
ACHIEVING SOFTWARE QUALITY USING THE NFR FRAMEWORK:
MAINTAINABILITY AND PERFORMANCE

Bill Andreopoulos

Department of Computer Science
York University

Toronto, Ontario, M3J 1P3, Canada
billa@cs.yorku.ca

Abstract: We propose a general methodology for
evaluating and improving the quality of a software
system. To illustrate how the methodology works,
our work focuses on the software qualities of
maintainability and performance. The Non-
Functional Requirements (NFR) framework is
adopted to represent and analyze the software
qualities of maintainability and performance.
Specifically, we analyze the software attributes that
affect either quality, the heuristics that can be
implemented in source code to achieve either
quality and how the two qualities conflict with
each other. Experimental results are discussed to
determine the effect of various heuristics on
maintainability and performance. A methodology
is described for selecting the heuristics that will
improve a system's software quality the most. The
results of our research were encoded in XML files,
and made available on the World Wide Web
(WWW) for use by software developers. The URL
is: http://www.cs.yorku.ca/~billa/SIG/SIG.xml

Keywords: Maintainability, Performance,
Software, Quality, NFR Framewok.

1 INTRODUCTION

As organizations rely increasingly upon software to
perform their vital functions, building software of
high quality becomes a critical issue. The quality of
software will affect the delivery of services, the
overall performance of the system and the long-
term cost of software maintenance. Thus, it is
necessary to be able to represent and analyze
software quality effectively, throughout the entire
software lifecycle.

1.1 Objectives and Methodology

We propose a general methodology for evaluating
and improving the maintainability and
performance qualities of a software system. An
important part of our work examined how the two
qualities conflict with each other. We adopt the
NFR Framework to represent the qualities of

maintainability and performance, the software
characteristics that affect them and the heuristic
transformations (or heuristics) that can be
implemented in source code to achieve them. The
purpose of this website is to provide a tool that can
be used by software developers for optimizing a
system’s source code. This website can be used to
select the set of heuristics that will benefit the
system's maintainability and/or performance the
most, while minimizing the negative side effects.
This website also gives precise definitions for the
terms used in this work, as well as the full versions
of the softgoal interdependency graphs shown in
the figures.

1.2 Software Qualities and the NFR framework

In requirements engineering, a requirement can be
described as a condition or capability to which a
system must conform, and which is either derived
directly from user needs, or stated in a contract,
standard, specification, or other formally imposed
document. Non-functional requirements (or
software qualities) are constraints on the design
and/or implementation of the solution. Software
qualities describe not what the software will do,
but how the software will do it, by specifying
constraints on the system design and/or
implementation. Unfortunately, software qualities
are usually specified briefly and vaguely for a
particular system, since no exact techniques for
representing them have been standardized yet by
the software engineering community.

The NFR framework for representing software
qualities was developed by Lawrence Chung, Brian
Nixon, Eric Yu and John Mylopoulos at the
University of Toronto. [1] The NFR framework
represents quality requirements as softgoals. A
softgoal may contribute positively or negatively
towards achieving another softgoal. A softgoal can
be satisficed or not: satisficing refers to satisfying a
goal to some level, but without necessarily
producing the optimal solution. [1] A softgoal
interdependency graph records all softgoals being

considered, as well as the interdependencies
between them. [1] An example of a softgoal
interdependency graph is given in Figure 1.
A developer can start constructing a softgoal
interdependency graph by identifying the top-level
quality requirement that the system is expected to
meet and respresent it as a node. The softgoal
interdependency graph provides a hierarchical
decomposition of the softgoals; more general
parent softgoals are shown above more specific
offspring softgoals. In Figure 1 the general high
maintainability softgoal gets decomposed into the
more specific high source code quality and high
documentation quality softgoals. In some cases the
interdependency links in a decomposition are
grouped together with an arc; this is referred to as
an AND contribution of the offspring softgoals
towards their parent softgoal, and means that all
offspring softgoals must be satisficed to satisfice
the parent. Figure 1 shows that both softgoals for
high source code quality and high documentation
quality must be satisficed to satisfice the high
maintainability softgoal. In other cases the
interdependency links are grouped together with a
double arc; this is referred to as an OR contribution
of the offspring softgoals towards their parent
softgoal and means that only one offspring softgoal
needs to be satisficed to satisfice the parent. Figure
1 shows that either low span of data or high data
consistency can satisfice the high information
structure quality softgoal.

