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ABSTRACT 
We present the M-BILCOM algorithm for clustering mixed 
numerical and categorical data sets, in which the categorical 
attribute values (CAs) are not certain to be correct and have 
associated confidence values (CVs) from 0.0 to 1.0 to represent 
their certainty of correctness. M-BILCOM performs bi-level 
clustering of mixed data sets resembling a Bayesian process. We 
have applied M-BILCOM to yeast data sets in which the CAs were 
perturbed randomly and CVs were assigned indicating the 
confidence of correctness of the CAs. On such mixed data sets M-
BILCOM outperforms other clustering algorithms, such as 
AutoClass. We have applied M-BILCOM to real numerical data 
sets from gene expression studies on yeast, incorporating CAs 
representing Gene Ontology annotations on the genes and CVs 
representing Gene Ontology Evidence Codes on the CAs. We 
apply novel significance metrics to the CAs in resulting clusters, to 
extract the most significant CAs based on their frequencies and 
their CVs in the cluster. For genomic data sets, we use the most 
significant CAs in a cluster to predict gene function. 
 
1. INTRODUCTION  
   Clustering aims to partition a set of objects into clusters, so that 
objects with similar characteristics are clustered together and 
different clusters contain objects with dissimilar characteristics. A 
high quality clustering tool produces clusters with high intra-class 
similarity between objects and low inter-class similarity between 
objects [11, 13, 15, 17]. Many numerical data sets have CAs 
associated with them, but not all CAs are certain to be correct. For 
many of these data sets CVs can be extracted on the CAs, 
representing the certainty about the CAs’ correctness [8, 20]. 
   We designed the M-BILCOM clustering tool for numerical data 
sets that incorporates in the clustering process CAs and CVs 
indicating the confidence that the CAs are correct. M-BILCOM 
was mainly inspired by numerical gene expression data sets from 
DNA microarray studies, where CAs and CVs can be derived 
from Gene Ontology annotations and Evidence Codes [4-10, 12, 
14, 21-22]. One of the main advantages of this algorithm is that it 
offers the opportunity to apply novel significance metrics for 
spotting the most significant CAs in a cluster when analyzing the 

results [3]. In genomic data sets, our significance metrics allow 
significant CAs to be extracted from a cluster based on their CVs 
and their frequencies and to be used for predicting the functions of 
other genes in the cluster. This provides a different insight for 
predicting gene function by giving the ‘full picture’ of the data 
set, because the significant CAs are extracted from genes that may 
have been appended to the cluster on the basis of numerical or 
categorical similarity or both. 
   This approach offers several advantages over other approaches: 
• Our clustering algorithm may cluster data sets where all 

genes have numerical attribute values but not all genes have 
CAs. Each CA has a CV associated - a real number between 
0.0 and 1.0 - indicating our confidence about its correctness. 

• During the clustering process, this method starts from CAs 
and CVs at the lower level and then moves to numerical 
clustering at a higher level. The CAs and CVs are actually 
used in the clustering process, instead of just annotating the 
clusters afterwards [1, 3]. The method of Wu et al. as applied 
previously to high-throughput biological data, starts from the 
numerical clustering, then adds CAs at a higher level and 
finally CVs are calculated (P-values) [25]. 

• During the clustering process, objects having CAs with high 
confidence to be correct, get clustered by emphasizing more 
the categorical similarity and less the numerical similarity. 
On the other hand, objects having CAs with low confidence 
to be correct get clustered by emphasizing more the 
numerical similarity [1]. 

• Our clustering algorithm allows us to define significance 
metrics indicating the significance of a CA in a cluster. Such 
metrics are calculated on the basis of how frequently a CA 
appears in a cluster as well as how strongly the CVs support 
the CA’s correctness in that cluster [3]. 

• For genomic data sets CVs can be derived from GO evidence 
codes to point out the most reliable CAs to be used for gene 
functional prediction purposes [8, 12]. This is in contrast to 
previous methods, where CVs were calculated at the end to 
indicate the reliability of a CA’s belonging to a cluster [25]. 

   Section 2 describes the k-Modes clustering algorithm. Section 3 
discusses the M-BILCOM clustering algorithm, which is a 
combination of MULICsoft and BILCOM. Section 4 proposes 
two significance metrics for the CAs in the resulting clusters and 
discusses their utility for gene functional prediction on a real yeast 
data set. Sections 5 and 6 describe the results for applying M-
BILCOM to highly noisy yeast data sets and its ability to 
reproduce the correct cluster structure. Sections 7 and 8 discuss 
implications of the significance metrics for biologists and gene 
functional prediction. Finally, Section 9 concludes the paper. 
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2. BACKGROUND ON K-MODES 
  k-Modes is a clustering algorithm that deals with categorical data 
only [18,19]. The k-Modes clustering algorithm requires the user 
to specify from the beginning the number of clusters to be 
produced and the algorithm builds and refines the specified 
number of clusters. Each cluster has a mode associated with it. 
Assuming that the objects in the data set are described by m 
categorical attributes, the mode of a cluster is a vector Q={q1, q2, 
…, qm} where qi is the most frequent value for the ith attribute in 
the cluster of objects. 
   Given a data set and the number of clusters k, the k-Modes 
algorithm clusters the set as follows: 

1. Select initial k modes for k clusters. 
2. For each object X  

a. Calculate the similarity between object X and the modes 
of all clusters. 

b. Insert object X into the cluster c whose mode is the most 
similar to object X. 

c. Update the mode of cluster c 
3. Retest the similarity of objects against the current modes. If 

an object is found to be closer to the mode of another 
cluster rather than its own cluster, reallocate the object to 
that cluster and update the modes of both clusters. 

4. Repeat 3 until no or few objects change clusters after a full 
cycle test of all the objects. 

     A similarity metric is needed to choose the closest cluster to an 
object by computing the similarity between the cluster’s mode and 
the object. Let X={x1, x2, … ,xm} be an object, where xi is the 
value for the ith attribute, and Q={q1, q2, …, qm} be the mode of a 
cluster. The similarity between X and Q can be defined as: 

similarity(X , Q)= ∑
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    Given the similarity measure and k, the clustering result 
produced by the k-Modes algorithm on a set of data depends on 
the initial modes and the ordering of the objects presented to k-
Modes. In [18] two methods for selecting the initial modes are 
discussed and compared. 
    In the descriptions that follow we assume that C represents the 
total number of clusters and we use c to index the clusters. We 
assume that m represents the number of attributes in an object of 
the data set and N represents the number of objects in the data set. 
 
3. THE M-BILCOM CLUSTERING 
ALGORITHM 
   M-BILCOM is a combination of MULICsoft [2] and BILCOM 
[1]. The basic idea of our algorithm is to do clustering at two 
levels, where the first level clustering imposes an underlying 
framework for the second level clustering, thus simulating a 
Bayesian prior as described in [1]. The categorical similarity is 
emphasized at the first level and the numerical similarity at the 
second level. The level one clusters are given as input to level two 
and the level two clusters are the output of the clustering process. 
The process looks as in Figure 1. As shown, both level one and 
level two involve the same number of clusters, four in this 
example. The level two clusters consist of subclusters. Data object 

A was assigned to different level one and level two clusters, 
because the numerical similarity at the second level was stronger 
than the categorical similarity at the first level. Thus, in the case 
of Figure 1 the following relationship holds for object A: 
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On the other hand, data object B was assigned to the same clusters 
in both levels one and two, because both numerical and 
categorical similarity supported this classification. Thus, this 
algorithm considers both categorical and numerical similarity of a 
data object to the clusters to which it may be allocated. 
 

 
Figure 1. Overview of M-BILCOM clustering. 

