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Abstract: We propose a general methodology for 
evaluating and improving the quality of a software 
system. To illustrate how the methodology works, 
our work focuses on the software qualities of 
maintainability and performance. The Non-
Functional Requirements (NFR) framework is 
adopted to represent and analyze the software 
qualities of maintainability and performance. 
Specifically, we analyze the software attributes that 
affect either quality, the heuristics that can be 
implemented in source code to achieve either 
quality and how the two qualities conflict with 
each other. Experimental results are discussed to 
determine the effect of various heuristics on 
maintainability and performance. A methodology 
is described for selecting the heuristics that will 
improve a system's software quality the most. The 
results of our research were encoded in XML files, 
and made available on the World Wide Web 
(WWW) for use by software developers. The URL 
is:    http://www.cs.yorku.ca/~billa/SIG/SIG.xml 
 
Keywords: Maintainability, Performance, 
Software, Quality, NFR Framewok. 
   
1 INTRODUCTION 
  
As organizations rely increasingly upon software to 
perform their vital functions, building software of 
high quality becomes a critical issue. The quality of 
software will affect the delivery of services, the 
overall performance of the system and the long-
term cost of software maintenance. Thus, it is 
necessary to be able to represent and analyze 
software quality effectively, throughout the entire 
software lifecycle. 
 
1.1 Objectives and Methodology 
 
We propose a general methodology for evaluating 
and improving the maintainability and 
performance qualities of a software system. An 
important part of our work examined how the two 
qualities conflict with each other. We adopt the 
NFR Framework to represent the qualities of 

maintainability and performance, the software 
characteristics that affect them and the heuristic 
transformations (or heuristics) that can be 
implemented in source code to achieve them. The 
purpose of this website is to provide a tool that can 
be used by software developers for optimizing a 
system’s source code. This website can be used to 
select the set of heuristics that will benefit the 
system's maintainability and/or performance the 
most, while minimizing the negative side effects. 
This website also gives precise definitions for the 
terms used in this work, as well as the full versions 
of the softgoal interdependency graphs shown in 
the figures. 
 
1.2 Software Qualities and the NFR framework 
 
In requirements engineering, a requirement can be 
described as a condition or capability to which a 
system must conform, and which is either derived 
directly from user needs, or stated in a contract, 
standard, specification, or other formally imposed 
document. Non-functional requirements (or 
software qualities) are constraints on the design 
and/or implementation of the solution. Software 
qualities describe not what the software will do, 
but how the software will do it, by specifying 
constraints on the system design and/or 
implementation. Unfortunately, software qualities 
are usually specified briefly and vaguely for a 
particular system, since no exact techniques for 
representing them have been standardized yet by 
the software engineering community. 
 
The NFR framework for representing software 
qualities was developed by Lawrence Chung, Brian 
Nixon, Eric Yu and John Mylopoulos at the 
University of Toronto. [1] The NFR framework 
represents quality requirements as softgoals. A 
softgoal may contribute positively or negatively 
towards achieving another softgoal. A softgoal can 
be satisficed or not: satisficing refers to satisfying a 
goal to some level, but without necessarily 
producing the optimal solution. [1] A softgoal 
interdependency graph records all softgoals being 



considered, as well as the interdependencies 
between them. [1] An example of a softgoal 
interdependency graph is given in Figure 1. 
A developer can start constructing a softgoal 
interdependency graph by identifying the top-level 
quality requirement that the system is expected to 
meet and respresent it as a node. The softgoal 
interdependency graph provides a hierarchical 
decomposition of the softgoals; more general 
parent softgoals are shown above more specific 
offspring softgoals. In Figure 1 the general high 
maintainability softgoal gets decomposed into the 
more specific high source code quality and high 
documentation quality softgoals. In some cases the 
interdependency links in a decomposition are 
grouped together with an arc; this is referred to as 
an AND contribution of the offspring softgoals 
towards their parent softgoal, and means that all 
offspring softgoals must be satisficed to satisfice 
the parent. Figure 1 shows that both softgoals for 
high source code quality and high documentation 
quality must be satisficed to satisfice the high 
maintainability softgoal. In other cases the 
interdependency links are grouped together with a 
double arc; this is referred to as an OR contribution 
of the offspring softgoals towards their parent 
softgoal and means that only one offspring softgoal 
needs to be satisficed to satisfice the parent. Figure 
1 shows that either low span of data or high data 
consistency can satisfice the high information 
structure quality softgoal. 
 
