m CAs has only one or zero CAs similar to
the mode of the closest cluster, it can be classified when φ = m-1
or φ = m, respectively.
 Figure 2 illustrates the results of MULICsoft. Each cluster
consists of many different "layers" of objects. The layer of an
object represents how strong the object's similarity was to the

1 http://www.cs.yorku.ca/~billa/MULIC/

mode of the cluster when the object was inserted. The cluster’s
layer in which an object is inserted depends on the value of φ.
Thus, lower layers have a lower coherence – defined as the
average similarity between all pairs of objects in that layer - and
correspond to higher values of φ and to a more flexible similarity
criterion for insertion. MULICsoft starts by inserting as many
objects as possible at higher layers and then moves to lower
layers, creating them as the need arises. If little similarity exists
between an object and its closest cluster, the object will be
inserted in a lower layer.
 If an unclassified object has equal similarity to the modes of the
two (or more) closest clusters, then the algorithm tries to resolve
this ‘tie’ by comparing the object to the mode of the top layer of
each of these clusters – the top layer of a cluster may be layer 0 or
1 or 2 and so on. Each cluster’s top layer’s mode was stored by
MULICsoft when the cluster was created, so it does not need to be
recomputed. If the object has equal similarity to the modes of the
top layer of all of its closest clusters, the object is assigned to the
cluster with the highest bottom layer. If all clusters have the same
bottom layer then the object is assigned to the first cluster, since
there is insufficient data for selecting the best cluster.

Figure 2. MULICsoft results. Each cluster consists of one or

more different layers representing different similarities of the
objects attached to the cluster.

 The runtime complexity of MULICsoft is O(N2), where N
represents the number of objects in the data set [2]. In most of our
trials the runtime was less than 1 second.
 The question remains of which objects to be clustered at the first
level of M-BILCOM. The first level objects are those whose
comparison to the mode of the closest cluster yields a result that is
greater than or equal to a threshold minimum_mode_similarity.
The rest of the objects are used at the second level, as described in
Section 3.2. For this purpose, the user can specify a maximum
value for φ - a value of m-minimum_mode_similarity, where m is
the total number of categorical attributes in an object. When φ
exceeds this value, any remaining objects are held for
consideration instead in the second level. The reason we choose to
insert in the first level clusters just the objects whose similarity to
the closest mode yields a value higher than a threshold
minimum_mode_similarity is because the objects that yield a low
similarity to the closest mode are more likely to be inserted in the
wrong cluster, as we show in [1,2]. Thus, the objects whose
classification in clusters based on categorical similarity is not
reliable enough, are clustered in the second level instead, where
the numerical similarity of objects to second level clusters is more
influential.

3.1.1 The MULICsoft Similarity Metric
 All CAs in an object have "weights" or CVs in the range 0.0 to
1.0 associated with them. We represent the ith weight of an object
as wi, the ith CA of object o as oi and the ith value of mode µ as µi.
The similarity metric used in MULICsoft for computing the
similarity between a mode µ and an object o considers both the
CAs and their weights. Our similarity metric amplifies the object
positions having high weights, at pairs of CAs between an object
o and a mode µ that have identical values.

),(
)4(5

)4(6
),(

1
ii

m

i
i

i o
w

w
osimilarity µσµ ×∑

×−

×−
=

=

where
⎩
⎨
⎧

≠
=

=
).(0
);(1

),(
iio
iio

iio
µ
µ

µσ

 This similarity metric gives more importance to high weights
(1.0) than low weights (0.1) at categorical attributes with identical
values between the object and the mode.
 Figure 3 shows that our similarity formula for comparing a
mode to an object increases an object’s likelihood to be attached
to a cluster as many CAs match the cluster’s mode and as the
weights on those CAs increase. Each object in this example has 10
CAs and “weights” (or CVs). Figure 3 shows that an object will
be much more likely to be assigned to a cluster if all CAs match
the mode with high weights of 1.0, than if all CAs match the
mode with medium weights of 0.5, than if all CAs match the
mode with low weights of 0.1, than if 1 CA matches the mode
with a high weight, than if 1 CA matches the mode with a low
weight.

Figure 3. The function surface of similarity, using values for
the weights between 0.0 and 1.0 as described previously.

3.1.2 Dealing with Outliers
 MULICsoft can, eventually, put all the objects in clusters. When
φ equals the number of attributes m, an unclassified object can be
inserted in the lowest layer m of any existing cluster. This is
undesirable if the object is an outlier and has little similarity with
any cluster. The user can disallow this situation from happening,
by specifying a threshold for φ that is less than the number of CAs
m, so, when this threshold is reached any remaining objects are
not classified and are treated as outliers. As discussed in [2] for
clustering of software systems, the overall quality of the results
often improves by treating the lowest-layer objects as outliers.

3.2 Second Level Clustering: BILCOM
 The first level result is the input to the second level. The second
level clusters all of the data set objects, including the objects
clustered at the first level. The second level uses numerical data
type similarity and the first level result as a prior. The second
level clustering consists of 5 steps, whose rationale is to simulate
maximizing the numerator of the Bayesian equation, as discussed
in Section 3.1. The second level result is the output of the
BILCOM process.
 Step 1. One object in each first level cluster is set as a seed,
while all the rest of the objects in the cluster are set as centers.
The seed is an object that is at the top layer of the cluster – ideally
in layer 0. The reason we choose for seed a top layer object is that
the most influential objects at the second level should be those
that have the minimum average distance to all other objects in the
first level cluster. The MULIC paper [2] showed that objects at
the top layer have a smaller average distance to all other cluster
objects than lower level objects do.
 If the top layer of a cluster is layer 0 then we have no difficulty
in choosing the seed since all objects have the same CAs. If the
top layer of a cluster is not layer 0 and it contains more than one
object, then we choose the seed by comparing all top layer objects
to the cluster’s mode to find the closest object. If this does not
resolve the ambiguity then we compare all top layer objects to the
cluster’s top layer mode – which was stored by MULIC when the
cluster was created - to find the closest object. If all top layer
objects have the same similarities to modes then we assign the
seed to be the first top layer object, since there is insufficient
information for choosing the best seed.
 Step 2. Each seed and center is inserted in a new second level
subcluster. The output of this step is a set of subclusters, referred
to as seed-containing or center-containing subclusters, whose
number equals the number of objects clustered at the first level.
 Step 3. Each object that did not participate at the first level is
inserted into the second level subcluster containing the most
numerically similar seed or center. Numerical similarity for Steps
3-5 is determined by the Pearson correlation coefficient or the
Shrinkage-based similarity metric introduced by Cherepinsky et al
[9].
 Step 4. Each center-containing subcluster is merged with its
most numerically similar seed-containing subcluster. The most
numerically similar seed-containing subcluster is found using our
version of the ROCK goodness measure [14] that is evaluated
between the center-containing subcluster in question and all seed-
containing subclusters:

