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Bayesian Networks

Structured, graphical representation of probabilistic
relationships between several random variables

Explicit representation of conditional independencies
Missing arcs encode conditional independence
Efficient representation of joint PDF P(X)

Generative model (not just discriminative): allows
arbitrary queries to be answered, e.g.

P (lung cancer=yes | smoking=no, positive X-ray=yes ) = ?



Bayesian Network: BN = (G, ©)

P(S) G - directed acyclic graph (DAG)
@ nodes — random variables
edges — direct dependencies

P(B|S)

@ ® - set of parameters in all
conditional probability

distributions (CPDs)

P(C|S)

CPD:
P(X|C,S) C Bl D=0D=1
¥ _P(DICB) 4ol 0.1 09 CPD of
01| 0.7 0.3 node X:
1 0| 08 0.2 P(X | parents(X
Q 1 1l 0.9 0.1 (Xp (X))

Compact representation of joint distribution in a product form (chain rule):

P@S, G B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

1+2+2+4+4=13 parameters instead of 2° =32
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Instead of 2*° parameters we get
99 =17x1+1x2" +2x2° +3x2° +3x2°

[Heckerman, 95]



“Moral” graph of a BN

Moralization algorithm:

P(S)
1. Connect ("marry”) parents ‘M’
of each node. P(C|S)

2. Drop the directionality of

the edges.

P(D|C,B)

Resulting undirected graph is
called the “moral” graph of BN P(X]|C,S)

Interpretation:
every pair of nodes that occur together in a CPD is connected by an edge in the moral graph.

CPD for X and its k parents (called “family”) is represented by a clique of size
(k+1) in the moral graph, and contains d " (d —1) probability parameters where
d is the number of values each variable can have (domain size).



Conditional Independence in BNs:
Three types of connections

Serial S Diverging

Visit to Asia
A

Knowing S makes L and B
independent (common cause)

L Converging B

Knowing T makes

A and X independent

_ _ D NOT knowing D or M
(intermediate cause) SPRoed 1 akes L and B

M : independent
Running (common effect)
Marathon



d-separation

Nodes X and Y are d-separated 1if on any (undirected) path between X and
Y there 1s some variable Z such that 1s either

Z 1s in a serial or diverging connection and Z is known, or

Z 1s in a converging connection and neither Z nor any of Z’s descendants are
known

+ Y

Nodes X and Y are called d-connected if they are not d-separated
(there exists an undirected path between X and Y not d-
separated by any node or a set of nodes)

If nodes X and Y are d-separated by Z, then X and Y are
conditionally independent given Z (see Pearl, 1988)



Independence Relations in BN

A variable (node) is conditionally independent of its
non-descendants given its parents

Given Bronchitis and
Lung Cancer,

Dyspnoea is independent
of X-ray (but may depend
on Running Marathon)



Markov Blanket

A node 1s conditionally independent of ALL other nodes
given 1ts Markov blanket, 1.e. 1ts parents, children, and
“spouses’’ (parents of common children)

(Proof leftasa h

omework problem ©)
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What are BNs useful for?

= Diagnosis: P(cause|symptom)="
= Prediction: P(symptom|cause)="?
= Classification: max P(class|data)

class

= Decision-making (given a cost function)

Medicine Bio-
Speech Gz ~ll| )informatics
recognition.& =

)
SN

L

——

Classification

Computer
troubleshooting

Stock market




Application Examples

APRI system developed at AT&T Bell Labs

learns & uses Bayesian networks from data to identify customers
liable to default on bill payments

NASA Vista system

predict failures in propulsion systems
considers time criticality & suggests highest utility action

dynamically decide what information to show



Application Examples

Office Assistant in MS Office 97/ MS Office 95

Extension of Answer wizard

uses naive Bayesian networks

help based on past experience (keyboard/mouse use) and task user is doing currently
This is the “smiley face” you get in your MS Office applications

Microsoft Pregnancy and Child-Care

Available on MSN in Health section

Frequently occurring children’s symptoms are linked to expert modules that repeatedly
ask parents relevant questions

Asks next best question based on provided information

Presents articles that are deemed relevant based on information provided



IBM’s systems management applications

Machine Learning for Systems @ Watson

(Hellerstein, Jayram, Rish (2000))

End-user transaction
recognition

Remote Procedure Calls (RPCs)

R || R||R || BRI R || R ||R

I\ HN )
Y :

Transactionl Transaction2
BUY? OPEN_DB?
SELL? SEARCH?