The bottom of the graph consists of the heuristic 
transformations (also called heuristics or 
operationalizing softgoals) that can be 
implemented in the system, to achieve one or more 
parent softgoals. Figure 1 illustrates the dead code 
elimination, elimination of GOTO statements and 
elimination of global data types and data 
structures heuristics. Like other softgoals, 
heuristics also make a contribution towards one or 
more parent softgoals. In this case, a heuristic's 
contribution towards satisficing a parent softgoal 
can be positive ("+" or "++") or negative ("-" or    
"--") [1] and this contribution is indicated next to 
the interdependency link. 
 
2 MAINTAINABILITY AND PERFORMANCE 
 
We used the NFR framework to analyze the 
maintainability and performance qualities as 
described next. 
 
 
 
 

2.1 Decomposing Maintainability into Softgoals 
 
Maintainability is defined as the characteristics of 
the software that affect the maintenance process 
and are indicative of the amount of effort necessary 
to perform maintenance changes. It can be 
measured as the time necessary to make 
maintenance changes to the product. [2, 5] To 
effectively deal with such a broad quality, we treat 
it as a softgoal (see Section 1.2) and then 
decompose it down into more specific softgoals. 
Figure 1 shows the softgoal interdependency graph 
for maintainability. For the full graph see our 
website. In cases where there exist conflicting 
views of how attributes affect the maintainability 
of software, these cases are noted throughout our 
descriptions. 
 
The maintainability quality can be decomposed 
into the softgoals high source code quality [2], and 
high documentation quality [3]. This 
decomposition is shown in Figure 1. Both softgoals 
of high source code and documentation quality 
must be satisficed for a system to have high 
maintainability. This is referred to as an AND 
contribution of the offspring softgoals towards 
their parent softgoal, and is shown by grouping the 
interdependency lines with an arc. The rationale 
behind this AND contribution is that a software 
system with clear source code but bad 
documentation will be hard to maintain, since 
maintainers will need to study requirements and 
design documents in order to understand how the 
system works. A software system with clear 
documentation but badly written code will also be 
hard to maintain, since maintainers will need to 
understand how the source code works in order to 
make changes to it. Thus, developers must try to 
satisfice both softgoals in a system. 
 
The high source code quality softgoal can be 
further decomposed into the sub-softgoals high 
control structure quality [2], high information 
structure quality [2], and high code typography, 
naming and commenting quality [6, 7]. This 
decomposition is shown in Figure 1. As shown, 
this is also an AND contribution, i.e. all three sub-
softgoals must be satisficed to achieve the high 
source code quality softgoal. The rationale behind 
this AND contribution is that the source code will 
be hard to understand if it is badly commented or if 
it is laid out in a bad manner (typography 
qualities). But source code will also be hard to 
understand if characteristics such as modularity, 
encapsulation or cohesion have not been achieved 
(control and information structure qualities). 



 

 
Figure 1 - Maintainability softgoal interdependency 
graph, including a subset of the heuristics. The full set of 
heuristics can be found on our website. 

 
2.2 Decomposing Performance into Softgoals 
 
Like maintainability, we also view performance as 
a softgoal (see Section 1.2) that can be broken 
down into more specific softgoals. Figure 2 shows 
the softgoal interdependency graph for 
performance. For the full graph see our website. 
 