)()(

],[
),(

CjsizeCisize

CjCilink
CjCiG

×
=

link[Ci,Cj] stores the number of cross links between subclusters Ci
and Cj, by evaluating Σ(oq∈Ci, or∈Cj) link(oq,or). link(oq,or) is a
boolean value specifying whether a link exists between objects oq
and or . A link is set between two objects if the objects’ numerical
similarity is higher than a value minimum_numerical_similarity.
The rationale for using a variation of ROCK’s goodness measure
for this step is that the link-based approach of ROCK adopts a
global approach to the clustering problem, by capturing the global
information about neighboring objects between clusters. It has
been shown to be more robust than methods that adopt a local
approach to clustering, like hierarchical clustering [14].
 Step 5. The loop below refines the step 4 subcluster merges. All
variables take real values in the range 0.0-1.0.

repeat {
 foreach (center-containing_subcluster)

if
(numerical_similarity_of_center_subcluster_to_1st_
level_seed_cluster ×
categorical_similarity_of_center_to_seed_of_1st_le
vel_cluster >
numerical_similarity_of_center_subcluster_to_its_n
umerically_similar_2nd_level_cluster ×
categorical_similarity_of_center_to_seed_of_its_nu
merically_similar_2nd_level_cluster)

 merge center-containing_subcluster
to seed-containing_subcluster from 1st_level;
} until (no center-containing_subcluster changes);

 The variable:
categorical_similarity_of_center_to_seed_of_1st_le

vel_cluster
represents the categorical similarity of the center c of a subcluster
C to the seed s, such that c and s were in the same first level
cluster.
 The variable:
categorical_similarity_of_center_to_seed_of_its_nu

merically_similar_2nd_level_cluster
represents the categorical similarity of the center c of a subcluster
C to the seed of C’s most numerically similar seed-containing
subcluster N determined in step 4. The categorical similarity is
computed as follows, where wci is the ith weight of the center and
wsi is the ith weight of the seed:

m

m

i i
ws

i
wc∑

=
××

= 1
)

i
seed,

i
center(

 seed)(center,similarity

σ

where σ(centeri,seedi)= 1 if centeri=seedi , 0 otherwise.

 The variables:
numerical_similarity_of_center_subcluster_to_1st_l

evel_seed_cluster
numerical_similarity_of_center_subcluster_to_its_n

umerically_similar_2nd_level_cluster
represent the numerical similarity of a subcluster C containing
center c to the cluster containing seed s, such that c and s were in
the same first level cluster, and to the cluster containing C’s most
numerically similar seed-containing subcluster N determined in
step 4, respectively. These similarities include the subclusters that
were merged to the clusters in previous iterations of the loop.

Fig. 7. Steps 4 and 5 of second level of BILCOM clustering.

 According to this loop, a subcluster C containing center c is
attracted to the subcluster S containing seed s, such that c and s
were in the same first level cluster. The attraction is stronger if
there is high categorical similarity between c and s and lower if

there is low categorical similarity between c and s. The
subclusters C and S get merged if both the categorical similarity
between c and s and numerical similarity between C and S are
high enough. If c is not categorically similar enough to s, then, C
should be likely to remain merged with its most numerically
similar seed-containing subcluster N determined in step 4. Figure
7 shows steps 4 and 5.
 We have done tests to show that BILCOM is able to escape a
poor prior – for instance, if a center c was inserted in a first level
cluster with weak similarity to the cluster mode, or if the
similarity to the mode was erroneously high enough, or if c had
wrong CAs with low confidence to be correct. The categorical
similarity between the center c and the seed s, such that c and s
were in the same first level cluster, is likely to return a low value
when the prior is poor. In this case, the subcluster C containing
center c will be likely to remain merged with its most numerically
similar seed-containing subcluster N determined in step 4, instead
of the subcluster S containing the seed s. Thus, the prior can be
escaped and the data can be clustered correctly. In this case, C
will not be merged to S, unless their numerical similarity is very
high.
 On the other hand, if the subcluster C containing center c is
merged to the subcluster S containing the seed s, such that c and s
were in the same first level cluster, then C must be numerically
similar enough to S. This way we ensure that if a subcluster C is
merged to the subcluster S that is suggested by the results of the
first level clustering, the numerical similarity between C and S is
high enough to support the merging.
 The reason why the inequality comparison in step 5 considers
the seeds of clusters, instead of the cluster modes, is that by
considering similarity to seeds we are effectively giving the
objects a second chance to reorganize and to escape their first
level clustering, if the first level clustering was weak. Since the
first level clustering was based on comparisons to modes that
often yield wrong results and, therefore, objects may be attached
to wrong clusters, the comparison in step 5 allows the similarities
to be reconsidered. We showed in [2] that objects in the top layers
0 and 1 such as seeds have a higher average similarity to all other
cluster objects than do lower layer objects.

4. TWO METHODS FOR IDENTIFYING
SIGNIFICANT CAs IN A CLUSTER
This section first describes the real yeast data on which we
applied the M-BILCOM clustering algorithm. Then, it presents
two significance metrics (SMs) for determining the significance of
a CA in a cluster and for supporting gene functional prediction.

4.1 Description of Real Yeast Data Sets
 This algorithm is designed with the goal of applying it to
numerical data sets for which some CAs exist and the confidence
that the CAs are correct varies. We used numerical data derived
from gene expression studies on the yeast Saccharomyces
cerevisiae. These data sets were produced at Stanford to study the
yeast cell cycle across time and under various experimental
conditions and are available from the SGD database [9, 23]. When
clustering this data set, we consider each gene to be a ‘data
object’. The data set contained 6,200 objects.
 We represented CAs on a gene in terms of Gene Ontology (GO)
and GOSlim annotations. GO is a dynamically controlled
vocabulary that can be applied to many organisms, even as
knowledge of gene and protein roles in cells is changing. GO is

organized along the categories of molecular function, biological
process and cellular location [12]. GOSlim are GO annotations
that represent high level knowledge on genes and are also
organized along the categories of function, process and location.
Most of the GO and GOSlim annotations on the yeast genes exist
in the publicly accessible SGD database, along with GO evidence
codes [8, 12, 20]. We created six pools of CAs for each gene and
each pool contained GO annotations of a specific type. Three
pools contained GO annotations for molecular function, biological
process and cellular location of a gene. The other three pools
contained GOSlim annotations for each GO annotation.
 We attached CVs to the CAs to represent the confidence that the
corresponding CA is correct. CVs are real numbers between 0.0
and 1.0, assigned to the CAs of a gene. Besides indicating the
confidence that a CA is correct, the CVs on a gene also specify
how strongly the gene’s CAs should influence the clustering
process. The CVs are also used in the significance metrics that we
define below. We determined the CVs by using GO evidence
codes. GO evidence codes symbolize the evidence that exists for
any particular GO or GOSlim annotation [12].