(Ri_sh, Erodie, Ma_ (200%)) ]
Fault diagnosis using probes

r

Software or hardware

components Issues:

= Efficiency (scalability)

= Missing data/noise:
sensitivity analysis

= “Adaptive” probing:

= Selecting “most-
informative” probes

= On-line
learning/model
updates

= on-line diagnosis

Probe outco
Goal: finding most-likely diagnosis

| (X,..x;)=argmaxP(x,,...x, [t;,...t)

Pattern discovery, classification,

diagnosis and prediction




Probabilistic Inference Tasks

= Belief updating:
BEL(X,) =P(X, = x, | evidence)

= Finding most probable explanation (MPE)

x* =argmaxP(x,e)

= Finding maximum a-posteriory hypothesis

Ac X:

(a,...,a,) =arg maax Z P(x,e) hypothesis variables

X/A
= Finding maximum-expected-utility (MEU) decision

d. ..., d.) = arg max P(x.e)U(x) D < X: decision variables
(150 i) J d g.; (%, e)U(x) U(X) : utility function



Belief Updating Task: Example

P (smoking| dyspnoea=yes ) = ?



Belief updating: find P(X|evidence)

P(s,d=1)
P(d=1)

P(s|d=1) = o< P(s,d = 1) =

Z P(s)P(c|s)P(b|s)P(X|c 5)P(dle,b)-

\ l
P(s) 2 2. P(bls) 2. ZP<c|s>P<x|c s)P(dlc.b)

g Pl s
Variable Elimination > &5 Uy

W*=4

Complexity: O(n exp(w*)) “induced width”

(max induced clique size)

Efficient inference: variable orderings, conditioning, approximations



Variable elimination algorithms

(also called “bucket-elimination”)

Belief updating: VE-algorithm elim-bel (Dechter 1996)

bucket B:
bucket C:
bucket D:

bucket E:

bucket A:

Zb: H <+ Elimination operator

"P(hla) Pw P(elb,c)

T W*=4

Pl ho @ snguced width”
P(a|e=0) (max clique size)




Finding MPE = max P(x)

X
VE-algorithm elim-mpe (Dechter 1996)

Z 1s replaced by max .

MPE = max P(a)P(c|a)P(b | a)P(d la,b)P(e|b,c)

a,ed,c,b

bucket B:
bucket C:
bucket D:

bucket E:

bucket A:

max I I L
ba <+—— Elimination operator
— A

P(bla) P(db,a) P(elb,c)
“

P(cla) h®(a, d, §0)

\/
h®(a, d, e
/
e=0 ’ (a,
‘/( W=4

(\Kp‘ “induced width”
(max clique size)

probability



Generating the MPE-solution

5. b'=arg max P(b|a’)x 4 B: P(bla) P(db,a) P(eb,c)
« P(d' | b,a’ )x P(e' | b, c")

4. ¢'=arg max P(c |a’)x C: P(cla) h8(a, d, c,e)
xhB(@' ,d",c,e')

(03

3. d'=argmaxh®(a’,d,e’) D: h-(a,d.e)

2. e'=0 E: e=0 hD(al e)

1. a'= arg max P(a) -hE(a) A: P(a) h*(a)

Return (a',b’',c',d',e")



Complexity of VE-inference: O(n exp(w.,))

w_. —the induced width of moral graph along ordering o
Meaning : w_ +1 = size of largest clique created during inference

The width w, (X) of a variable X in graph G along the ordering o is the number
of nodes preceding X in the ordering and connected to X (earlier neighbors).
The width w, of a graph is the maximum width w_(X) among all nodes.

The induced graph G'along the ordering o is obtained by recursively connecting
earlier neighbors of each node, from last to the first in the ordering.

The width of the induced graph G’ is called the induced width of the graph G

(denoted w)). e

/

of & *

“Moral” graph w, =4 w, =2
Ordering is important! But finding min-w* ordering is NP- hard...

Inference is also NP-hard in general case [Cooper].




Learning Bayesian Networks

= Combining domain expert &\ A b

knowledge with data %\ f @

= Efficient representation and
inference

= Incremental learning: P(H) 7or

Handling missing data: <13 28?2 01>

= Learning causal relationships: &&»—@



Learning tasks: four main cases

= Known graph - learn parameters

P(S)
»Complete data: P(C|S P(B|S)
parameter estimation (ML, MAP)
»Incomplete data: P(X|C,S P(D|C,B)

non-linear parametric
optimization (gradient descent, EM)

= Unknown graph — learn graph and parameters

»Complete data:

optimization (search ©
in space of graphs)

»Incomplete data: X5

structural EM, A
mixture models G=arg max Score(G)



Learning Parameters: complete data

(overview)

s ML-estimate: mQXIOgP(DW)-decomposable!