The bottom of the graph consists of the heuristic
transformations (also called heuristics or
operationalizing softgoals) that can be
implemented in the system, to achieve one or more
parent softgoals. Figure 1 illustrates the dead code
elimination, elimination of GOTO statements and
elimination of global data types and data
structures heuristics. Like other softgoals,
heuristics also make a contribution towards one or
more parent softgoals. In this case, a heuristic's
contribution towards satisficing a parent softgoal
can be positive ("+" or "++") or negative ("-" or
"--") [1] and this contribution is indicated next to
the interdependency link.

2 MAINTAINABILITY AND PERFORMANCE

We used the NFR framework to analyze the
maintainability and performance qualities as
described next.

2.1 Decomposing Maintainability into Softgoals

Maintainability is defined as the characteristics of
the software that affect the maintenance process
and are indicative of the amount of effort necessary
to perform maintenance changes. It can be
measured as the time necessary to make
maintenance changes to the product. [2, 5] To
effectively deal with such a broad quality, we treat
it as a softgoal (see Section 1.2) and then
decompose it down into more specific softgoals.
Figure 1 shows the softgoal interdependency graph
for maintainability. For the full graph see our
website. In cases where there exist conflicting
views of how attributes affect the maintainability
of software, these cases are noted throughout our
descriptions.

The maintainability quality can be decomposed
into the softgoals high source code quality [2], and
high documentation quality [3]. This
decomposition is shown in Figure 1. Both softgoals
of high source code and documentation quality
must be satisficed for a system to have high
maintainability. This is referred to as an AND
contribution of the offspring softgoals towards
their parent softgoal, and is shown by grouping the
interdependency lines with an arc. The rationale
behind this AND contribution is that a software
system with clear source code but bad
documentation will be hard to maintain, since
maintainers will need to study requirements and
design documents in order to understand how the
system works. A software system with clear
documentation but badly written code will also be
hard to maintain, since maintainers will need to
understand how the source code works in order to
make changes to it. Thus, developers must try to
satisfice both softgoals in a system.

The high source code quality softgoal can be
further decomposed into the sub-softgoals high
control structure quality [2], high information
structure quality [2], and high code typography,
naming and commenting quality [6, 7]. This
decomposition is shown in Figure 1. As shown,
this is also an AND contribution, i.e. all three sub-
softgoals must be satisficed to achieve the high
source code quality softgoal. The rationale behind
this AND contribution is that the source code will
be hard to understand if it is badly commented or if
it is laid out in a bad manner (typography
qualities). But source code will also be hard to
understand if characteristics such as modularity,
encapsulation or cohesion have not been achieved
(control and information structure qualities).

Figure 1 - Maintainability softgoal interdependency
graph, including a subset of the heuristics. The full set of
heuristics can be found on our website.

2.2 Decomposing Performance into Softgoals

Like maintainability, we also view performance as
a softgoal (see Section 1.2) that can be broken
down into more specific softgoals. Figure 2 shows
the softgoal interdependency graph for
performance. For the full graph see our website.

The high performance quality can be decomposed
into the softgoals good time performance [4], and
good space performance [4]. This decomposition is
shown in Figure 2. As shown, this is an AND
contribution, i.e. both softgoals must be satisficed
to achieve the performance softgoal. The rationale
behind this AND contribution is that it is
inconceivable for a system that is fast but makes
bad memory-utilization to be characterized by
good performance. It is also inconceivable for a
system that makes good memory-utilization but is
slow, to be characterized by good performance.