 GO evidence codes can be thought of in a
loose hierarchy from strong evidence to weak
evidence. For example, ‘TAS’ means
‘Traceable Author Statement’, while ‘NAS’
means ‘Non-traceable Author Statement’ [9].
We assigned a numerical CV to each of the
GO evidence codes based on its location in the
hierarchy, as shown in Figure 5. Section 7
discusses our justifications. NR and ND are
set to 0.0, because they are used for
annotations of ‘unknown’, so the CAs should
not have an effect on the clustering process. In
certain DBs (Swiss-prot-human) only 3 of
these evidence codes are commonly used and
the most commonly used one is TAS, which is
at the top of the hierarchy, meaning that strong
evidence exists [20]. We combined the CAs,
CVs and gene expression data using Perl.

Figure 5.
GO

Evidence
Codes are
mapped to

CVs.

 A CV primarily depends on whether the CA refers to something
that has been observed to be true, as opposed to something that is
just believed to be true. For example, a CA of a “cancerous tissue”
refers to an observed phenomenon with a high CV, while a CA of
a “non-cancerous tissue” refers to something that is just believed
to be true, as the tissue might turn out later to be cancerous.

4.2 First SM: M-values that Consider P1-
values and CVs are Assigned to Cluster CAs
 Given a resulting cluster, we assigned a P1-value to each CA in
the cluster; the term ‘P1-value’ was derived from the statistical ‘P-
value’. A P1-value measures whether a cluster contains a CA of a
particular type more frequently than would be expected by chance
[25]. A P1-value close to 0.0 indicates a frequent occurrence of
the CA in the cluster, while a P1-value close to 1.0 its seldom
occurrence. We multiplied the resulting P1-value with the
reciprocal of the average of all CVs assigned to the CA in the
cluster, 1/avg(CV), thus resulting in what we call an M-value. M-
values allow us to take into consideration the probability that a
particular CA occurs in the cluster more frequently than expected
by chance, in addition to our confidence that the CA is correct in
the cluster. For CAs that occur only once or twice in a cluster, a
high P1-value results with an avg(CV) trivial to estimate.

4.3 Second SM: The Significance of a Second
Level Subcluster’s Classification in a Cluster
 This significance metric was inspired by the loop of step 5 that
refines the subclusters composing a larger second level cluster, as
shown in Section 3.2. Specifically, each subcluster was assigned a
significance number by evaluating a formula that considers both
categorical (CAsimilarity) and numerical (NAsimilarity) similarity
of the subcluster to the larger second level cluster:
 (weight1*CAsimilarity) +(weight2*NAsimilarity)
 The CAsimilarity for a subcluster is computed by evaluating a
categorical variation of ROCK’s goodness measure [16] between
the subcluster and its larger cluster and multiplying the result by
the percentage of genes in the subcluster that were assigned to it
on the basis of categorical similarity (see Section 3.2 step 3). The
NAsimilarity for a subcluster is computed similarly, by evaluating
a numerical variation of ROCK’s goodness measure [16] between
the subcluster and its larger cluster and multiplying the result by
the percentage of genes in the subcluster that were assigned to it
on the basis of numerical similarity (see step 3). We set weight2 in
our trials to be higher than weight1, to ensure proper consideration
of the numerical similarity of a subcluster.
 The subclusters in an overall second level cluster for which the
above metric yields the highest values are used for functional
prediction by identifying and extracting the most significant
genes’ CAs in the cluster with highest avg(CV)s.
 When a subcluster is placed in a larger second level cluster on
the basis of high CA similarity (0.5-1.0) – regardless of whether it
was assigned there at the beginning of the clustering process or
joined it later - this is a factor that increases the significance. The
NAsimilarity on the subcluster might be either high or low:
 - high (0.5-1.0) in which case the significance of its
membership is increased, because both CAs and NAs support the
gene's classification in the cluster.
 - low (0.1-0.4) in which case the significance of its
membership is decreased, because CAs support the gene's
classification in the cluster but NAs do not.
 When a subcluster is placed in a larger second level cluster on
the basis of low CA similarity (0.0-0.4) – regardless of whether it
was assigned there at the beginning of the clustering process or
joined it later - this is a factor that decreases the significance. The
NAsimilarity on the subcluster is:
 - always high (0.7-1.0). However, since the CA similarity is
low the significance of its membership is decreased because NAs
support the gene’s classification in the cluster but CAs do not.

4.4 Functional Prediction for Uncharacterized
Genes
 Both of the above significance metrics (SM) were used for
functional prediction of genes. Section 7 discusses our tests.
 The M-values were used for functional prediction by taking for
each cluster the CAs with the lowest M-values for molecular
function, biological process, cellular location and for the GOSlim
terms. Then, we applied these CAs to genes in the cluster having
CAs labeled as ‘Unknown’. Therefore, the CAs with the lowest
M-values in a cluster were used to predict cellular roles of genes.
 The second SM was used for functional prediction by
identifying the subcluster with the highest significance in a larger
second level cluster and identifying its genes’ CAs with highest
avg(CV)s in the cluster, as these were the most significant ones.
Then, we applied the extracted CAs to other genes in the cluster
having CAs labeled as ‘Unknown’. Therefore, the CAs belonging

to the subcluster that had the highest significance were used to
predict cellular roles of genes.

5. EXPERIMENTS ON YEAST DATA
 We have validated M-BILCOM on mixed numerical and
categorical yeast data. We used the yeast data sets shown in Table
1, having mixed categorical and numerical attribute values [7, 9].
However, we perturbed the CAs randomly and assigned statistical
confidence values based on the probability that an attribute was
perturbed or not. Tests and results are described below.
 We represented CAs on a gene in terms of Gene Ontology (GO)
- see Section 4. CAs were perturbed and the attribute values in the
data set were assigned CVs between 0.1 and 1.0. For this purpose,
for each CA we generated a limit in a range from 0.1 to 1.0 and,
then, generated a random number ρ from 0.0 to 1.0. If ρ exceeded
the limit, then we perturbed the CA by assigning it a value taken
randomly from the set of possible values for that CA. The CV for
the CA was set equal to the limit regardless of whether it was
actually perturbed or not. This simulates the uncertainty that exists
on current knowledge and that is expressed in SGD as GO
evidence codes [8, 12, 20]. All attribute values on all objects were
assigned a CV between 0.1 and 1.0 and objects whose CAs had
lower CVs were more likely to have been perturbed than objects
whose attribute values had higher CVs.
 The yeast microorganism performs a constant cell-cycle. The
yeast cell-cycle gene expression program is regulated by the nine
known cell-cycle transcriptional activators, that control the flow
from one stage of the cell-cycle to the next [7]. This serial
regulation of transcriptional activators together with various
functional properties suggests a way of partitioning cell-cycle
genes into nine clusters, each one characterized by a group of
transcriptional activators working together and their functions [7].
Table 1 shows our hypothesis about how the genes should be
correctly grouped by transcriptional activators and cell-cycle
functions. For instance, group 2 is characterized by the activators
Swi6 and Mbp1 and the function involving DNA replication and
repair at the juncture of G1 and S stages.