Pa
p AL . Multinomial counts
ex’an =
~. P(x|pay)
x MAP-estimate
(Bayesian statistics) mg X LO gr (DJ(@)P (G))

Conjugate priors - Dirichlet Din6,, |¢,,, >, . )

maan

Equivalent sample size
(prior knowledge)




Likelihood Function

¢ By definition of network, we get

L{©: D)= | AELm].Blm)Am).clm]: ©)

(A(E[m]: ©) )
P(B[m]: ©)
A(Alm] | Blm],E[rm]: ©)

Pml| Aml:e) E[l] 8[1 ,4[1] j
xw] B[xw] ,4[,44] A




Likelihood Function

¢ Rewriting terms, we get

L©: D)= |AELm.BLm)Am).clm]: @)

17
[1PEm:
] w\iau
[1Petm)




General Bayesian Networks

Generalizing for any Bayesian network:

L©®:D)=]]P(x[m],... x,[m]: ©)

=[1T1P(x[m | Paim]: ®,)
— :b?@m : Du

Decomposition
= Independent estimation problems




Likelihood Function: Multinomials
L(6:D)=P(O|0)=]]P(x[m]]6)

¢ The likelihood for the sequence H,T, T, H, H is

ARNN

L(6:D)= G 0)-(1-6)-6

(rount of _ﬁj
oufcome in D

_uSUmU___Egﬂ
kit plitcome

Generalcase: L(®:D)= E% i

19



Dirichlet Priors

¢ Recall that the likelihood function is
K
Nhﬂu_ NVVHH Mﬂﬁmwkbw
k=1

¢ Dirichlet prior with hyperparameters «;,..., o,

K
P(®) o [T6,4
k=1

— the posterior has the same form, with

hyperparameters a,*N,,..,a.+N
K K K

P(O|D) = P(@O)P(D]O) <[]0, T]6™ =16
k=1 k=1 k=1

23




Learning Parameters: Summary

¢ Estimation relies on sufficient statistics
e For multinomials: counts N(x,pa,)
e Parameter estimation
A _N(x;,pa) _ofx;, pa)+ N(x;, pa;)

b = N(pa) T alpa)+Nipa)

MLE Bayesian (Dirichlet)

¢ Both are asymptotically equivalent and consistent

¢ Both can be implemented in an on-line manner by
accumulating sufficient statistics




Learning Parameters: incomplete data

Non-decomposable marginal likelihood (hidden nodes)

Initial parameters

v
Current model

(G, 0)

Expectation

Compute EXPECTED
Counts via inference in BN

\Efpected counts

Maximization Epy[Nypa, 1=

Update parameters N L
(ML, MAP) Y p(x.pa, |y*,0,G)
k=1

EM-algorithm:
iterate until convergence



Learning graph structure

Find G = arg max Score(G) NP-hard
o ~_ optimization
s Heuristic search:

Complete data — local computations
Add S->B

Incomplete data (score non-
decomposable):stochastic methods _ A’\
Delet
Local greedy search; K2 algorithm S_e>eBe
f 1 Reverse
- S->B
» Constrained-based & @ ”

methods (PC/IC algorithms) ‘/’ 'b

> Data impose independence
relations (constraints) on graph
structure



Scoring function:
Minimum Description Length (MDL)

= Learning < data compression

wr

4 log N\
MDL(BN |D)=-1log P(D|0,G) + 5 1O |
DL(Data|model) DL(Model)

= Other: MDL = -BIC (Bayesian Information Criterion)
= Bayesian score (BDe) - asymptotically equivalent to MDL



Model selection trade-offs

Naive Bayes — too simple Unrestricted BN — too complex
(less parameters, but bad model) (possible overfitting + complexity)

P(f, | class)

TAN:

tree-augmented Naive Bayes

[Friedman et al. 1997]

class P(f | class)
Based on Chow-Liu Tree Method P, | class) |
(CL) for learning trees
[Chow-Liu, 1968]



Tree-structured distributions

A joint probability distribution is tree-structured if it can be written as

PG =T P(x, 13,0)

where x , ,, 1s the parent of x, in Bayesian network for P(x) (a directed tree)

J(@)

I:)('A‘IBICIDIE)= I
P(A)P(B|A)P(CIA) |

P(D|C)P(E|B) " Not a tree — has an (undirected) cycle

A tree (with root A)

A tree requires only [(d-1) + d(d-1)(n-1)] parameters, where d is domain size
Moreover, inference in trees is O(n) (linear) since their w*=1



Approximations by trees

True distribution P(X) Tree-approximation P’(X)

—)

How good is approximation? Use cross-entropy (KL-divergence):

P(x)

P'(x)

D(P,P") is non-negative, and D(P,P")=0 if and only if P coincides with P’ (on a set of measure 1)

How to find the best tree-approximation?