The high performance quality can be decomposed 
into the softgoals good time performance [4], and 
good space performance [4]. This decomposition is 
shown in Figure 2. As shown, this is an AND 
contribution, i.e. both softgoals must be satisficed 
to achieve the performance softgoal. The rationale 
behind this AND contribution is that it is 
inconceivable for a system that is fast but makes 
bad memory-utilization to be characterized by 
good performance. It is also inconceivable for a 
system that makes good memory-utilization but is 
slow, to be characterized by good performance. 
 
The good space performance softgoal can be 
decomposed into the sub-softgoals low main 
memory utilization, and low secondary storage 
utilization. This decomposition is shown in Figure 
2. As shown, this is also an AND contribution, i.e. 
both sub-softgoals must be satisficed to achieve the 
good space performance softgoal. The rationale 
behind this AND contribution is that the system 
may be stored either in main memory or in 
secondary storage and ‘space’ refers to both. 

 
Figure 2 - Performance softgoal interdependency graph, 
including a subset of the heuristics. The full set of 
heuristics can be found on our website. 

 
2.3 Identifying Heuristic Transformations to 
Achieve Software Quality 
 
Up to now we have been providing precise 
definitions for the qualities of maintainability and 
performance. However, we have not yet described 
the heuristics (see Section 1.2) by which one could 
satisfice the quality requirements of high 
maintainability and performance in a system. The 
NFR framework treats these heuristics as softgoals 
(see Section 1.2), because this allows developers to 
decompose heuristics into more specific ones. Like 
other softgoals, heuristics also make a contribution 
towards one or more parent softgoals, but in this 
case the contribution types are positive/negative. 
This is represented with a "+", "++", or "-", "--" 
symbol. [1] 
 
2.3.1 Identifying Heuristics to Satisfice 
Maintainability 
 
We briefly describe some of the heuristics that can 
be implemented in a system's source code to 
contribute towards satisficing the maintainability 
quality requirement. Our website provides a full 
description of all the maintainability heuristics as 
well as their contributions, and should be consulted 
for further details. 
 
The softgoal interdependency graph, given in 
Figure 1, illustrates a subset of these heuristics as 
well as their contributions towards their parent 
softgoals. As shown in Figure 1, an example of a 
maintainability heuristic is elimination of GOTO 



statements. This means to minimize the number of 
GOTO statements in the source code. 
Implementing this heuristic makes a "++" 
contribution towards meeting the low use of 
unconditional branching softgoal. Implementing 
this heuristic also makes a "-" contribution towards 
meeting the low control flow complexity softgoal. 
Elimination of GOTO statements may also affect 
performance in various ways. We discuss these 
contributions in the next section. 
 
2.3.2 Identifying Heuristics to Satisfice 
Performance 
 
We briefly describe some of the heuristics that can 
be implemented in a system's source code to 
satisfice the performance quality requirement. Our 
website provides a full description of all the 
performance heuristics as well as their 
contributions and should be consulted for further 
details. 
 
The softgoal interdependency graph, given in 
Figure 2, illustrates a subset of these heuristics as 
well as their contributions towards their parent 
softgoals. As shown in Figure 2, an example of a 
performance heuristic is elimination of GOTO 
statements. This means to minimize the number of 
GOTO statements in the source code. 
Implementing this heuristic makes a "-" 
contribution towards meeting the low main memory 
utilization and low secondary storage utilization 
softgoals. Elimination of GOTO statements may 
also affect maintainability in various ways, as 
discussed in the previous section. 
 
3 MAINTAINABILITY AND PERFORMANCE 
MEASUREMENTS 
 
We performed maintainability and performance 
optimization activities, by implementing different 
heuristics at the source code level. Each 
optimization activity we performed corresponds 
directly to a specific heuristic that is described in 
our website. We evaluated the effect of applying 
each optimization heuristic on the overall 
maintainability and performance of the source 
code. For each optimization activity, a set of 
maintainability metrics models and performance 
measures were applied to the source code, before 
and after the optimization activity took place. 
 
We chose two software systems - WELTAB, an 
election tabulation system, and the AVL GNU tree 
and linked list libraries - that were originally 
written in C, to be reengineered in object-oriented 

C++ by using an automated tool that resulted in 
very low C++ code quality. This low quality 
motivated us to try to improve the source code by 
implementing optimization heuristics. 
 