   We emphasize that different types of data are used at levels one 
and two. At the first level the categorical data used represent 
something that has been observed to be true about the data set 
objects before the experiment takes place. For example the data at 
the first level might look as follows: Class:LIVE; SEX:male; 
STEROID:yes; FATIGUE:no; ANOREXIA:no . At the second 
level, on the other hand, the numerical data used represent the 
results of an experiment involving the data set objects. For 
example the data at the second level might look as follows: 
BILIRUBIN:0.39; ALBUMIN:2.1; PROTIME:10. 
   Our clustering method has the following requirements: 
1. The coherence of each cluster should be maximized, 
considering both the numerical and categorical similarity of the 
objects. 
2. Only the objects with highest categorical similarity to a cluster 
should form the basis for clustering at the first level. 
3. The results of the first level clustering – which is the prior for 
the process - should not exert an overly strong effect on the 
second level, so that the second level clustering can escape a poor 
prior. 
4. It should be possible to form a flexible number of clusters. 
5. The similarity formula for comparing a mode to an object 
should increase an object’s likelihood to be attached to a cluster as 
many CAs match the mode and as the CVs of those CAs increase. 
   We combined MULICsoft [2] and BILCOM [1] into an 
advanced clustering algorithm named M-BILCOM. This 
algorithm is similar to BILCOM [1], except that at the first level it 
also considers weights between 0.0 and 1.0 on the CAs - which 
we refer to as confidence values or CVs. This combined algorithm 
is especially useful in cases where the CAs have been perturbed 
and a CV between 0.0 and 1.0 has been assigned to each CA to 
indicate the certainty of correctness. Alternatively, M-BILCOM 
could be used on biological yeast data sets – such as SGD - where 
the certainty of correctness that exists on current knowledge is 
expressed as GO evidence codes [8, 12, 20]. 



 

3.1 First Level Clustering: MULICsoft 
   At the first level, clustering is performed using MULICsoft1 
which has a special similarity metric that incorporates CVs in the 
clustering process. MULICsoft is an extension of the k-Modes 
clustering algorithm for categorical data sets [18]. MULICsoft 
clusters only a subset of the data set objects. The number of 
clusters resulting from this level equals the final number of 
clusters desired, as illustrated in Figures 1 and 2.  
   The purpose of MULICsoft is to maximize the following 
similarity formula at each iteration, while ensuring that all objects 
may eventually be inserted in clusters: 

),( nn modeobjectsimilarity  
where objectn is the nth object in the data set to be clustered and 
moden is the mode of the cluster to which objectn is classified. 
   MULICsoft starts by reading all objects from the input file and 
storing them in a linked list S. The first object is inserted in a new 
cluster, the cluster’s mode is set equal to the object’s CAs and the 
object is removed from S. Then, it iterates over all objects that 
have not been classified in a cluster yet, to find the closest cluster. 
The closest cluster is determined for each unclassified object by 
comparing all clusters’ modes with the object. The similarity 
between a mode and an object is determined using a special 
variation of the k-Modes similarity metric [2,18] that incorporates 
CVs in the clustering process and is described in Section 3.1.1. 
   The variable φ is maintained to indicate how strong the 
similarity has to be between an object and the closest cluster’s 
mode for the object to be inserted in the cluster – initially φ equals 
0, meaning that the similarity has to be very strong between an 
object and the closest cluster’s mode. If the number of different 
CAs between the object and the closest cluster’s mode are greater 
than φ, then, the object is inserted in a new cluster on its own and 
the cluster’s mode is set equal to the object’s CAs. If the number 
of different CAs between the object and the closest cluster’s mode 
are less than or equal to φ, then, the object is inserted in the 
closest cluster and the mode is updated. 
   At the end of each iteration, all clusters with size one are 
removed, so their objects will be re-clustered at the next iteration. 
Thus, the clusters that persist are those containing at least two 
objects for which the required similarity can be found. Objects 
belonging to clusters with size greater than one are removed from 
the linked list of objects S, so those objects are not re-clustered. 
   At the end of each iteration, if no objects have been placed in 
clusters of size greater than one, then, the variable φ is 
incremented to represent how many CAs are allowed to differ 
next time. Thus, at the next iteration it will be more flexible and 
eventually more objects will be placed in clusters. Eventually, all 
objects will be given the opportunity to be placed in clusters, even 
if the closest cluster is not so similar. The iterative process may 
stop when all objects have been placed in clusters of size greater 
than one, or when φ is greater than a user-specified threshold. 
   The MULICsoft algorithm gives the opportunity for all objects 
to be eventually placed in clusters, because φ may continue 
increasing until all objects are classified. Even if, in the extreme 
case, an object with m CAs has only one or zero CAs similar to 
the mode of the closest cluster, it can be classified when φ = m-1 
or φ = m, respectively. 
   Figure 2 illustrates the results of MULICsoft. Each cluster 
consists of many different "layers" of objects. The layer of an 
object represents how strong the object's similarity was to the 

                                                 
1 http://www.cs.yorku.ca/~billa/MULIC/ 

mode of the cluster when the object was inserted. The cluster’s 
layer in which an object is inserted depends on the value of φ. 
Thus, lower layers have a lower coherence – defined as the 
average similarity between all pairs of objects in that layer - and 
correspond to higher values of φ and to a more flexible similarity 
criterion for insertion. MULICsoft starts by inserting as many 
objects as possible at higher layers and then moves to lower 
layers, creating them as the need arises. If little similarity exists 
between an object and its closest cluster, the object will be 
inserted in a lower layer. 
   If an unclassified object has equal similarity to the modes of the 
two (or more) closest clusters, then the algorithm tries to resolve 
this ‘tie’ by comparing the object to the mode of the top layer of 
each of these clusters – the top layer of a cluster may be layer 0 or 
1 or 2 and so on. Each cluster’s top layer’s mode was stored by 
MULICsoft when the cluster was created, so it does not need to be 
recomputed. If the object has equal similarity to the modes of the 
top layer of all of its closest clusters, the object is assigned to the 
cluster with the highest bottom layer. If all clusters have the same 
bottom layer then the object is assigned to the first cluster, since 
there is insufficient data for selecting the best cluster. 

 
Figure 2. MULICsoft results. Each cluster consists of one or 

more different layers representing different similarities of the 
objects attached to the cluster. 

 
   The runtime complexity of MULICsoft is O(N2), where N 
represents the number of objects in the data set [2]. In most of our 
trials the runtime was less than 1 second. 
   The question remains of which objects to be clustered at the first 
level of M-BILCOM. The first level objects are those whose 
comparison to the mode of the closest cluster yields a result that is 
greater than or equal to a threshold minimum_mode_similarity. 
The rest of the objects are used at the second level, as described in 
Section 3.2. For this purpose, the user can specify a maximum 
value for φ - a value of m-minimum_mode_similarity, where m is 
the total number of categorical attributes in an object. When φ 
exceeds this value, any remaining objects are held for 
consideration instead in the second level. The reason we choose to 
insert in the first level clusters just the objects whose similarity to 
the closest mode yields a value higher than a threshold 
minimum_mode_similarity is because the objects that yield a low 
similarity to the closest mode are more likely to be inserted in the 
wrong cluster, as we show in [1,2]. Thus, the objects whose 
classification in clusters based on categorical similarity is not 
reliable enough, are clustered in the second level instead, where 
the numerical similarity of objects to second level clusters is more 
influential. 



 

3.1.1 The MULICsoft Similarity Metric  
   All CAs in an object have "weights" or CVs in the range 0.0 to 
1.0 associated with them. We represent the ith weight of an object 
as wi, the ith CA of object o as oi and the ith value of mode µ as µi. 
The similarity metric used in MULICsoft for computing the 
similarity between a mode µ and an object o considers both the 
CAs and their weights. Our similarity metric amplifies the object 
positions having high weights, at pairs of CAs between an object 
o and a mode µ that have identical values. 
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   This similarity metric gives more importance to high weights 
(1.0) than low weights (0.1) at categorical attributes with identical 
values between the object and the mode. 
   Figure 3 shows that our similarity formula for comparing a 
mode to an object increases an object’s likelihood to be attached 
to a cluster as many CAs match the cluster’s mode and as the 
weights on those CAs increase. Each object in this example has 10 
CAs and “weights” (or CVs). Figure 3 shows that an object will 
be much more likely to be assigned to a cluster if all CAs match 
the mode with high weights of 1.0, than if all CAs match the 
mode with medium weights of 0.5, than if all CAs match the 
mode with low weights of 0.1, than if 1 CA matches the mode 
with a high weight, than if 1 CA matches the mode with a low 
weight. 