D(P,P')=P) P(x)log



Optimal trees: Chow-Liu result

= Lemma

Given a joint PDF P(x) and a fixed tree structure T, the best
approximation P'(x) (i.e., P'(x) that minimizes D(P,P") ) satisfies

P'(x; | x;;)=P(x; | x,,) foralli=1,..n

Such P’(x) is called the projection of P(x) on T.

= Theorem [Chow and Liu, 1968]
Given a joint PDF P(x), the KL-divergence D(P,P") is minimized by
projecting P(x) on a maximum-weight spanning tree (MSWT) over
nodes in X, where the weight on the edge (X i X ; is defined by
the mutual information measure

](Xi;Xj): Zp(xiaxj)lo

)

P(xi ) 'xj)
*P(x)P(x,)

Note,that/(X;Y) =0 whenXandY areindependert
andthat 7(X;Y)=D(P(x,),P(x)P())



Proofs

Proof of Lemma :

D(P,P)=-)" P(X)i log P'(x; | x;;,) +D P(x)log P(x) = - P(X)i log P'(x; | x,;)) —H(X) =

= —iZP(x)log P(x, | x ) ~H(X) = —i ZP(x,-,xj(,-))log P(x |x,0)-H(X)= (1)
_ZZP(X (l))ZP(x | Xy )1og P'(x; | X)) —H (X) (2)

llxj()

A known fact : given P(x), the maximum of Z P(x)log P'(x) is achieved by the choice P'(x) = P(x).

Therefore, for any value of i and x,,, the term Z P(x, | x. . )log P'(x; | x,,) 1s maximized by

J(@) J(@)

choosing P'(x, | x;,) = P(x; | x,, ) (and thus the total D(P, P') is minimized ), which proves the Lemma.

Proof of Theorem :
Replacing P'(x; | x;; )= P(x; | x,; ) in the expression (1) yields

D(P,P") :_i ZP('xiij(i))log[P(xixj(i))/P('xj(i))] —H(X) =

ilxx/()

—_ P(x i'xj(i)) _ B
_ ,Z:‘x;)P(x”xJ(l)) Px) P +log P(x,) |-H(X) =

- ZI(XI,XM) ZZP(x Ylog P(x,) —H (X).

i=l x

The last two terms are independent of the choice of the tree, and thus D(P, P')
is minimized by maximizing the sum of edge weights 7(X,,X ;).




4.

5.

Chow-Liu algorithm
[As presented in Pearl, 1988]

From the given distribution P(x) (or from data generated by P(x)),
compute the joint distributio®(x, | x ) for alli # j
Using the pairwise distributions from step 1, compute the mutual
information(.X';; X )  for each pair of nodes and assign it as the
weight to the correspondlng edgeX,;, X )
Compute the maximum-weight spanning tree (MSWT):

a.  Start from the empty tree over n variables

b.  Insert the two largest-weight edges

Find the next largest-weight edge and add it to the tree if no cycle is
formed; otherwise, discard the edge and repeat this step.

d. Repeat step (c) until n-1 edges have been selected (a tree is
constructed).
Select an arbitrary root node, and direct the edges outwards from
the root.

Tree approximation P’(x) can be computed as a projection of P(x) on
the resulting directed tree (using the product-form of P'(x)).



Summary:
Learning and inference in BNs

Bayesian Networks — graphical probabilistic models
Efficient representation and inference
Expert knowledge + learning from data @@
Learning:
= parameters (parameter estimation, EM)

= structure (optimization w/ score functions — e.qg., MDL)

=« Complexity trade-off:
=« NB, BNs and trees

There is much more: causality, modeling time (DBNs, HMMs),
approximate inference, on-line learning, active learning, etc.



Online/print resources on BNS

Conferences & Journals
UAI ICML, AAAI, AISTAT, KDD
MLJ, DM&KD, JAIR, IEEE KDD, IJAR, IEEE PAMI

Books and Papers

Bayesian Networks without Tears by Eugene Charniak. Al
Magazine: Winter 1991.

Probabilistic Reasoning in Intelligent Systems by Judea Pearl.
Morgan Kaufmann: 1998.

Probabilistic Reasoning in Expert Systems by Richard
Neapolitan. Wiley: 1990.

CACM special 1ssue on Real-world applications of BNs, March
1995



Online/Print Resources on BNs

AUALI online: www.auai.org. Links to:

Electronic proceedings for UAI conferences

Other sites with information on BNs and reasoning under
uncertainty

Several tutorials and important articles
Research groups & companies working in this area

Other societies, mailing lists and conferences



Publicly available s/w for BNs

List of BN software maintained by Russell Almond at
bayes.stat.washington.edu/almond/belief.html

several free packages: generally research only

commercial packages: most powerful (& expensive) is
HUGIN; others include Netica and Dxpress

we are working on developing a Java based BN toolkit here at
Watson