3.1 Maintainability Metrics Models 
 
In order for maintenance processes to be improved 
and for the amount of effort expended in software 
maintenance activities to be reduced, it is first 
necessary to be able to measure software 
maintainability. [8] In this section, we describe the 
most important maintainability metrics that were 
extracted from the WELTAB and AVL C++ source 
code to evaluate the effects of optimizations. In the 
metrics defined below, the term avg-E is the 
average Halstead Volume V per module; avg-V(G) 
is the average extended cyclomatic complexity per 
module; avg-LOC is the average count of lines of 
code (LOC) per module; avg-CMT is the average 
percent of lines of comments per module 
 
MI1 - This is a single maintainability index, based 
on Halstead's metrics. It is computed as follows: 
MI1 = 125 - 10 * LOG(avg-E) 
MI2 - This is a single maintainability index, based 
on Halstead's metrics, McCabe's Cyclomatic 
Complexity, lines of code and number of 
comments. It is computed as follows: 
MI2 = 171 - 5.44 * ln(avg-E) - 0.23 * avg-V(G) - 
16.2 * ln(avg-LOC) + 50 * sin(sqrt(2.46 * (avg-
CMT / avg-LOC) 
MI3 - This is a single maintainability index, based 
on Halstead's metrics, McCabe's Cyclomatic 
Complexity, lines of code and number of 
comments. It is computed as follows: 
MI3 = 171 -3.42 * ln(avg-E) - 0.23 * avg-V(G) - 
16.2 * ln(avg-LOC) + 0.99 * avg-CMT 
 
3.2 A study of the optimization activities 
 
The pre-post analysis of the maintainability and 
performance metrics was performed on nine 
different code optimization heuristics. Four of 
these heuristics focused on improving performance 
and the other five focused on improving 
maintainability. Following is a brief description of 
the performance and maintainability optimization 
heuristics: 
    Hoisting and Unswitching - The FOR loops 
were optimized, so that each iteration executed 
faster (performance optimization). 
    Address Optimization - References to global 
variables that used a constant address were 
replaced with references using a pointer and offset 
(performance optimization). 



    Integer Divide Optimization - Integer divide 
instructions with power-of-two denominators were 
replaced with shift instructions, which are faster 
(performance optimization). 
    Function Inlining - When a function was called 
in the program, the body of the function was 
expanded inline (performance optimization). 
    Elimination of GOTO statements - The 
number of GOTO statements in the source code 
was minimized (maintainability optimization). 
    Dead Code Elimination - Code that was 
unreachable or that did not affect the program was 
eliminated (maintainability optimization). 
    Elimination of Global Data Types and Data 
Structures - Global data types and data structures 
were made local (maintainability optimization). 
    Maximization of Cohesion - Classes with low 
cohesion were split into many smaller classes, 
when possible (maintainability optimization). 
    Minimization of Coupling Through ADTs - 
Variables declared within a class, which have a 
type of ADT that is another class definition, were 
eliminated (maintainability optimization). 
  
We extracted maintainability and performance 
metrics on the WELTAB and/or AVL source code 
before and after the optimization activities took 
place. Results are described next for each 
optimization. Due to space limitations, we only 
describe results for 3 optimizations. 
 
3.2.1 Function Inlining 
 
This heuristic was implemented in both WELTAB 
and AVL. The maintainability measurements taken 
on WELTAB are shown in the Table below. All 
MIs decreased after this heuristic was applied. 
These decreases can be attributed to the fact that all 
Halstead’s metrics and lines of code increased. So 
this heuristic affected maintainability negatively. 
 

Metric Pre-value Post-value 
M1 
M2 
M3 

71.9263 
36.6910 
61.3768 

71.4982 
35.5612 
60.4460 

 
The performance measurements taken on 
WELTAB are shown in the Table below. As we 
can see, performance was improved. 
 