Figure 3. The function surface of similarity, using values for 
the weights between 0.0 and 1.0 as described previously. 

3.1.2 Dealing with Outliers 
   MULICsoft can, eventually, put all the objects in clusters. When 
φ equals the number of attributes m, an unclassified object can be 
inserted in the lowest layer m of any existing cluster. This is 
undesirable if the object is an outlier and has little similarity with 
any cluster. The user can disallow this situation from happening, 
by specifying a threshold for φ that is less than the number of CAs 
m, so, when this threshold is reached any remaining objects are 
not classified and are treated as outliers. As discussed in [2] for 
clustering of software systems, the overall quality of the results 
often improves by treating the lowest-layer objects as outliers. 

3.2 Second Level Clustering: BILCOM 
   The first level result is the input to the second level. The second 
level clusters all of the data set objects, including the objects 
clustered at the first level. The second level uses numerical data 
type similarity and the first level result as a prior. The second 
level clustering consists of 5 steps, whose rationale is to simulate 
maximizing the numerator of the Bayesian equation, as discussed 
in Section 3.1. The second level result is the output of the 
BILCOM process. 
   Step 1. One object in each first level cluster is set as a seed, 
while all the rest of the objects in the cluster are set as centers. 
The seed is an object that is at the top layer of the cluster – ideally 
in layer 0. The reason we choose for seed a top layer object is that 
the most influential objects at the second level should be those 
that have the minimum average distance to all other objects in the 
first level cluster. The MULIC paper [2] showed that objects at 
the top layer have a smaller average distance to all other cluster 
objects than lower level objects do. 
   If the top layer of a cluster is layer 0 then we have no difficulty 
in choosing the seed since all objects have the same CAs. If the 
top layer of a cluster is not layer 0 and it contains more than one 
object, then we choose the seed by comparing all top layer objects 
to the cluster’s mode to find the closest object. If this does not 
resolve the ambiguity then we compare all top layer objects to the 
cluster’s top layer mode – which was stored by MULIC when the 
cluster was created - to find the closest object. If all top layer 
objects have the same similarities to modes then we assign the 
seed to be the first top layer object, since there is insufficient 
information for choosing the best seed. 
   Step 2. Each seed and center is inserted in a new second level 
subcluster. The output of this step is a set of subclusters, referred 
to as seed-containing or center-containing subclusters, whose 
number equals the number of objects clustered at the first level. 
   Step 3. Each object that did not participate at the first level is 
inserted into the second level subcluster containing the most 
numerically similar seed or center. Numerical similarity for Steps 
3-5 is determined by the Pearson correlation coefficient or the 
Shrinkage-based similarity metric introduced by Cherepinsky et al 
[9].  
   Step 4. Each center-containing subcluster is merged with its 
most numerically similar seed-containing subcluster. The most 
numerically similar seed-containing subcluster is found using our 
version of the ROCK goodness measure [14] that is evaluated 
between the center-containing subcluster in question and all seed-
containing subclusters: 
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link[Ci,Cj] stores the number of cross links between subclusters Ci 
and Cj, by evaluating Σ(oq∈Ci, or∈Cj) link(oq,or). link(oq,or) is a 
boolean value specifying whether a link exists between objects oq 
and or . A link is set between two objects if the objects’ numerical 
similarity is higher than a value minimum_numerical_similarity. 
The rationale for using a variation of ROCK’s goodness measure 
for this step is that the link-based approach of ROCK adopts a 
global approach to the clustering problem, by capturing the global 
information about neighboring objects between clusters. It has 
been shown to be more robust than methods that adopt a local 
approach to clustering, like hierarchical clustering [14]. 
   Step 5. The loop below refines the step 4 subcluster merges. All 
variables take real values in the range 0.0-1.0. 
 



 

repeat { 
    foreach (center-containing_subcluster) 

if 
(numerical_similarity_of_center_subcluster_to_1st_
level_seed_cluster × 
categorical_similarity_of_center_to_seed_of_1st_le
vel_cluster > 
numerical_similarity_of_center_subcluster_to_its_n
umerically_similar_2nd_level_cluster × 
categorical_similarity_of_center_to_seed_of_its_nu
merically_similar_2nd_level_cluster) 

      merge center-containing_subcluster 
to seed-containing_subcluster from 1st_level; 
} until (no center-containing_subcluster changes); 
 
   The variable:  
categorical_similarity_of_center_to_seed_of_1st_le

vel_cluster 
represents the categorical similarity of the center c of a subcluster 
C to the seed s, such that c and s were in the same first level 
cluster. 
   The variable: 
categorical_similarity_of_center_to_seed_of_its_nu

merically_similar_2nd_level_cluster 
represents the categorical similarity of the center c of a subcluster 
C to the seed of C’s most numerically similar seed-containing 
subcluster N determined in step 4. The categorical similarity is 
computed as follows, where wci is the ith weight of the center and 
wsi is the ith weight of the seed: 
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where σ(centeri,seedi)= 1 if centeri=seedi , 0 otherwise. 
 
   The variables:  
numerical_similarity_of_center_subcluster_to_1st_l

evel_seed_cluster 
numerical_similarity_of_center_subcluster_to_its_n

umerically_similar_2nd_level_cluster 
represent the numerical similarity of a subcluster C containing 
center c to the cluster containing seed s, such that c and s were in 
the same first level cluster, and to the cluster containing C’s most 
numerically similar seed-containing subcluster N determined in 
step 4, respectively. These similarities include the subclusters that 
were merged to the clusters in previous iterations of the loop. 
 

 
Fig. 7. Steps 4 and 5 of second level of BILCOM clustering. 

 
   According to this loop, a subcluster C containing center c is 
attracted to the subcluster S containing seed s, such that c and s 
were in the same first level cluster. The attraction is stronger if 
there is high categorical similarity between c and s and lower if 

there is low categorical similarity between c and s. The 
subclusters C and S get merged if both the categorical similarity 
between c and s and numerical similarity between C and S are 
high enough. If c is not categorically similar enough to s, then, C 
should be likely to remain merged with its most numerically 
similar seed-containing subcluster N determined in step 4. Figure 
7 shows steps 4 and 5. 
   We have done tests to show that BILCOM is able to escape a 
poor prior – for instance, if a center c was inserted in a first level 
cluster with weak similarity to the cluster mode, or if the 
similarity to the mode was erroneously high enough, or if c had 
wrong CAs with low confidence to be correct. The categorical 
similarity between the center c and the seed s, such that c and s 
were in the same first level cluster, is likely to return a low value 
when the prior is poor. In this case, the subcluster C containing 
center c will be likely to remain merged with its most numerically 
similar seed-containing subcluster N determined in step 4, instead 
of the subcluster S containing the seed s. Thus, the prior can be 
escaped and the data can be clustered correctly. In this case, C 
will not be merged to S, unless their numerical similarity is very 
high. 
   On the other hand, if the subcluster C containing center c is 
merged to the subcluster S containing the seed s, such that c and s 
were in the same first level cluster, then C must be numerically 
similar enough to S. This way we ensure that if a subcluster C is 
merged to the subcluster S that is suggested by the results of the 
first level clustering, the numerical similarity between C and S is 
high enough to support the merging. 
   The reason why the inequality comparison in step 5 considers 
the seeds of clusters, instead of the cluster modes, is that by 
considering similarity to seeds we are effectively giving the 
objects a second chance to reorganize and to escape their first 
level clustering, if the first level clustering was weak. Since the 
first level clustering was based on comparisons to modes that 
often yield wrong results and, therefore, objects may be attached 
to wrong clusters, the comparison in step 5 allows the similarities 
to be reconsidered. We showed in [2] that objects in the top layers 
0 and 1 such as seeds have a higher average similarity to all other 
cluster objects than do lower layer objects. 
 
4. TWO METHODS FOR IDENTIFYING 
SIGNIFICANT CAs IN A CLUSTER 
This section first describes the real yeast data on which we 
applied the M-BILCOM clustering algorithm. Then, it presents 
two significance metrics (SMs) for determining the significance of 
a CA in a cluster and for supporting gene functional prediction. 
 