Table 1. Genes in the data set of Cherepinsky et al. [7]
grouped by functions. This is our hypothesis about the correct

clustering results.
Group Activators Genes Functions
1 Swi4,

Swi6
CLN1, CLN2, GIC1,
MSB2, RSR1, BUD9,
MNN1, OCH1, EXG1,
KRE6, CWP1

Budding

2 Swi6,
Mbp1

CLB5, CLB6, RNR1,
RAD27, CDC21, DUN1,
RAD51, CDC45, MCM2

DNA
replication
and repair

3 Swi4,
Swi6

HTB1, HTB2, HTA1,
HTA2, HTA3, HHO1

Chromatin

4 Fkh1 HHF1, HHT1, TEL2,
ARP7

Chromatin

5 Fkh1 TEM1 Mitosis
control

6 Ndd1,
Fkh2,
Mcm1

CLB2, ACE2, SWI5,
CDC20

Mitosis
control

7 Ace2,
Swi5

CTS1, EGT2 Cytokinesis

8 Mcm1 MCM3, MCM6, CDC6,
CDC46

Prereplicati
on complex
formation

9 Mcm1 STE2, FAR1 Mating
 Cherepinsky et al. [7] defined a notation to represent the
resulting cluster sets and a scoring function to aid in their
comparison. Each cluster set is written as:

where x denotes the group number as described in Table 1, nx is
the number of clusters the members of group x appear in, and for
each cluster j {1,..., nx} there are yj genes from group x and zj
genes from other groups in Table 1. A value of * for zj

 denotes
that cluster j contains additional genes, although none of them are
cell-cycle genes. The cluster set can then be scored as follows:

 We have compared the error rates of M-BILCOM to those of
AutoClass [24] and BILCOM [1] applied to the “perturbed” yeast
data set. First, we applied AutoClass [24] to the mixed categorical
and numerical yeast data set. Table 2 shows the results.

Table 2. Clustering results of AutoClass.
Cluster Genes
1 CLN1, CLN2, GIC1, GIC2, MSB2, RSR1, BUD9,

MNN1, OCH1, EXG1, KRE6, CWP1, CLB5, CLB6,
RAD51, CDC45, HTB1, HTA2, HHO1, TEL2

2 ARP7, TEM1, CLB2, ACE2, SWI5, CDC20, CTS1,
EGT2, MCM3, MCM6, CDC6, CDC46, STE2

3 RNR1, RAD27, CDC21, DUN1, MCM2, HTB2,
HTA1, HHF1, HHT1, FAR1

 Given the hypothesis in Table 1 and the set of AutoClass results
shown in Table 2, the resulting clusters with the error score can be
written as follows, according to the error rate introduced by
Cherepinsky et al. [7]:
{1->{{11,9}},
2->{{4,16},{5,5}},
3->{{3,17},{2,8}},
4->{{1,19},{1,12},{2,8}},
5->{{1,12}},
6->{{4,9}},
7->{{2,11}},
8->{{4,9}},
9->{{1,12},{1,9}} }.

FP = 265
FN = 32
Error = 297

 We have also applied BILCOM [1] to the mixed categorical and
numerical yeast data set. Table 3 shows the results.

Table 3. Clustering results of BILCOM using as numerical
similarity metric between objects the Pearson Correlation

Coefficient [7] and a max value for φ of 7.
Cluster Genes
1 RSR1, HHT1, ARP7, BUD9, CTS1
2 KRE6, CWP1
3 RNR1, CDC45, MCM3, CDC46, MCM2
4 EXG1, EGT2
5 MCM6, CDC6
6 HHF1, HTB2, HTA2
7 HTB1, HTA1, HHO1

8 GIC1, TEL2, GIC2, MSB2
9 FAR1, STE2, ACE2, SWI5, TEM1
10 RAD27, CDC21, DUN1
11 CLN2, RAD51, MNN1, CLN1, CLB6, OCH1, CLB5,

CLB2, CDC20
 Given the hypothesis in Table 1 and the set of BILCOM results
shown in Table 3, the resulting clusters with the error score can be
written as follows, according to the error rate introduced by
Cherepinsky et al. [7]:
{1->{{4,4},{1,3},{1,1},{2,1},{2,0}},
2->{{3,0},{3,2},{3,5}},
3->{{3,0},{2,1}},
4->{{2,3},{1,2},{1,4}},
5->{{1,4}},
6->{{2,3},{2,7}},
7->{{1,4},{1,1}},
8->{{2,0},{2,3}},
9->{{2,3}} }.

FP = 49
FN = 47+13+24
Error = 133

 We have also applied M-BILCOM to the mixed categorical and
numerical yeast data set. Table 4 shows the results.
Table 4. Clustering results of M-BILCOM using as numerical
similarity metric between 2 objects the Pearson Correlation

Coefficient [7] and a max value for φ of 7.
Cluster Genes
1 RSR1, BUD9, CTS1
2 KRE6, ARP7, HHT1, CWP1
3 RNR1, CDC45, MCM3, STE2, CDC46, MCM2
4 EXG1, EGT2
5 MCM6, TEM1, CDC6
6 HHF1, HTB2, HTA2
7 HTB1, HHO1, HTA1
8 GIC1, TEL2, GIC2, MSB2
9 FAR1, ACE2, CDC20, SWI5
10 RAD27, CDC21, MNN1, DUN1, RAD51
11 CLN2, CLN1, CLB6, CLB5, OCH1, CLB2
 Given the hypothesis in Table 1 and the set of M-BILCOM
results shown in Table 4, the resulting clusters with the error score
can be written as follows, according to the error rate introduced by
Cherepinsky et al. [7]:
{1->{{3,3},{2,2},{2,1},{1,1},{2,2},{1,4}},
2->{{4,1},{3,3}},
3->{{3,0},{3,0}},
4->{{2,2},{1,2},{1,3}},
5->{{1,2}},
6->{{3,1},{1,5}},
7->{{1,2},{1,1}},
8->{{2,4},{2,1}},
9->{{1,5},{1,3}} }.

FP = 38
FN = 35+49
Error = 122

 The error rates are summarized in table 5 below. The M-
BILCOM error rate is lower than BILCOM and AutoClass.
Table 5. Comparative error rates of algorithms applied to the
“perturbed” yeast data set.
Clustering Tool Cherepinsky Error rate
M-BILCOM 122
BILCOM 133
AutoClass 297