The good space performance softgoal can be
decomposed into the sub-softgoals low main
memory utilization, and low secondary storage
utilization. This decomposition is shown in Figure
2. As shown, this is also an AND contribution, i.e.
both sub-softgoals must be satisficed to achieve the
good space performance softgoal. The rationale
behind this AND contribution is that the system
may be stored either in main memory or in
secondary storage and ‘space’ refers to both.

Figure 2 - Performance softgoal interdependency graph,
including a subset of the heuristics. The full set of
heuristics can be found on our website.

2.3 Identifying Heuristic Transformations to
Achieve Software Quality

Up to now we have been providing precise
definitions for the qualities of maintainability and
performance. However, we have not yet described
the heuristics (see Section 1.2) by which one could
satisfice the quality requirements of high
maintainability and performance in a system. The
NFR framework treats these heuristics as softgoals
(see Section 1.2), because this allows developers to
decompose heuristics into more specific ones. Like
other softgoals, heuristics also make a contribution
towards one or more parent softgoals, but in this
case the contribution types are positive/negative.
This is represented with a "+", "++", or "-", "--"
symbol. [1]

2.3.1 Identifying Heuristics to Satisfice
Maintainability

We briefly describe some of the heuristics that can
be implemented in a system's source code to
contribute towards satisficing the maintainability
quality requirement. Our website provides a full
description of all the maintainability heuristics as
well as their contributions, and should be consulted
for further details.

The softgoal interdependency graph, given in
Figure 1, illustrates a subset of these heuristics as
well as their contributions towards their parent
softgoals. As shown in Figure 1, an example of a
maintainability heuristic is elimination of GOTO

statements. This means to minimize the number of
GOTO statements in the source code.
Implementing this heuristic makes a "++"
contribution towards meeting the low use of
unconditional branching softgoal. Implementing
this heuristic also makes a "-" contribution towards
meeting the low control flow complexity softgoal.
Elimination of GOTO statements may also affect
performance in various ways. We discuss these
contributions in the next section.

2.3.2 Identifying Heuristics to Satisfice
Performance

We briefly describe some of the heuristics that can
be implemented in a system's source code to
satisfice the performance quality requirement. Our
website provides a full description of all the
performance heuristics as well as their
contributions and should be consulted for further
details.

The softgoal interdependency graph, given in
Figure 2, illustrates a subset of these heuristics as
well as their contributions towards their parent
softgoals. As shown in Figure 2, an example of a
performance heuristic is elimination of GOTO
statements. This means to minimize the number of
GOTO statements in the source code.
Implementing this heuristic makes a "-"
contribution towards meeting the low main memory
utilization and low secondary storage utilization
softgoals. Elimination of GOTO statements may
also affect maintainability in various ways, as
discussed in the previous section.

3 MAINTAINABILITY AND PERFORMANCE
MEASUREMENTS

We performed maintainability and performance
optimization activities, by implementing different
heuristics at the source code level. Each
optimization activity we performed corresponds
directly to a specific heuristic that is described in
our website. We evaluated the effect of applying
each optimization heuristic on the overall
maintainability and performance of the source
code. For each optimization activity, a set of
maintainability metrics models and performance
measures were applied to the source code, before
and after the optimization activity took place.

We chose two software systems - WELTAB, an
election tabulation system, and the AVL GNU tree
and linked list libraries - that were originally
written in C, to be reengineered in object-oriented

C++ by using an automated tool that resulted in
very low C++ code quality. This low quality
motivated us to try to improve the source code by
implementing optimization heuristics.