4.1 Description of Real Yeast Data Sets 
   This algorithm is designed with the goal of applying it to 
numerical data sets for which some CAs exist and the confidence 
that the CAs are correct varies. We used numerical data derived 
from gene expression studies on the yeast Saccharomyces 
cerevisiae. These data sets were produced at Stanford to study the 
yeast cell cycle across time and under various experimental 
conditions and are available from the SGD database [9, 23]. When 
clustering this data set, we consider each gene to be a ‘data 
object’. The data set contained 6,200 objects. 
   We represented CAs on a gene in terms of Gene Ontology (GO) 
and GOSlim annotations. GO is a dynamically controlled 
vocabulary that can be applied to many organisms, even as 
knowledge of gene and protein roles in cells is changing. GO is 



 

organized along the categories of molecular function, biological 
process and cellular location [12]. GOSlim are GO annotations 
that represent high level knowledge on genes and are also 
organized along the categories of function, process and location. 
Most of the GO and GOSlim annotations on the yeast genes exist 
in the publicly accessible SGD database, along with GO evidence 
codes [8, 12, 20]. We created six pools of CAs for each gene and 
each pool contained GO annotations of a specific type. Three 
pools contained GO annotations for molecular function, biological 
process and cellular location of a gene. The other three pools 
contained GOSlim annotations for each GO annotation.  
   We attached CVs to the CAs to represent the confidence that the 
corresponding CA is correct. CVs are real numbers between 0.0 
and 1.0, assigned to the CAs of a gene. Besides indicating the 
confidence that a CA is correct, the CVs on a gene also specify 
how strongly the gene’s CAs should influence the clustering 
process. The CVs are also used in the significance metrics that we 
define below. We determined the CVs by using GO evidence 
codes. GO evidence codes symbolize the evidence that exists for 
any particular GO or GOSlim annotation [12].  

   GO evidence codes can be thought of in a 
loose hierarchy from strong evidence to weak 
evidence. For example, ‘TAS’ means 
‘Traceable Author Statement’, while ‘NAS’ 
means ‘Non-traceable Author Statement’ [9]. 
We assigned a numerical CV to each of the 
GO evidence codes based on its location in the 
hierarchy, as shown in Figure 5. Section 7 
discusses our justifications. NR and ND are 
set to 0.0, because they are used for 
annotations of ‘unknown’, so the CAs should 
not have an effect on the clustering process. In 
certain DBs (Swiss-prot-human) only 3 of 
these evidence codes are commonly used and 
the most commonly used one is TAS, which is 
at the top of the hierarchy, meaning that strong 
evidence exists [20]. We combined the CAs, 
CVs and gene expression data using Perl. 

Figure 5. 
GO 

Evidence 
Codes are 
mapped to 

CVs. 

   A CV primarily depends on whether the CA refers to something 
that has been observed to be true, as opposed to something that is 
just believed to be true. For example, a CA of a “cancerous tissue” 
refers to an observed phenomenon with a high CV, while a CA of 
a “non-cancerous tissue” refers to something that is just believed 
to be true, as the tissue might turn out later to be cancerous. 
 
4.2 First SM: M-values that Consider P1-
values and CVs are Assigned to Cluster CAs  
   Given a resulting cluster, we assigned a P1-value to each CA in 
the cluster; the term ‘P1-value’ was derived from the statistical ‘P-
value’. A P1-value measures whether a cluster contains a CA of a 
particular type more frequently than would be expected by chance 
[25]. A P1-value close to 0.0 indicates a frequent occurrence of 
the CA in the cluster, while a P1-value close to 1.0 its seldom 
occurrence. We multiplied the resulting P1-value with the 
reciprocal of the average of all CVs assigned to the CA in the 
cluster, 1/avg(CV),  thus resulting in what we call an M-value. M-
values allow us to take into consideration the probability that a 
particular CA occurs in the cluster more frequently than expected 
by chance, in addition to our confidence that the CA is correct in 
the cluster. For CAs that occur only once or twice in a cluster, a 
high P1-value results with an avg(CV) trivial to estimate. 

4.3 Second SM: The Significance of a Second 
Level Subcluster’s Classification in a Cluster 
   This significance metric was inspired by the loop of step 5 that 
refines the subclusters composing a larger second level cluster, as 
shown in Section 3.2. Specifically, each subcluster was assigned a 
significance number by evaluating a formula that considers both 
categorical (CAsimilarity) and numerical (NAsimilarity) similarity 
of the subcluster to the larger second level cluster: 
            (weight1*CAsimilarity) +(weight2*NAsimilarity)  
   The CAsimilarity for a subcluster is computed by evaluating a 
categorical variation of ROCK’s goodness measure [16] between 
the subcluster and its larger cluster and multiplying the result by 
the percentage of genes in the subcluster that were assigned to it 
on the basis of categorical similarity (see Section 3.2 step 3). The 
NAsimilarity for a subcluster is computed similarly, by evaluating 
a numerical variation of ROCK’s goodness measure [16] between 
the subcluster and its larger cluster and multiplying the result by 
the percentage of genes in the subcluster that were assigned to it 
on the basis of numerical similarity (see step 3). We set weight2 in 
our trials to be higher than weight1, to ensure proper consideration 
of the numerical similarity of a subcluster. 
   The subclusters in an overall second level cluster for which the 
above metric yields the highest values are used for functional 
prediction by identifying and extracting the most significant 
genes’ CAs in the cluster with highest avg(CV)s. 
   When a subcluster is placed in a larger second level cluster on 
the basis of high CA similarity (0.5-1.0) – regardless of whether it 
was assigned there at the beginning of the clustering process or 
joined it later - this is a factor that increases the significance. The 
NAsimilarity on the subcluster might be either high or low: 
     - high (0.5-1.0) in which case the significance of its 
membership is increased, because both CAs and NAs support the 
gene's classification in the cluster. 
     - low (0.1-0.4) in which case the significance of its 
membership is decreased, because CAs support the gene's 
classification in the cluster but NAs do not. 
   When a subcluster is placed in a larger second level cluster on 
the basis of low CA similarity (0.0-0.4) – regardless of whether it 
was assigned there at the beginning of the clustering process or 
joined it later - this is a factor that decreases the significance. The 
NAsimilarity on the subcluster is: 
     - always high (0.7-1.0). However, since the CA similarity is 
low the significance of its membership is decreased because NAs 
support the gene’s classification in the cluster but CAs do not. 
 
4.4 Functional Prediction for Uncharacterized 
Genes 
   Both of the above significance metrics (SM) were used for 
functional prediction of genes. Section 7 discusses our tests. 
   The M-values were used for functional prediction by taking for 
each cluster the CAs with the lowest M-values for molecular 
function, biological process, cellular location and for the GOSlim 
terms. Then, we applied these CAs to genes in the cluster having 
CAs labeled as ‘Unknown’. Therefore, the CAs with the lowest 
M-values in a cluster were used to predict cellular roles of genes. 
   The second SM was used for functional prediction by 
identifying the subcluster with the highest significance in a larger 
second level cluster and identifying its genes’ CAs with highest 
avg(CV)s in the cluster, as these were the most significant ones. 
Then, we applied the extracted CAs to other genes in the cluster 
having CAs labeled as ‘Unknown’. Therefore, the CAs belonging 



 

to the subcluster that had the highest significance were used to 
predict cellular roles of genes. 
 