6. EXPERIMENTS ON SIMULATED DATA
 We generated artificial data sets that simulate the results by
Spellman et al [23] who showed that in each cluster there is a
consistent pattern of numerical attribute values (NAs) that appear
frequently and that different CAs are characteristic of different
clusters. We used numerical data derived from gene expression
studies on the yeast Saccharomyces cerevisiae. These data sets
were produced at Stanford to study the yeast cell cycle across time
and under various experimental conditions and are available from
the SGD database [9, 23]. The data set contained 6,200 genes. The
purpose of our simulation was to assign CAs to each gene based
on the numerical gene expression data [9], in such a manner that
the assignment of CAs simulates knowledge about the role of
genes in the yeast cell cycle.
 We assigned 6 CAs on each gene based on the NAs,
representing the genes’ action during cell cycle. The assignment
of the CAs followed a pattern that simulates existing knowledge
on the role of genes in the yeast cell cycle. The assigned CAs split
the objects into a number of well-defined groups, which we
attempt to retrieve using clustering; thus, a different set of
attribute values had to be used for each group. This simulates the
results by Spellman et al, who showed that in each cluster there is
a consistent pattern of NAs that appear frequently and that
different CAs are characteristic of different clusters [23]. We
assigned the 6 CAs using the following strategy: (1) The first CA
split the genes into cell cycle phases and has the values G1, S, G2,
M, M/G1, or unknown. This CA was set for each gene based on
the experimental point at which the gene reaches its peak
expression level, indicating what cell cycle phase it is likely to be
involved in. This simulates the cell cycle phases as they are
derived by Spellman et al and the genes that are likely to be
involved in each phase. (2)(3) The second and third CAs were set
for each gene based on whether the gene’s expression level peaks
at the phase of the cell cycle at which it is active. The second CA,
which can take 6 values (A,B,C,D,E,unknown), simulates an
overall process like DNA replication or transport of essential
minerals and organic compounds across the cell membrane. The
third CA, which can take 11 values
(F,G,H,I,J,K,L,M,N,O,unknown), simulates a more specific
function like DNA polymerases or nucleotide synthesis or
initiation of DNA synthesis. The purpose of the second and third
CAs was to further subdivide the groups created by the first CA
into subgroups. The first three CAs are influential enough to
classify each gene in a cluster. Thus, the clusters that we will
retrieve are based primarily on the first three CAs. (4) The fourth
CA was set for each gene based on whether the gene is observed
to reach its peak expression level right before the G1 stage. This
CA simulates the start of mitosis and can take 3 values
(high,low,unknown). (5) The fifth CA was set for each gene based
on whether the gene is observed to reach its peak expression level
at the end of the cell cycle. This CA simulates the exit from
mitosis and can take 3 values (high,low,unknown). (6) Finally, the
sixth CA was set for each gene based on whether the gene is
observed to reach its peak expression level right before the S
stage. This CA can take 3 values (high,low,unknown). The fourth
to sixth CAs on their own may or may not classify each gene into
a clear group.
 Furthermore, we perturbed the CAs to simulate noise in the
resulting data set. Our aim was to use M-BILCOM to retrieve the
known underlying cluster structure effectively. A significant
outcome of our experiments was to show that given the genes
whose CAs were not perturbed in the simulation (most of which

are likely to have high CVs) a fair number of genes were assigned
to the correct clusters to which they were categorically similar and
were not assigned to the incorrect clusters to which they might be
numerically similar. The basis for this is that most of these genes
had a high confidence overall. Another significant outcome of our
experiments was to show that given the genes whose CAs were
perturbed in the simulation (most of which are likely to have low
CVs) a fair number of genes were assigned to the correct clusters
to which they were likely to be numerically similar and were not
assigned to the incorrect clusters to which they were categorically
similar. The basis for this is that most of these genes had a low
confidence overall.
 Many CAs were perturbed and the attribute values in the data
set were assigned CVs between 0.1 and 1.0. For this purpose, for
each CA we generated a limit in a range from 0.4 to 1.0 and then,
generated a random number ρ from 0.0 to 1.0. If ρ exceeded the
limit, then we perturbed the CA by assigning it a value taken
randomly from the set of possible values for that attribute. The
CV for the CA was set equal to the limit, regardless of whether it
was actually perturbed or not. This simulates the uncertainty that
exists on current knowledge and that is expressed in SGD as GO
evidence codes [8, 12, 20]. In the produced data set 2,024 data
objects had their original attribute values modified out of 6100.
All CAs on all data objects were assigned a CV between 0.4 and
1.0 and objects with lower CVs were more likely to have been
modified than objects with higher CVs.
 We clustered the simulated data set into 20 clusters. This
number of clusters was derived from the number of combinations
of values that the first three CAs of each object can take in our
simulated data and because this number of clusters allowed the
algorithm to converge in a reasonable amount of time. Table 6
shows the statistics for all 20 clusters, though we ignore the
results for clusters whose size was too small.
 What is most noteworthy in Table 6 are clusters 8, 11, 15,
because all of their data objects had their CAs modified during
our simulation (see column 4). As can be seen, many of the data
objects in these clusters had original values for their first 3 CAs
consistent with the most representative CAs {A,B,C} for the
cluster (see columns 5,6). Furthermore, all of the objects with
original values for their first 3 CAs equal to the most
representative CAs {A,B,C} for the cluster, were objects whose
CAs had been modified during the simulation to different values
(see column 7).

Table 6. Results for clustering the data set into 20 clusters.
We do not show results for clusters whose size was too small.

1 – Cluster #
2 - Number of objects in the cluster
3 - Most common values {A,B,C} on the objects’ first 3 CAs
4 - Ratio X of objects in the cluster that had CAs modified during
the simulation
5 - Ratio of X that had an original CA very close to {A,B,C}
6 - Ratio P of objects in the cluster that had an original CA very
close to {A,B,C}
7 - Ratio of P that had its CAs modified during the simulation
8 - Number of merged second level subclusters

1 2 3 4 5 6 7 8
1 203

2
{M,D,
L}

616/
2032

217/
616

1047/
2032

217/
1047

537

2 118
6

{MG1,
E,N}

305/
1186

202/
305

1102/
1186

202/
1102

180

3 724 {G2,C,
J}

177/
724

111/
177

672/
724

111/
672

121

4 317 {G1,A,
F}

83/
317

48/
83

302/
317

48/
302

44

5 709 {S,B,H
}

94/
709

24/
94

684/
709

24/
684

183

6 218 {M,D,
M}

50/
218

26/
50

198/
218

26/
198

59

8 66 {MG1,
E,N}

66/66 22/
66

22/ 66 22/22 9

11 71 {MG1,
E,N}

71/71 27/
71

27/ 71 27/27 3

15 74 {MG1,
E,N}

74/74 24/
74

24/ 74 24/24 2

20 333 {S,B,H
} and
{S,B,I}

180/
333

148/
180

260/
333

148/
260

13

 Another interesting result is cluster 2, in which the most
prominent genes are those with the values {MG1, E, N} for their
first 3 CAs. 202/1102 objects had their CAs modified to a totally
different value, but were, nevertheless, assigned to the correct
cluster because they had low CVs (see column 7). This shows that
our algorithm can overcome a poor prior that is likely to be
incorrect and can still produce correct results by using numerical
clustering instead. In this cluster, from all objects assigned to it
that had their CAs modified (305/1186, as shown in column 4)
202/305 had CA values of {MG1, E, N} or {MG1, E, O} (see
column 5). The total cluster size was 1186 and consisted of 180
merged second level subclusters (see column 8). Four of the
merged clusters contained a vast majority of objects with
modified CAs. All of these clusters had a substantial portion - or a
majority - of objects with original CA values of {MG1, E, N}.