3.1 Maintainability Metrics Models

In order for maintenance processes to be improved
and for the amount of effort expended in software
maintenance activities to be reduced, it is first
necessary to be able to measure software
maintainability. [8] In this section, we describe the
most important maintainability metrics that were
extracted from the WELTAB and AVL C++ source
code to evaluate the effects of optimizations. In the
metrics defined below, the term avg-E is the
average Halstead Volume V per module; avg-V(G)
is the average extended cyclomatic complexity per
module; avg-LOC is the average count of lines of
code (LOC) per module; avg-CMT is the average
percent of lines of comments per module

MI1 - This is a single maintainability index, based
on Halstead's metrics. It is computed as follows:
MI1 = 125 - 10 * LOG(avg-E)
MI2 - This is a single maintainability index, based
on Halstead's metrics, McCabe's Cyclomatic
Complexity, lines of code and number of
comments. It is computed as follows:
MI2 = 171 - 5.44 * ln(avg-E) - 0.23 * avg-V(G) -
16.2 * ln(avg-LOC) + 50 * sin(sqrt(2.46 * (avg-
CMT / avg-LOC)
MI3 - This is a single maintainability index, based
on Halstead's metrics, McCabe's Cyclomatic
Complexity, lines of code and number of
comments. It is computed as follows:
MI3 = 171 -3.42 * ln(avg-E) - 0.23 * avg-V(G) -
16.2 * ln(avg-LOC) + 0.99 * avg-CMT

3.2 A study of the optimization activities

The pre-post analysis of the maintainability and
performance metrics was performed on nine
different code optimization heuristics. Four of
these heuristics focused on improving performance
and the other five focused on improving
maintainability. Following is a brief description of
the performance and maintainability optimization
heuristics:
 Hoisting and Unswitching - The FOR loops
were optimized, so that each iteration executed
faster (performance optimization).
 Address Optimization - References to global
variables that used a constant address were
replaced with references using a pointer and offset
(performance optimization).

 Integer Divide Optimization - Integer divide
instructions with power-of-two denominators were
replaced with shift instructions, which are faster
(performance optimization).
 Function Inlining - When a function was called
in the program, the body of the function was
expanded inline (performance optimization).
 Elimination of GOTO statements - The
number of GOTO statements in the source code
was minimized (maintainability optimization).
 Dead Code Elimination - Code that was
unreachable or that did not affect the program was
eliminated (maintainability optimization).
 Elimination of Global Data Types and Data
Structures - Global data types and data structures
were made local (maintainability optimization).
 Maximization of Cohesion - Classes with low
cohesion were split into many smaller classes,
when possible (maintainability optimization).
 Minimization of Coupling Through ADTs -
Variables declared within a class, which have a
type of ADT that is another class definition, were
eliminated (maintainability optimization).

We extracted maintainability and performance
metrics on the WELTAB and/or AVL source code
before and after the optimization activities took
place. Results are described next for each
optimization. Due to space limitations, we only
describe results for 3 optimizations.

3.2.1 Function Inlining

This heuristic was implemented in both WELTAB
and AVL. The maintainability measurements taken
on WELTAB are shown in the Table below. All
MIs decreased after this heuristic was applied.
These decreases can be attributed to the fact that all
Halstead’s metrics and lines of code increased. So
this heuristic affected maintainability negatively.

Metric Pre-value Post-value
M1
M2
M3

71.9263
36.6910
61.3768

71.4982
35.5612
60.4460

The performance measurements taken on
WELTAB are shown in the Table below. As we
can see, performance was improved.

WELTAB
Function

Pre-
performance

Post-
performance

Weltab-poll
Weltab-spol

0.81
0.32

0.42
0.23

3.2.2 Maximization of Cohesion

This heuristic was implemented in AVL only. The
maintainability measurements taken are shown in
the Table below. All measurements show an
increase in maintainability after maximizing
cohesion.

Metric Pre-value Post-value
M1
M2
M3

70.43
36.22
61.43

76.32
55.32
73.67

The performance measurements taken are shown in
the Table below. As we can see, performance was
affected negatively after applying this heuristic.

AVL
Function

Pre-
performance

Post-
performance

SampleRec 0.67 0.69

3.2.3 Minimization of Coupling Through ADTs

This heuristic was implemented in AVL and
measurements were taken on specific functions.
The maintainability measurements taken are shown
in the Table below. All measurements show an
increase in maintainability after this optimization.