5. EXPERIMENTS ON YEAST DATA  
   We have validated M-BILCOM on mixed numerical and 
categorical yeast data. We used the yeast data sets shown in Table 
1, having mixed categorical and numerical attribute values [7, 9]. 
However, we perturbed the CAs randomly and assigned statistical 
confidence values based on the probability that an attribute was 
perturbed or not. Tests and results are described below.  
   We represented CAs on a gene in terms of Gene Ontology (GO) 
- see Section 4. CAs were perturbed and the attribute values in the 
data set were assigned CVs between 0.1 and 1.0. For this purpose, 
for each CA we generated a limit in a range from 0.1 to 1.0 and, 
then, generated a random number ρ from 0.0 to 1.0. If ρ exceeded 
the limit, then we perturbed the CA by assigning it a value taken 
randomly from the set of possible values for that CA. The CV for 
the CA was set equal to the limit regardless of whether it was 
actually perturbed or not. This simulates the uncertainty that exists 
on current knowledge and that is expressed in SGD as GO 
evidence codes [8, 12, 20]. All attribute values on all objects were 
assigned a CV between 0.1 and 1.0 and objects whose CAs had 
lower CVs were more likely to have been perturbed than objects 
whose attribute values had higher CVs. 
   The yeast microorganism performs a constant cell-cycle. The 
yeast cell-cycle gene expression program is regulated by the nine 
known cell-cycle transcriptional activators, that control the flow 
from one stage of the cell-cycle to the next [7]. This serial 
regulation of transcriptional activators together with various 
functional properties suggests a way of partitioning cell-cycle 
genes into nine clusters, each one characterized by a group of 
transcriptional activators working together and their functions [7]. 
Table 1 shows our hypothesis about how the genes should be 
correctly grouped by transcriptional activators and cell-cycle 
functions. For instance, group 2 is characterized by the activators 
Swi6 and Mbp1 and the function involving DNA replication and 
repair at the juncture of G1 and S stages. 
 
 

Table 1. Genes in the data set of Cherepinsky et al. [7] 
grouped by functions. This is our hypothesis about the correct 

clustering results. 
Group Activators Genes Functions 
1 Swi4, 

Swi6 
CLN1, CLN2, GIC1, 
MSB2, RSR1, BUD9, 
MNN1, OCH1, EXG1, 
KRE6, CWP1 

Budding 

2 Swi6, 
Mbp1 

CLB5, CLB6, RNR1, 
RAD27, CDC21, DUN1, 
RAD51, CDC45, MCM2 

DNA 
replication 
and repair 

3 Swi4, 
Swi6 

HTB1, HTB2, HTA1, 
HTA2, HTA3, HHO1 

Chromatin 

4 Fkh1 HHF1, HHT1, TEL2, 
ARP7 

Chromatin 

5 Fkh1 TEM1 Mitosis 
control 

6 Ndd1, 
Fkh2, 
Mcm1 

CLB2, ACE2, SWI5, 
CDC20 

Mitosis 
control 

7 Ace2, 
Swi5 

CTS1, EGT2 Cytokinesis 

8 Mcm1 MCM3, MCM6, CDC6, 
CDC46 

Prereplicati
on complex 
formation 

9 Mcm1 STE2, FAR1 Mating 
   Cherepinsky et al. [7] defined a notation to represent the 
resulting cluster sets and a scoring function to aid in their 
comparison. Each cluster set is written as: 

 
where x denotes the group number as described in Table 1, nx is 
the number of clusters the members of group x appear in, and for 
each cluster j {1,..., nx} there are yj genes from group x and zj 
genes from other groups in Table 1. A value of * for zj

 denotes 
that cluster j contains additional genes, although none of them are 
cell-cycle genes. The cluster set can then be scored as follows: 

 

 
 

 
   We have compared the error rates of M-BILCOM to those of 
AutoClass [24] and BILCOM [1] applied to the “perturbed” yeast 
data set. First, we applied AutoClass [24] to the mixed categorical 
and numerical yeast data set. Table 2 shows the results. 

Table 2. Clustering results of AutoClass. 
Cluster Genes 
1 CLN1, CLN2, GIC1, GIC2, MSB2, RSR1, BUD9, 

MNN1, OCH1, EXG1, KRE6, CWP1, CLB5, CLB6, 
RAD51, CDC45, HTB1, HTA2, HHO1, TEL2 

2 ARP7, TEM1, CLB2, ACE2, SWI5, CDC20, CTS1, 
EGT2, MCM3, MCM6, CDC6, CDC46, STE2 

3 RNR1, RAD27, CDC21, DUN1, MCM2, HTB2, 
HTA1, HHF1, HHT1, FAR1 

   Given the hypothesis in Table 1 and the set of AutoClass results 
shown in Table 2, the resulting clusters with the error score can be 
written as follows, according to the error rate introduced by 
Cherepinsky et al. [7]: 
{1->{{11,9}}, 
2->{{4,16},{5,5}}, 
3->{{3,17},{2,8}}, 
4->{{1,19},{1,12},{2,8}}, 
5->{{1,12}}, 
6->{{4,9}}, 
7->{{2,11}}, 
8->{{4,9}}, 
9->{{1,12},{1,9}}      }. 

FP = 265 
FN = 32 
Error = 297 

 
   We have also applied BILCOM [1] to the mixed categorical and 
numerical yeast data set. Table 3 shows the results. 

Table 3. Clustering results of BILCOM using as numerical 
similarity metric between objects the Pearson Correlation 

Coefficient [7] and a max value for φ of 7. 
Cluster Genes  
1 RSR1, HHT1, ARP7, BUD9, CTS1 
2 KRE6, CWP1 
3 RNR1, CDC45, MCM3, CDC46, MCM2 
4 EXG1, EGT2 
5 MCM6, CDC6 
6 HHF1, HTB2, HTA2 
7 HTB1, HTA1, HHO1 



 

8 GIC1, TEL2, GIC2, MSB2 
9 FAR1, STE2, ACE2, SWI5, TEM1 
10 RAD27, CDC21, DUN1 
11 CLN2, RAD51, MNN1, CLN1, CLB6, OCH1, CLB5, 

CLB2, CDC20 
   Given the hypothesis in Table 1 and the set of BILCOM results 
shown in Table 3, the resulting clusters with the error score can be 
written as follows, according to the error rate introduced by 
Cherepinsky et al. [7]: 
{1->{{4,4},{1,3},{1,1},{2,1},{2,0}}, 
2->{{3,0},{3,2},{3,5}}, 
3->{{3,0},{2,1}}, 
4->{{2,3},{1,2},{1,4}}, 
5->{{1,4}}, 
6->{{2,3},{2,7}}, 
7->{{1,4},{1,1}}, 
8->{{2,0},{2,3}}, 
9->{{2,3}}     }. 

FP = 49 
FN = 47+13+24 
Error = 133 

 
   We have also applied M-BILCOM to the mixed categorical and 
numerical yeast data set. Table 4 shows the results. 
Table 4. Clustering results of M-BILCOM using as numerical 
similarity metric between 2 objects the Pearson Correlation 

Coefficient [7] and a max value for φ of 7. 
Cluster Genes  
1 RSR1, BUD9, CTS1 
2 KRE6, ARP7, HHT1, CWP1 
3 RNR1, CDC45, MCM3, STE2, CDC46, MCM2 
4 EXG1, EGT2 
5 MCM6, TEM1, CDC6 
6 HHF1, HTB2, HTA2 
7 HTB1, HHO1, HTA1 
8 GIC1, TEL2, GIC2, MSB2 
9 FAR1, ACE2, CDC20, SWI5 
10 RAD27, CDC21, MNN1, DUN1, RAD51 
11 CLN2, CLN1, CLB6, CLB5, OCH1, CLB2 
   Given the hypothesis in Table 1 and the set of M-BILCOM 
results shown in Table 4, the resulting clusters with the error score 
can be written as follows, according to the error rate introduced by 
Cherepinsky et al. [7]: 
{1->{{3,3},{2,2},{2,1},{1,1},{2,2},{1,4}}, 
2->{{4,1},{3,3}}, 
3->{{3,0},{3,0}}, 
4->{{2,2},{1,2},{1,3}}, 
5->{{1,2}}, 
6->{{3,1},{1,5}}, 
7->{{1,2},{1,1}}, 
8->{{2,4},{2,1}}, 
9->{{1,5},{1,3}}      }. 