7. VALIDATION OF PREDICTIONS
7.1 First Significance Metric
 Our strategy for validating the accuracy of the functional
predictions is to reclassify certain genes' CAs as ‘Unknown’
before the clustering process and we aim to predict the correct
genes’ cellular roles using the cluster CAs pointed out by the SM.
The CAs to be set to ‘Unknown’ were chosen to have a high
average(CV) over all their occurrences in the cluster, because
these are primarily the ones that we would like to be able to
predict correctly. The process described next helps us to
determine how likely genes are to be assigned their correct CAs.
 We iterated over the genes in the cluster with CAs labeled as
‘Unknown’. To assess the effectiveness of the technique, we
verified that the original CAs of these genes correlated better to
the cluster CAs with low M-values - that are pointed out by our
SM - than those with high M-values. This correlation signified the
likelihood that the genes' CAs labeled as ‘Unknown’ would be
assigned their original values, by using CAs with low M-values
that are pointed out by our SM. A relatively large number of
genes' CAs labeled as ‘Unknown’ should be likely to be re-
assigned their original values using CAs with low M-values in the
cluster, because a low M-value indicates that a CA occurs
frequently amongst the cluster’s genes and that a CA is likely to
be correct.
 We initially clustered the yeast data into 5 clusters. Table 7
describes some CAs that were pointed out in all 5 clusters by the

SM, after the CAs with the highest average(CV) in each cluster
were set to ‘Unknown’ and the set was clustered.
Table 7. CAs pointed out in 5 clusters as the most significant.
The CAs pointed out in clusters 1-5 as having the lowest M-

values - the most representative ones for the cluster -
correlated with the CAs in the original cluster that were set to

‘Unknown’.
Clu
ster

Some of the CAs pointed out in each cluster as having low
M-values (meaning they occurred frequently and had high
avg(CV)) after the CAs with the highest avg(CV) in each
cluster were set to ‘Unknown’ and the set was clustered.

1 vacuolar membrane, ubiquitin-specific protease, small
nuclear ribonucleoprotein complex, glycolysis, 3'-5'
exoribonuclease, cytosolic small ribosomal subunit, lipid
particle, cytosolic large ribosomal subunit, tricarboxylic
acid cycle

2 rRNA modification, ATP dependent RNA helicase,
nuclear pore, structural molecule, small nucleolar
ribonucleoprotein complex, snoRNA binding, mediator
complex

3 cytosol, proteasome endopeptidase, non-selective vesicle
fusion, translation initiation factor

4 transcription initiation from Pol II promoter, general RNA
polymerase II transcription factor, nucleus

5 endoplasmic reticulum membrane,
component:endoplasmic reticulum

 We have also performed these tests on the yeast data producing
35 and 71 clusters. We provide a concrete example of the utility
of our technique for 35 clusters, by focusing on the second cluster
having 224 genes. In the original clustering, the following CAs
were pointed out as having the lowest M-values:
function:transcription regulator, component:nucleus,
process:transport, process:cell growth and/or maintenance,
process:metabolism, function:transporter, nucleus(a specific,
granular annotation). We focus on the 2 most significant
(representative) CAs for the cluster:
1) component:nucleus occurred in 160 genes in this cluster and

had an average(CV) of 1.0 across all genes. Some genes with
this annotation were YOR064C, YBR247C, YDR205W,
YDR206W, YFR023W, YKL117W, YPR196W, YOR141C,
YOL116W, YOR294W, YDR076W, YFR037C, YNL148C,
YDR510W, YLR074C, YPL049C, YDL064W, YML109W,
YNL016W.

2) nucleus(a specific, granular annotation) occurred in 82
genes in this cluster and had an average(CV) of 0.904878
across all genes. Some genes with this annotation were
YBR247C, YDR205W, YDR206W, YFR023W, YKL117W,
YPR196W, YOL116W, YOR294W, YDR076W, YFR037C,
YNL148C, YLR074C.

 In different trials we set all CAs of many genes in which these
two values occurred originally to ‘Unknown’ and then re-
clustered the data set into 35 clusters. Using the results, we were
able to predict correctly that these genes should be annotated as
either component:nucleus or nucleus(a granular annotation) by
extracting the CAs with lowest M-values. This means that the SM
predicted these genes to have their original correct CAs, after
setting them to ‘Unknown’, re-clustering the data set and
extracting the CAs with lowest M-values.
 Figure 6 illustrates the results obtained for a CA with value A
(component:nucleus) that initially occurred in 160 objects in the
cluster. As an increasing number of occurrences of value A in the
cluster were set to ‘Unknown’ and the set was re-clustered, the

same value A still qualified as one of the most significant values
in the cluster and remained applicable to a relatively large number
of objects (i.e. genes).

Initial # of objects in cluster having an annotation A
(component:nucleus) = 160

150
130

110
90

70

9
28

45
61

79

0
20
40
60
80

100
120
140
160

10 30 50 70 90
of objects in cluster having their original
annotation A set to "Unknown", before re-

clustering

of occurrences of
annotation A in cluster,
before re-clustering

of objects in cluster to
which predicted
annotation A can be
correctly applied, after
re-clustering

Figure 6. Results for different trials of setting occurrences of
‘component:nucleus’ to ‘Unknown’ and re-clustering the set.

7.2 Second Significance Metric
 Our strategy for validating the accuracy of the functional
predictions was to reclassify the CAs of certain genes as
‘Unknown’ before the clustering process and attempt to predict
the correct genes’ cellular roles using the cluster CAs pointed out
by the SM. The CAs set to ‘Unknown’ were primarily ones with a
high average(CV) over all their occurrences in the cluster, because
these were primarily the ones that we would like to be able to
predict correctly. The process described next helped us to
determine how likely genes were to be assigned their correct CAs.
 We iterated over the CAs in the cluster that were labeled as
‘Unknown’. To assess the effectiveness of the technique, we
verified that the original CAs of these genes correlated better to
the cluster CAs pointed out as having the highest significance.
CAs pointed out as highly significant were ones occurring
frequently across the cluster’s genes with high avg(CV). This
correlation signified the likelihood that the genes' CAs labeled as
‘Unknown’ would be re-assigned their original values, by using
CAs that were pointed out by the SM. A reasonable number of
genes' CAs should be likely to be assigned their original values
using the CAs pointed out by the SM.
 We initially clustered the yeast data into 35 clusters, each of
which contained a number of smaller subclusters. The second
level subclusters pointed out by the SM as significant enough
were those containing genes:
1) YHR053C (SM>1 ; 80% of genes not having CV high