Metric Pre-value Post-value
M1
M2
M3

76.86
98.77
108.44

79.31
102.67
111.45

The performance measurements taken are shown in
the Table below. As we can see, this heuristic
affected performance negatively.

AVL Function Pre-
performance

Post-
performance

Ubi_cacheRoot
Ubi_idbDB

0.67
0.56

0.68
0.58

4 SELECTING THE HEURISTIC
TRANSFORMATIONS TO BE
IMPLEMENTED

The set of heuristics selected for implementation
must be the ones that will benefit system
maintainability and performance the most, by
maximizing the ratio of gains to losses. An
evaluation procedure can be used to determine the
degree to which each top-level quality requirement
(maintainability or performance) will be achieved.
In Figure 3, the heuristics that are chosen to be

implemented (or satisficed) in the target system are
indicated as check-marks (“√”) inside the nodes.
On the other hand, rejected candidates are
represented as “X”. Suppose the developer selects
the dead code elimination heuristic, for satisficing
high control flow consistency and high data
consistency. Suppose the developer also selects the
minimization of the number of direct children and
minimization of the response set heuristics to
satisfice low control flow complexity.

Figure 3 - Selecting among alternative heuristics.

Once the developer has selected the heuristics to be
implemented, the impact of these selections on top-
level softgoals has to be evaluated. The evaluation
process can be viewed as working bottom-up,
starting with bottom leaves of the graph
representing heuristics. The evaluation process
works towards the top of the graph, determining
the impact of offspring softgoals on parent
softgoals. The impact upon a parent softgoal is
computed from the contributions that all the
offspring softgoals make towards it. This impact is
represented by assigning labels (“√” and "X") to
the higher-level parent softgoals. Figure 3 shows
that the heuristic minimization of the number of
direct children which is satisficed (“√”) makes a
negative contribution towards its parent softgoal
high module reuse. The result is that softgoal high
module reuse is denied ("X"). On the other hand,
the heuristic dead code elimination that is
satisficed (“√”) makes a positive contribution
towards its parent softgoals high control flow
consistency and high data consistency. Thus, both
softgoals are satisficed (“√”). Suppose a softgoal
receives contributions from more than one
offspring. Then the contribution of each offspring

towards the parent is determined, using the above
approach, and the individual results are then
combined.

5 CONCLUSIONS

The major contributions of this work include using
the NFR framework to model two particular
software qualities, maintainability and
performance. We identified and described many
heuristics that affect these software qualities and
can be implemented in a system's source code to
achieve them. We implemented some of the
heuristics in two medium-sized software systems
and then collected measurements to determine the
effect on software quality. We have presented a
methodology for selecting the set of optimization
heuristics that will improve the system's software
quality the most – maintainability and performance
- while minimizing negative effects.

6 REFERENCES

[1] Lawrence Chung, "Non-Functional
Requirements in Software Engineering", PhD
thesis, University of Toronto, Toronto, Ontario,
Canada, 1993.
[2] J. R. Hagemeister, “A Metric Approach to
Assessing the Maintainability of Software”,
Master’s thesis, University of Idaho, Moscow,
Idaho, 1992.
[3] J. Arthur and K. Stevens, “Assessing the
Adequacy of Documentation Through Document
Quality Indicators”, in Proceedings Conference on
Software Maintenance, pp. 40-49, IEEE CS Press,
1989.
[4] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach (Morgan
Kaufmann, San Mateo, CA, 1990).
[5] IEEE, Standard Glossary of Software
Engineering Terminology, 1990.
[6] R. M. Baecker and A. Marcus, Human Factors
and Typography for More Readable Programs,
(Addison Wesley, 1989)
[7] P. W. Oman and C. R. Cook, Typographic
Style is More than Cosmetic, Communications of
the ACM (CACM)", Vol.33, pp. 506—520,
Communications of the ACM (CACM), 1990.
[8] T. Pearse and P. Oman, "Maintainability
Measurements on Industrial Source Code
Maintenance Activities", in Proceedings 1995
International Conference on Software
Maintenance, pp. 295-303, IEEE CS Press, 1995.