FP = 38 
FN = 35+49 
Error = 122 

 
   The error rates are summarized in table 5 below. The M-
BILCOM error rate is lower than BILCOM and AutoClass. 
Table 5. Comparative error rates of algorithms applied to the 
“perturbed” yeast data set. 
Clustering Tool Cherepinsky Error rate 
M-BILCOM 122 
BILCOM 133 
AutoClass 297 

6. EXPERIMENTS ON SIMULATED DATA 
   We generated artificial data sets that simulate the results by 
Spellman et al [23] who showed that in each cluster there is a 
consistent pattern of numerical attribute values (NAs) that appear 
frequently and that different CAs are characteristic of different 
clusters. We used numerical data derived from gene expression 
studies on the yeast Saccharomyces cerevisiae. These data sets 
were produced at Stanford to study the yeast cell cycle across time 
and under various experimental conditions and are available from 
the SGD database [9, 23]. The data set contained 6,200 genes. The 
purpose of our simulation was to assign CAs to each gene based 
on the numerical gene expression data [9], in such a manner that 
the assignment of CAs simulates knowledge about the role of 
genes in the yeast cell cycle.  
   We assigned 6 CAs on each gene based on the NAs, 
representing the genes’ action during cell cycle. The assignment 
of the CAs followed a pattern that simulates existing knowledge 
on the role of genes in the yeast cell cycle. The assigned CAs split 
the objects into a number of well-defined groups, which we 
attempt to retrieve using clustering; thus, a different set of 
attribute values had to be used for each group. This simulates the 
results by Spellman et al, who showed that in each cluster there is 
a consistent pattern of NAs that appear frequently and that 
different CAs are characteristic of different clusters [23]. We 
assigned the 6 CAs using the following strategy: (1) The first CA 
split the genes into cell cycle phases and has the values G1, S, G2, 
M, M/G1, or unknown. This CA was set for each gene based on 
the experimental point at which the gene reaches its peak 
expression level, indicating what cell cycle phase it is likely to be 
involved in. This simulates the cell cycle phases as they are 
derived by Spellman et al and the genes that are likely to be 
involved in each phase. (2)(3) The second and third CAs were set 
for each gene based on whether the gene’s expression level peaks 
at the phase of the cell cycle at which it is active. The second CA, 
which can take 6 values (A,B,C,D,E,unknown), simulates an 
overall process like DNA replication or transport of essential 
minerals and organic compounds across the cell membrane. The 
third CA, which can take 11 values 
(F,G,H,I,J,K,L,M,N,O,unknown), simulates a more specific 
function like DNA polymerases or nucleotide synthesis or 
initiation of DNA synthesis. The purpose of the second and third 
CAs was to further subdivide the groups created by the first CA 
into subgroups. The first three CAs are influential enough to 
classify each gene in a cluster. Thus, the clusters that we will 
retrieve are based primarily on the first three CAs. (4) The fourth 
CA was set for each gene based on whether the gene is observed 
to reach its peak expression level right before the G1 stage. This 
CA simulates the start of mitosis and can take 3 values 
(high,low,unknown). (5) The fifth CA was set for each gene based 
on whether the gene is observed to reach its peak expression level 
at the end of the cell cycle. This CA simulates the exit from 
mitosis and can take 3 values (high,low,unknown). (6) Finally, the 
sixth CA was set for each gene based on whether the gene is 
observed to reach its peak expression level right before the S 
stage. This CA can take 3 values (high,low,unknown). The fourth 
to sixth CAs on their own may or may not classify each gene into 
a clear group. 
   Furthermore, we perturbed the CAs to simulate noise in the 
resulting data set. Our aim was to use M-BILCOM to retrieve the 
known underlying cluster structure effectively. A significant 
outcome of our experiments was to show that given the genes 
whose CAs were not perturbed in the simulation (most of which 



 

are likely to have high CVs) a fair number of genes were assigned 
to the correct clusters to which they were categorically similar and 
were not assigned to the incorrect clusters to which they might be 
numerically similar. The basis for this is that most of these genes 
had a high confidence overall. Another significant outcome of our 
experiments was to show that given the genes whose CAs were 
perturbed in the simulation (most of which are likely to have low 
CVs) a fair number of genes were assigned to the correct clusters 
to which they were likely to be numerically similar and were not 
assigned to the incorrect clusters to which they were categorically 
similar. The basis for this is that most of these genes had a low 
confidence overall. 
   Many CAs were perturbed and the attribute values in the data 
set were assigned CVs between 0.1 and 1.0. For this purpose, for 
each CA we generated a limit in a range from 0.4 to 1.0 and then, 
generated a random number ρ from 0.0 to 1.0. If ρ exceeded the 
limit, then we perturbed the CA by assigning it a value taken 
randomly from the set of possible values for that attribute. The 
CV for the CA was set equal to the limit, regardless of whether it 
was actually perturbed or not. This simulates the uncertainty that 
exists on current knowledge and that is expressed in SGD as GO 
evidence codes [8, 12, 20]. In the produced data set 2,024 data 
objects had their original attribute values modified out of 6100. 
All CAs on all data objects were assigned a CV between 0.4 and 
1.0 and objects with lower CVs were more likely to have been 
modified than objects with higher CVs. 
   We clustered the simulated data set into 20 clusters. This 
number of clusters was derived from the number of combinations 
of values that the first three CAs of each object can take in our 
simulated data and because this number of clusters allowed the 
algorithm to converge in a reasonable amount of time. Table 6 
shows the statistics for all 20 clusters, though we ignore the 
results for clusters whose size was too small. 
   What is most noteworthy in Table 6 are clusters 8, 11, 15, 
because all of their data objects had their CAs modified during 
our simulation (see column 4). As can be seen, many of the data 
objects in these clusters had original values for their first 3 CAs 
consistent with the most representative CAs {A,B,C} for the 
cluster (see columns 5,6). Furthermore, all of the objects with 
original values for their first 3 CAs equal to the most 
representative CAs {A,B,C} for the cluster, were objects whose 
CAs had been modified during the simulation to different values 
(see column 7). 
 

Table 6. Results for clustering the data set into 20 clusters. 
We do not show results for clusters whose size was too small. 

1 – Cluster # 
2 - Number of objects in the cluster 
3 - Most common values {A,B,C} on the objects’ first 3 CAs 
4 - Ratio X of objects in the cluster that had CAs modified during 
the simulation 
5 - Ratio of X that had an original CA very close to {A,B,C} 
6 - Ratio P of objects in the cluster that had an original CA very 
close to {A,B,C} 
7 - Ratio of P that had its CAs modified during the simulation 
8 - Number of merged second level subclusters 

1 2 3 4 5 6 7 8 
1 203

2 
{M,D,
L}  

616/ 
2032 

217/ 
616 

1047/ 
2032 

217/ 
1047 

537 

2 118
6 

{MG1,
E,N}  

305/ 
1186 

202/ 
305 

1102/ 
1186 

202/ 
1102 

180 

3 724 {G2,C,
J} 

177/ 
724 

111/ 
177 

672/ 
724 

111/ 
672 

121 

4 317 {G1,A,
F}  

83/ 
317 

48/ 
83 

302/ 
317 

48/ 
302 

44 

5 709 {S,B,H
} 

94/ 
709 

24/ 
94 

684/ 
709 

24/ 
684 

183 

6 218 {M,D,
M}  

50/ 
218 

26/ 
50 

198/ 
218 

26/ 
198 

59 

8 66 {MG1,
E,N} 

66/66 22/ 
66 

22/ 66 22/22 9 

11 71 {MG1,
E,N} 

71/71 27/ 
71 

27/ 71 27/27 3 

15 74 {MG1,
E,N} 

74/74 24/ 
74 

24/ 74 24/24 2 

20 333 {S,B,H
} and 
{S,B,I} 

180/ 
333 

148/ 
180 

260/ 
333 

148/ 
260 

13 

 
   Another interesting result is cluster 2, in which the most 
prominent genes are those with the values {MG1, E, N} for their 
first 3 CAs. 202/1102 objects had their CAs modified to a totally 
different value, but were, nevertheless, assigned to the correct 
cluster because they had low CVs (see column 7). This shows that 
our algorithm can overcome a poor prior that is likely to be 
incorrect and can still produce correct results by using numerical 
clustering instead. In this cluster, from all objects assigned to it 
that had their CAs modified (305/1186, as shown in column 4) 
202/305 had CA values of {MG1, E, N} or {MG1, E, O} (see 
column 5). The total cluster size was 1186 and consisted of 180 
merged second level subclusters (see column 8). Four of the 
merged clusters contained a vast majority of objects with 
modified CAs. All of these clusters had a substantial portion - or a 
majority - of objects with original CA values of {MG1, E, N}. 
 