enough ; 23 genes total),
2) YDL179W (SM>1 ; 96% of genes not having CV high

enough ; 104 genes total),
3) YKL182W (SM>0.58 ; 94% of genes not having CV high

enough ; 210 genes total),
4) YKR075C (SM>0.44 ; 96% of genes not having CV high

enough ; 27 genes total),
5) YLR342W (SM>0.10 ; 91% of genes not having CV high

enough ; 22 genes total),
6) YMR246W (SM>0.88 ; 75% of genes not having CV high

enough ; 61 genes total),
7) YJL079C (SM>0.06 ; 75% of genes not having CV high

enough ; 4 genes total),
8) YCR005C (SM>0.58 ; 63% of genes not having CV high

enough ; 470 genes total),

9) YMR186W (SM>0.06 ; 50% of genes not having CV high
enough ; 8 genes total),

10) YBR029C (SM>1 ; 0% of genes not having CV high enough;
1 gene total),

 The reason other subclusters yielded low significance was
because a majority of their genes had high average(CV) over their
CAs, so most genes were assigned on the basis of categorical
similarity rather than on the basis of numerical similarity. Thus
the dominant factor in the significance metric was low and the
overall result was low.
 We next needed to identify the CAs in these clusters with the
highest average(CV) throughout the entire cluster. We identified
the following CAs, for each of the subclusters listed above:
1) copper binding, avg(CV) 0.5 ; cytosol, avg(CV) 1.0
2) cell cycle, avg(CV) 0.5
3) fatty-acid synthase complex, avg(CV) 1.0 ; fatty acid

biosynthesis, avg(CV) 1.0 ; vacuole (sensu Fungi), avg(CV)
0.8 ; vacuole inheritance, avg(CV) 0.8 ; thiol-disulfide
exchange intermediate, avg(CV) 0.5 ; plasma membrane,
avg(CV) 1.0 ; tricarboxylic acid cycle, avg(CV) 1.0

4) cytoplasm, avg(CV) 1.0
5) 1,3-beta-glucan synthase, avg(CV) 0.55
6) long-chain-fatty-acid-CoA-ligase, avg(CV) 0.55 ; lipid

metabolism, avg(CV) 0.75 ; lipid particle, avg(CV) 1.0
7) nuclear membrane, avg(CV) 1.0
8) glyoxylate cycle, avg(CV) 1.0 ; peroxisomal matrix, avg(CV)

0.95 ; folic acid and derivative biosynthesis, avg(CV) 0.95 ;
pantothenate biosynthesis, avg(CV) 0.8 ; allantoin
catabolism, avg(CV) 0.8 ; purine nucleotide biosynthesis,
avg(CV) 0.95 ; helicase, avg(CV) 0.5 ; spore wall assembly,
avg(CV) 0.8 ; RAB-protein geranylgeranyltransferase,
avg(CV) 0.55 ; protein amino acid geranylgeranylation,
avg(CV) 1.0 ; RAB-protein geranylgeranyltransferase
complex, avg(CV) 1.0

9) response to stress, avg(CV) 0.75
10) phosphatidate cytidylyltransferase, avg(CV) 1.0 ;

phosphatidylserine metabolism, avg(CV) 1.0 ;
mitochondrion, avg(CV) 1.0

 In different trials we set the CAs of many genes in which these
values originally occurred to ‘Unknown’ in each of these clusters
and re-clustered the entire data set. The same values were still
pointed out by the SM as highly significant in the corresponding
clusters. This encouraged us to re-assign the original values to the
genes whose CAs were set to ‘Unknown’, which we interpret as a
success of our approach.

7.3 Assessment of Clustering Stability
 The GO Evidence Codes (GOECs) form a loose hierarchy from
strong evidence to weak evidence. The top GOECs in the
hierarchy represented by ‘TAS’ and ‘IDA’ are mapped to a CV of
1.0 while the bottom GOECs ‘ND’ and ‘NR’ are mapped to 0.0.
We want to show that all other GOECs falling between these
extremes in the hierarchy are assigned a CV that allows objects to
be partitioned the best way in the clustering process. We used the
simulated yeast data set from Section 6 to determine how sensitive
the final results are to changes in the spacing between the CVs.
 We did a trial using GOECs from the top 3 hierarchy scales:
TAS/IDI, IMP/IGI/IPI, ISS/IEP. We set a randomly chosen 1/3 of
the CVs in the data set to TAS/IDI, 1/3 to IMP/IGI/IPI and 1/3 to
ISS/IEP. Then we set all CVs of objects falling in 5 classes A-E in
the data set to the middle GOEC of IMP/IGI/IPI. By mapping this
set of GOECs to corresponding CVs of 1.0, 0.8, 0.5, the objects

belonging in classes A-E were slightly better partitioned from
other objects than when mapping to CVs of 1.0, 0.9, 0.6.
 Then we repeated this trial by using GOECs from the bottom 3
hierarchy scales: ISS/IEP, NAS, IEA. By mapping this set of
GOECs to corresponding CVs of 0.5, 0.2, 0.1, the objects
belonging in classes A-E were slightly better partitioned from
other objects than when mapping to CVs of 0.5, 0.3, 0.2.
 We also assess the stability of the clustering to perturbations in
the data, to determine the reproducibility of the results [26, 27].
Our ‘perturbed’ data includes changes in the spacing between the
CVs and different perturbations of the simulated yeast data set.
We then re-cluster the perturbed data and compute indices - such
as R-index and D-index [27] - to determine how much the
clustering has changed. R-index measures the proportion of pairs
of objects within a cluster for which the members of the pair
remain together in the perturbed re-clustered data [27]. D-index
measures the number of omissions and additions comparing an
original cluster to a best-matching cluster in the perturbed re-
clustered data [27]. The R-index values were greater than 0.97 and
the D-index values were less than 4.5, for several trials involving
different mappings of GOECs to CVs and different perturbations
of the simulated yeast data set. This indicates high reproducibility
of the clustering results.

8. DISCUSSION: USING SIGNIFICANCE
METRICS FOR DERIVING POTENTIAL
GENE FUNCTIONS
 Biologists will find this method useful for deriving hints about
potential functions of genes or proteins. The hints that are derived
as to a gene’s function can later be validated experimentally. This
will save time and money from the experimentalists’ side. In our
experiments with the yeast cell cycle data set, the utility of the
significance metrics (SMs) is especially evident from the fact that
the vast majority of genes in each cluster or subcluster analyzed
had all CAs set to ‘Unknown’ meaning that no knowledge exists.
For example, when analyzing the subcluster containing YHR053C
using the second SM, only 6 out of 20 genes had some kind of
CA, while the other 14 genes had CAs set to ‘Unknown’. Our SM
could point out the most representative CAs that are likely to be
applicable to the other 14 genes and these functional hints can be
tested experimentally.
 M-values are useful for identifying the most representative CAs
in clusters with a plethora of CAs that have high CVs. M-values
allow one to identify the CAs in this pool that appear frequently
(with a low P1-value) so as to apply them to other genes. In our
experiments with the yeast cell cycle data set we realised that
although 1185 second level subclusters had been produced in
total, most of those (1175 = 1185-10 subclusters) had a majority
of genes with an average CV over their CAs that was considered
high. These genes were assigned to the clusters on the basis of
categorical rather than numerical similarity, according to step 3.
M-values could be utilized on these 1175 subclusters, or could be
utilized on the overall clusters produced as an end result by the
algorithm (the total number of clusters was 5, 35 and 71).
 The second SM applies primarily for identifying the most
representative CAs in clusters with a plethora of CAs that have
low CVs. The second SM allows us to identify the few CAs that
have high CVs in these clusters, so as to apply them to other
genes. In our experiments, only 10 second level subclusters out of
1185 in total, had a majority of genes with an average CV across
their CAs that was considered low enough. These genes were

assigned to the clusters on the basis of numerical rather than
categorical similarity, according to step 3. The second SM could
be utilized on these 10 subclusters.
 Future work will include justifying on a theoretical basis the
mapping of GO Evidence Codes to CVs. We will be applying this
algorithm to more gene expression data sets for organisms on
which low quality CAs exist. Furthermore, we will be developing
more significance metrics for the M-BILCOM clustering results.