WELTAB 
Function 

Pre-
performance 

Post-
performance 

Weltab-poll 
Weltab-spol 

0.81 
0.32 

0.42 
0.23 

 
 

3.2.2 Maximization of Cohesion 
 
This heuristic was implemented in AVL only. The 
maintainability measurements taken are shown in 
the Table below. All measurements show an 
increase in maintainability after maximizing 
cohesion. 
 

Metric Pre-value Post-value 
M1 
M2 
M3 

70.43 
36.22 
61.43 

76.32 
55.32 
73.67 

 
The performance measurements taken are shown in 
the Table below. As we can see, performance was 
affected negatively after applying this heuristic. 
 

AVL 
Function 

Pre-
performance 

Post-
performance 

SampleRec 0.67 0.69 
 
3.2.3 Minimization of Coupling Through ADTs 
 
This heuristic was implemented in AVL and 
measurements were taken on specific functions. 
The maintainability measurements taken are shown 
in the Table below. All measurements show an 
increase in maintainability after this optimization. 
 

Metric Pre-value Post-value 
M1 
M2 
M3 

76.86 
98.77 
108.44 

79.31 
102.67 
111.45 

 
The performance measurements taken are shown in 
the Table below. As we can see, this heuristic 
affected performance negatively.  
 

AVL Function Pre-
performance 

Post-
performance 

Ubi_cacheRoot 
Ubi_idbDB 

0.67 
0.56 

0.68 
0.58 

 
 
4 SELECTING THE HEURISTIC 
TRANSFORMATIONS TO BE 
IMPLEMENTED 
 
The set of heuristics selected for implementation 
must be the ones that will benefit system 
maintainability and performance the most, by 
maximizing the ratio of gains to losses. An 
evaluation procedure can be used to determine the 
degree to which each top-level quality requirement 
(maintainability or performance) will be achieved. 
In Figure 3, the heuristics that are chosen to be 



implemented (or satisficed) in the target system are 
indicated as check-marks (“√”) inside the nodes. 
On the other hand, rejected candidates are 
represented as “X”. Suppose the developer selects 
the dead code elimination heuristic, for satisficing 
high control flow consistency and high data 
consistency. Suppose the developer also selects the 
minimization of the number of direct children and 
minimization of the response set heuristics to 
satisfice low control flow complexity.  

 
Figure 3 - Selecting among alternative heuristics. 

Once the developer has selected the heuristics to be 
implemented, the impact of these selections on top-
level softgoals has to be evaluated. The evaluation 
process can be viewed as working bottom-up, 
starting with bottom leaves of the graph 
representing heuristics. The evaluation process 
works towards the top of the graph, determining 
the impact of offspring softgoals on parent 
softgoals. The impact upon a parent softgoal is 
computed from the contributions that all the 
offspring softgoals make towards it. This impact is 
represented by assigning labels (“√” and "X") to 
the higher-level parent softgoals. Figure 3 shows 
that the heuristic minimization of the number of 
direct children which is satisficed (“√”) makes a 
negative contribution towards its parent softgoal 
high module reuse. The result is that softgoal high 
module reuse is denied ("X"). On the other hand, 
the heuristic dead code elimination that is 
satisficed (“√”) makes a positive contribution 
towards its parent softgoals high control flow 
consistency and high data consistency. Thus, both 
softgoals are satisficed (“√”). Suppose a softgoal 
receives contributions from more than one 
offspring. Then the contribution of each offspring 

towards the parent is determined, using the above 
approach, and the individual results are then 
combined. 
 
5 CONCLUSIONS 
 
The major contributions of this work include using 
the NFR framework to model two particular 
software qualities, maintainability and 
performance. We identified and described many 
heuristics that affect these software qualities and 
can be implemented in a system's source code to 
achieve them. We implemented some of the 
heuristics in two medium-sized software systems 
and then collected measurements to determine the 
effect on software quality. We have presented a 
methodology for selecting the set of optimization 
heuristics that will improve the system's software 
quality the most – maintainability and performance 
- while minimizing negative effects. 
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