7. VALIDATION OF PREDICTIONS 
7.1 First Significance Metric 
   Our strategy for validating the accuracy of the functional 
predictions is to reclassify certain genes' CAs as ‘Unknown’ 
before the clustering process and we aim to predict the correct 
genes’ cellular roles using the cluster CAs pointed out by the SM. 
The CAs to be set to ‘Unknown’ were chosen to have a high 
average(CV) over all their occurrences in the cluster, because 
these are primarily the ones that we would like to be able to 
predict correctly. The process described next helps us to 
determine how likely genes are to be assigned their correct CAs. 
   We iterated over the genes in the cluster with CAs labeled as 
‘Unknown’. To assess the effectiveness of the technique, we 
verified that the original CAs of these genes correlated better to 
the cluster CAs with low M-values - that are pointed out by our 
SM - than those with high M-values. This correlation signified the 
likelihood that the genes' CAs labeled as ‘Unknown’ would be 
assigned their original values, by using CAs with low M-values 
that are pointed out by our SM. A relatively large number of 
genes' CAs labeled as ‘Unknown’ should be likely to be re-
assigned their original values using CAs with low M-values in the 
cluster, because a low M-value indicates that a CA occurs 
frequently amongst the cluster’s genes and that a CA is likely to 
be correct. 
   We initially clustered the yeast data into 5 clusters. Table 7 
describes some CAs that were pointed out in all 5 clusters by the 



 

SM, after the CAs with the highest average(CV) in each cluster 
were set to ‘Unknown’ and the set was clustered.  
Table 7. CAs pointed out in 5 clusters as the most significant. 
The CAs pointed out in clusters 1-5 as having the lowest M-

values - the most representative ones for the cluster - 
correlated with the CAs in the original cluster that were set to 

‘Unknown’.    
Clu
ster  

Some of the CAs pointed out in each cluster as having low 
M-values (meaning they occurred frequently and had high 
avg(CV)) after the CAs with the highest avg(CV) in each 
cluster were set to ‘Unknown’ and the set was clustered. 

1 vacuolar membrane, ubiquitin-specific protease, small 
nuclear ribonucleoprotein complex, glycolysis, 3'-5' 
exoribonuclease, cytosolic small ribosomal subunit, lipid 
particle, cytosolic large ribosomal subunit, tricarboxylic 
acid cycle 

2 rRNA modification, ATP dependent RNA helicase, 
nuclear pore, structural molecule, small nucleolar 
ribonucleoprotein complex, snoRNA binding, mediator 
complex 

3 cytosol, proteasome endopeptidase, non-selective vesicle 
fusion, translation initiation factor 

4 transcription initiation from Pol II promoter, general RNA 
polymerase II transcription factor, nucleus 

5 endoplasmic reticulum membrane, 
component:endoplasmic reticulum 

   We have also performed these tests on the yeast data producing 
35 and 71 clusters. We provide a concrete example of the utility 
of our technique for 35 clusters, by focusing on the second cluster 
having 224 genes. In the original clustering, the following CAs 
were pointed out as having the lowest M-values: 
function:transcription regulator, component:nucleus, 
process:transport, process:cell growth and/or maintenance, 
process:metabolism, function:transporter, nucleus(a specific, 
granular annotation). We focus on the 2 most significant 
(representative) CAs for the cluster: 
1) component:nucleus occurred in 160 genes in this cluster and 

had an average(CV) of 1.0 across all genes. Some genes with 
this annotation were YOR064C, YBR247C, YDR205W, 
YDR206W, YFR023W, YKL117W, YPR196W, YOR141C, 
YOL116W, YOR294W, YDR076W, YFR037C, YNL148C, 
YDR510W, YLR074C, YPL049C, YDL064W, YML109W, 
YNL016W. 

2) nucleus(a specific, granular annotation) occurred in 82 
genes in this cluster and had an average(CV) of 0.904878 
across all genes. Some genes with this annotation were 
YBR247C, YDR205W, YDR206W, YFR023W, YKL117W, 
YPR196W, YOL116W, YOR294W, YDR076W, YFR037C, 
YNL148C, YLR074C. 

   In different trials we set all CAs of many genes in which these 
two values occurred originally to ‘Unknown’ and then re-
clustered the data set into 35 clusters. Using the results, we were 
able to predict correctly that these genes should be annotated as 
either component:nucleus or nucleus(a granular annotation) by 
extracting the CAs with lowest M-values. This means that the SM 
predicted these genes to have their original correct CAs, after 
setting them to ‘Unknown’, re-clustering the data set and 
extracting the CAs with lowest M-values.  
   Figure 6 illustrates the results obtained for a CA with value A 
(component:nucleus) that initially occurred in 160 objects in the 
cluster. As an increasing number of occurrences of value A in the 
cluster were set to ‘Unknown’ and the set was re-clustered, the 

same value A still qualified as one of the most significant values 
in the cluster and remained applicable to a relatively large number 
of objects (i.e. genes). 
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Figure 6. Results for different trials of setting occurrences of 
‘component:nucleus’ to ‘Unknown’ and re-clustering the set. 
 
7.2 Second Significance Metric 
   Our strategy for validating the accuracy of the functional 
predictions was to reclassify the CAs of certain genes as 
‘Unknown’ before the clustering process and attempt to predict 
the correct genes’ cellular roles using the cluster CAs pointed out 
by the SM. The CAs set to ‘Unknown’ were primarily ones with a 
high average(CV) over all their occurrences in the cluster, because 
these were primarily the ones that we would like to be able to 
predict correctly. The process described next helped us to 
determine how likely genes were to be assigned their correct CAs. 
   We iterated over the CAs in the cluster that were labeled as 
‘Unknown’. To assess the effectiveness of the technique, we 
verified that the original CAs of these genes correlated better to 
the cluster CAs pointed out as having the highest significance. 
CAs pointed out as highly significant were ones occurring 
frequently across the cluster’s genes with high avg(CV). This 
correlation signified the likelihood that the genes' CAs labeled as 
‘Unknown’ would be re-assigned their original values, by using 
CAs that were pointed out by the SM. A reasonable number of 
genes' CAs should be likely to be assigned their original values 
using the CAs pointed out by the SM.  
   We initially clustered the yeast data into 35 clusters, each of 
which contained a number of smaller subclusters. The second 
level subclusters pointed out by the SM as significant enough 
were those containing genes: 
1) YHR053C (SM>1 ; 80% of genes not having CV high 

enough ; 23 genes total), 
2) YDL179W (SM>1 ; 96% of genes not having CV high 

enough ; 104 genes total), 
3) YKL182W (SM>0.58 ; 94% of genes not having CV high 

enough ; 210 genes total), 
4) YKR075C (SM>0.44 ; 96% of genes not having CV high 

enough ; 27 genes total), 
5) YLR342W (SM>0.10 ; 91% of genes not having CV high 

enough ; 22 genes total), 
6) YMR246W (SM>0.88 ; 75% of genes not having CV high 

enough ; 61 genes total), 
7) YJL079C (SM>0.06 ; 75% of genes not having CV high 

enough ; 4 genes total), 
8) YCR005C (SM>0.58 ; 63% of genes not having CV high 

enough ; 470 genes total), 



 

9) YMR186W (SM>0.06 ; 50% of genes not having CV high 
enough ; 8 genes total), 

10) YBR029C (SM>1 ; 0% of genes not having CV high enough; 
1 gene total), 

   The reason other subclusters yielded low significance was 
because a majority of their genes had high average(CV) over their 
CAs, so most genes were assigned on the basis of categorical 
similarity rather than on the basis of numerical similarity. Thus 
the dominant factor in the significance metric was low and the 
overall result was low. 
   We next needed to identify the CAs in these clusters with the 
highest average(CV) throughout the entire cluster. We identified 
the following CAs, for each of the subclusters listed above: 
1) copper binding, avg(CV) 0.5  ; cytosol, avg(CV) 1.0 
2) cell cycle, avg(CV) 0.5 
3) fatty-acid synthase complex, avg(CV) 1.0  ; fatty acid 

biosynthesis, avg(CV) 1.0  ; vacuole (sensu Fungi), avg(CV) 
0.8  ; vacuole inheritance, avg(CV) 0.8 ; thiol-disulfide 
exchange intermediate, avg(CV) 0.5  ; plasma membrane, 
avg(CV) 1.0  ; tricarboxylic acid cycle, avg(CV) 1.0 