9. CONCLUSION
 When clustering low quality data with uncertainties about the
data’s correctness, we need to develop our ability to integrate data
from various sources, including numerical data and categorical
data. Furthermore, we need to be able to claim that what we see in
a clustering analysis is more reliable or less reliable and,
therefore, may or may not be a strong basis for making decisions.
In this paper we have described the novel M-BILCOM clustering
algorithm for mixed numerical and uncertain categorical data sets
that incorporates CAs and CVs representing certainty about the
correctness of the CAs. This clustering algorithm inspired us to
define two new significance metrics for extracting from each
cluster the most significant CAs, that form a strong basis for
deriving conclusions about the CAs of other objects in the cluster.
We showed that these significance metrics can be successfully
used for finding the most significant CAs in a cluster. For
genomic data sets we applied the significant CAs to other genes in
the cluster, as part of functional prediction. Furthermore, we
experimented with this clustering tool on highly noisy simulated
data sets for which the correct results were known. We showed
that M-BILCOM can reliably identify the cluster structure in such
simulated data sets.

10. REFERENCES
[1] Andreopoulos, B., An, A. and Wang, X. (2005) BILCOM:
Bi-level Clustering of Mixed Categorical and Numerical
Biological Data. Technical report CS-2005-01. York University,
Department of Computer Science.
[2] Andreopoulos, B., An, A. and Wang, X. (2004) MULIC:
Multi-Layer Increasing Coherence Clustering of Categorical Data
Sets. Technical report CS-2004-07. York University.
[3] Andreopoulos, B., An, A. and Wang, X. (2003) Significance
Metrics for Clusters of Mixed Numerical and Categorical Yeast
Data. Technical report CS-2003-12. York University.
[4] Adryan B. and Schuh R. (2004) Gene ontology-based
clustering of gene expression data, Bioinformatics, Nov 2004; 20:
2851 - 2852.
[5] Ben-Dor A., Shamir R., Yakhini Z. (1999) Clustering Gene
Expression Patterns. Journal of Computational Biology 6(3/4):
281-297.
[6] Brown M.P.S. Grundy W.N., Lin D., Cristianini N., Sugnet
C.W., Furey T.S., Manuel Ares, and Haussler D. (2000)
Knowledge-based analysis of microarray gene expression data by
using support vector machines. PNAS 97(1), 262-267.
[7] Cherepinsky V., Feng J., Rejali M. and Mishra B. (2003)
Shrinkage-Based Similarity Metric for Cluster Analysis of
Microarray Data. PNAS 100(17): 9668-9673.
[8] Dwight SS, Harris MA, Dolinski K, Ball CA, Binkley G,
Christie KR, Fisk DG, Issel-Tarver L, Schroeder M, Sherlock G,
Sethuraman A, Weng S, Botstein D, Cherry JM. (2002)
Saccharomyces Genome Database provides secondary gene

annotation using the Gene Ontology. Nucleic Acids Research 30:
69-72.
[9] Eisen, M.B. & Brown, P.O. (1999) DNA arrays for analysis of
gene expression. Methods Enzymol. 303, 179-205.
[10] Eisen MB, Spellman PT, Brown PO, Botstein D. (1998)
Cluster analysis and display of genome-wide expression patterns.
Proc Natl Acad Sci USA. 1998 Dec 8;95(25):14863-8.
[11] Fasulo D. (1999) An Analysis of Recent Work on Clustering
Algorithms, Technical Report # 01-03-02, Department of
Computer Science & Engineering, University of Washington.
[12] The Gene Ontology Consortium (2001). Creating the gene
ontology resource: design and implementation. Genome Research
11: 1425-1433. http://www.geneontology.org/GO.evidence.html
[13] Goebel, M. & Gruenwald, Le (1999). A survey of data
mining and knowledge discovery software tools. ACM SIGKDD
Explorations 1, 20-33 .
[14] Golub, T. R. et al. (1999) Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring. Science 286, 531-537.
[15] Grambeier J., Rudolph A. (2002) Techniques of Cluster
Algorithms in Data Mining. Data Mining and Knowledge
Discovery 6: 303-360.
[16] Guha S., Rastogi R., Shim K. (2000). ROCK: A Robust
Clustering Algorithm for Categorical Attributes. Information
Systems 25(5): 345-366.
[17] Hartigan, J. A. (1975) Clustering algorithms. (John Wiley
and Sons, New York, 1975).
[18] Huang Z. (1998) Extensions to the k-Means Algorithm for
Clustering Large Data Sets with Categorical Values. Data Mining
and Knowledge Discovery 2(3): 283-304.
[19] Huang, Z. (1997) Clustering Large Data Sets with Mixed
Numeric and Categorical Values. Knowledge discovery and data
mining: techniques and applications. World Scientific.
[20] Lord P.W., Stevens R.D., Brass A. and Goble C.A. (2003).
Investigating semantic similarity measures across the Gene
Ontology: the relationship between sequence and annotation.
Bioinformatics 19: 1275-83.
[21] Pasquier C., Girardot F., Jevardat de Fombelle K., and
Christen R. (2004) THEA: Ontology driven analysis of
microarray data. Bioinformatics, Nov 2004; 20: 2636 - 2643.
[22] Slonim D.K., Tamayo P., Mesirov J.P., Golub T.R., and
Lander E.S.. (2000) Class prediction and discovery using gene
expression data. Proceedings of the Fourth Annual Conference on
Computational Molecular Biology (RECOMB), 263-272.
[23] Spellman, P.T. et al. Comprehensive identification of cell
cycle-regulated genes of the yeast Saccharomyces Cerevisiae by
microarray hybridization. Mol. Biol. Cell 9, 3273-3297 (1998).
[24] Stutz J. and Cheeseman P. (1995) Bayesian
Classification(AutoClass): Theory and results. Advances in
Knowledge Discovery and Data Mining, 153-180, Menlo Park,
CA, AAAI Press.
[25] Wu L.F., Hughes T.R., Davierwala A.P., Robinson M.D.,
Stoughton R. and Altschuler S.J. (2002). Large-scale Prediction of
Saccharomyces Cerevisiae Gene Function Using Overlapping
Transcriptional Clusters. Nature Genetics 31:255-265.
[26] Kerr MK, Churchill GA. Bootstrapping cluster analysis:
assessing the reliability of conclusions from microarray
experiments. Proc Natl Acad Sci USA. 2001 July; 98(16):8961-5.
[27] McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC,
Simon R. Methods for assessing reproducibility of clustering
patterns observed in analyses of microarray data. Bioinformatics.
2002 Nov;18(11):1462-9.