4) cytoplasm, avg(CV) 1.0 
5) 1,3-beta-glucan synthase, avg(CV) 0.55 
6) long-chain-fatty-acid-CoA-ligase, avg(CV) 0.55  ; lipid 

metabolism, avg(CV) 0.75  ; lipid particle, avg(CV) 1.0 
7) nuclear membrane, avg(CV) 1.0 
8) glyoxylate cycle, avg(CV) 1.0 ; peroxisomal matrix, avg(CV) 

0.95 ; folic acid and derivative biosynthesis, avg(CV) 0.95 ; 
pantothenate biosynthesis, avg(CV) 0.8 ; allantoin 
catabolism, avg(CV) 0.8 ; purine nucleotide biosynthesis, 
avg(CV) 0.95 ; helicase, avg(CV) 0.5 ; spore wall assembly, 
avg(CV) 0.8 ; RAB-protein geranylgeranyltransferase, 
avg(CV) 0.55 ; protein amino acid geranylgeranylation, 
avg(CV) 1.0 ; RAB-protein geranylgeranyltransferase 
complex, avg(CV) 1.0 

9) response to stress, avg(CV) 0.75 
10) phosphatidate cytidylyltransferase, avg(CV) 1.0  ; 

phosphatidylserine metabolism, avg(CV) 1.0  ; 
mitochondrion, avg(CV) 1.0 

   In different trials we set the CAs of many genes in which these 
values originally occurred to ‘Unknown’ in each of these clusters 
and re-clustered the entire data set. The same values were still 
pointed out by the SM as highly significant in the corresponding 
clusters. This encouraged us to re-assign the original values to the 
genes whose CAs were set to ‘Unknown’, which we interpret as a 
success of our approach. 
 
7.3 Assessment of Clustering Stability 
   The GO Evidence Codes (GOECs) form a loose hierarchy from 
strong evidence to weak evidence. The top GOECs in the 
hierarchy represented by ‘TAS’ and ‘IDA’ are mapped to a CV of 
1.0 while the bottom GOECs ‘ND’ and ‘NR’ are mapped to 0.0. 
We want to show that all other GOECs falling between these 
extremes in the hierarchy are assigned a CV that allows objects to 
be partitioned the best way in the clustering process. We used the 
simulated yeast data set from Section 6 to determine how sensitive 
the final results are to changes in the spacing between the CVs. 
   We did a trial using GOECs from the top 3 hierarchy scales: 
TAS/IDI, IMP/IGI/IPI, ISS/IEP. We set a randomly chosen 1/3 of 
the CVs in the data set to TAS/IDI, 1/3 to IMP/IGI/IPI and 1/3 to 
ISS/IEP. Then we set all CVs of objects falling in 5 classes A-E in 
the data set to the middle GOEC of IMP/IGI/IPI. By mapping this 
set of GOECs to corresponding CVs of 1.0, 0.8, 0.5, the objects 

belonging in classes A-E were slightly better partitioned from 
other objects than when mapping to CVs of 1.0, 0.9, 0.6.  
   Then we repeated this trial by using GOECs from the bottom 3 
hierarchy scales: ISS/IEP, NAS, IEA. By mapping this set of 
GOECs to corresponding CVs of 0.5, 0.2, 0.1, the objects 
belonging in classes A-E were slightly better partitioned from 
other objects than when mapping to CVs of 0.5, 0.3, 0.2. 
   We also assess the stability of the clustering to perturbations in 
the data, to determine the reproducibility of the results [26, 27]. 
Our ‘perturbed’ data includes changes in the spacing between the 
CVs and different perturbations of the simulated yeast data set. 
We then re-cluster the perturbed data and compute indices - such 
as R-index and D-index [27] - to determine how much the 
clustering has changed. R-index measures the proportion of pairs 
of objects within a cluster for which the members of the pair 
remain together in the perturbed re-clustered data [27]. D-index 
measures the number of omissions and additions comparing an 
original cluster to a best-matching cluster in the perturbed re-
clustered data [27]. The R-index values were greater than 0.97 and 
the D-index values were less than 4.5, for several trials involving 
different mappings of GOECs to CVs and different perturbations 
of the simulated yeast data set. This indicates high reproducibility 
of the clustering results. 
 
8. DISCUSSION: USING SIGNIFICANCE 
METRICS FOR DERIVING POTENTIAL 
GENE FUNCTIONS 
   Biologists will find this method useful for deriving hints about 
potential functions of genes or proteins. The hints that are derived 
as to a gene’s function can later be validated experimentally. This 
will save time and money from the experimentalists’ side. In our 
experiments with the yeast cell cycle data set, the utility of the 
significance metrics (SMs) is especially evident from the fact that 
the vast majority of genes in each cluster or subcluster analyzed 
had all CAs set to ‘Unknown’ meaning that no knowledge exists. 
For example, when analyzing the subcluster containing YHR053C 
using the second SM, only 6 out of 20 genes had some kind of 
CA, while the other 14 genes had CAs set to ‘Unknown’. Our SM 
could point out the most representative CAs that are likely to be 
applicable to the other 14 genes and these functional hints can be 
tested experimentally. 
   M-values are useful for identifying the most representative CAs 
in clusters with a plethora of CAs that have high CVs. M-values 
allow one to identify the CAs in this pool that appear frequently 
(with a low P1-value) so as to apply them to other genes. In our 
experiments with the yeast cell cycle data set we realised that 
although 1185 second level subclusters had been produced in 
total, most of those (1175 = 1185-10 subclusters) had a majority 
of genes with an average CV over their CAs that was considered 
high. These genes were assigned to the clusters on the basis of 
categorical rather than numerical similarity, according to step 3. 
M-values could be utilized on these 1175 subclusters, or could be 
utilized on the overall clusters produced as an end result by the 
algorithm (the total number of clusters was 5, 35 and 71). 
   The second SM applies primarily for identifying the most 
representative CAs in clusters with a plethora of CAs that have 
low CVs. The second SM allows us to identify the few CAs that 
have high CVs in these clusters, so as to apply them to other 
genes. In our experiments, only 10 second level subclusters out of 
1185 in total, had a majority of genes with an average CV across 
their CAs that was considered low enough. These genes were 



 

assigned to the clusters on the basis of numerical rather than 
categorical similarity, according to step 3. The second SM could 
be utilized on these 10 subclusters. 
   Future work will include justifying on a theoretical basis the 
mapping of GO Evidence Codes to CVs. We will be applying this 
algorithm to more gene expression data sets for organisms on 
which low quality CAs exist. Furthermore, we will be developing 
more significance metrics for the M-BILCOM clustering results. 
 
9. CONCLUSION 
   When clustering low quality data with uncertainties about the 
data’s correctness, we need to develop our ability to integrate data 
from various sources, including numerical data and categorical 
data. Furthermore, we need to be able to claim that what we see in 
a clustering analysis is more reliable or less reliable and, 
therefore, may or may not be a strong basis for making decisions.  
In this paper we have described the novel M-BILCOM clustering 
algorithm for mixed numerical and uncertain categorical data sets 
that incorporates CAs and CVs representing certainty about the 
correctness of the CAs. This clustering algorithm inspired us to 
define two new significance metrics for extracting from each 
cluster the most significant CAs, that form a strong basis for 
deriving conclusions about the CAs of other objects in the cluster. 
We showed that these significance metrics can be successfully 
used for finding the most significant CAs in a cluster. For 
genomic data sets we applied the significant CAs to other genes in 
the cluster, as part of functional prediction. Furthermore, we 
experimented with this clustering tool on highly noisy simulated 
data sets for which the correct results were known. We showed 
that M-BILCOM can reliably identify the cluster structure in such 
simulated data sets. 
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