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� Probabilistic inference  in Bayesian Networks
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� Learning Bayesian Networks
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� Learning graph structure (model selection)
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Bayesian Networks
Structured, graphical representation of probabilistic 

relationships between several random variables

Explicit representation of conditional independencies

Missing arcs encode conditional independence

Efficient representation of joint PDF  P(X)

Generative model (not just discriminative): allows 
arbitrary queries to be answered, e.g.

P (lung cancer=yes | smoking=no, positive X-ray=yes ) = ?



Bayesian Network:  

= P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea
P(D|C,B)

P(B|S)

P(S)

P(X|C,S)

P(C|S)

P(S, C, B, X, D)

CPD: 
C  B   D=0 D=1
0  0    0.1  0.9
0  1    0.7  0.3
1  0    0.8  0.2
1  1    0.9  0.1

Θ) (G,BN =
G - directed acyclic graph (DAG)

nodes – random variables
edges – direct dependencies

- set of parameters in all
conditional probability 
distributions (CPDs)  

Θ

CPD of 
node X:

P(X|parents(X))

Compact representation of joint distribution in a product form (chain rule):
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Example: Printer Troubleshooting

Print Output
OK

Correct
Driver

Uncorrupted
Driver

Correct
Printer Path

Net Cable
Connected

Net/Local
Printing

Printer On 
and Online

Correct
Local Port

Correct 
Printer

Selected

Local Cable
Connected

Application
Output OK

Print
Spooling On

Correct 
Driver

Settings

Printer Memory
Adequate

Network
Up

Spooled
Data OK

GDI Data
Input OK

GDI Data 
Output OK

Print
Data OK

PC to Printer
Transport OK

Printer
Data OK

Spool
Process OK

Net
Path OK

Local
Path OK

Paper
Loaded

Local Disk
Space Adequate

[Heckerman, 95]
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“Moral” graph of a BN

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea
P(D|C,B)

P(B|S)

P(S)

P(X|C,S)

P(C|S)

Moralization algorithm:

1.  Connect (“marry”) parents
of each node.

2.  Drop the directionality of
the edges.

Resulting undirected graph is
called the “moral” graph of BN 

Interpretation: 
every pair of nodes that occur together in a CPD is connected by an edge in the moral graph.

CPD for X and its k parents (called “family”) is represented by a clique of size
(k+1) in the moral  graph, and contains                    probability parameters where
d is the number of values each variable can have (domain size).
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Conditional Independence in BNs:
Three types of connections

Tuberculosis

Visit to Asia

Chest X-ray

Knowing T makes
A and X independent
(intermediate cause)

Lung Cancer

Smoking

Bronchitis

Knowing S makes L and B 
independent (common cause)

Dyspnoea

Lung Cancer Bronchitis

A

T

X

S

L B

DivergingSerial

Converging

NOT knowing D or M 
makes L and B 
independent
(common effect)

L B

M Running
Marathon

D



d-separation
Nodes X and Y are d-separated if on any (undirected) path between X and 

Y there is some variable Z such that  is either
Z is in a serial or diverging connection and Z is known, or

Z is in a converging connection and neither Z nor any of Z’s descendants are 
known

Nodes X and Y are called d-connected if they are not d-separated 
(there  exists an undirected path between X and Y not d-
separated by any node or a set of nodes)

If nodes X and Y are d-separated by Z, then X and Y are 
conditionally independent given Z (see Pearl, 1988)

Z
X

Y

YX
Z

M

Z
YX



Independence Relations in BN
A variable (node) is conditionally independent of its 

non-descendants given its parents

Lung Cancer

Smoking

Bronchitis

Dyspnoea
Chest X-ray

Given Bronchitis and
Lung Cancer,
Dyspnoea is independent
of X-ray (but may depend 
on Running Marathon)Running

Marathon



Markov Blanket
A node is conditionally independent of ALL other nodes 
given its Markov blanket, i.e. its parents, children, and 
“spouses’’ (parents of common children)

(Proof left as a homework problem ☺)

Cancer

Smoking

Lung Tumor

Diet

Serum Calcium

Age Gender

Exposure to Toxins

[Breese & Koller, 97]



What are BNs useful for?

� Diagnosis: P(cause|symptom)=?

Medicine Bio-
informatics

Computer 
troubleshooting

Stock market

Text 
Classification

Speech
recognition

� Prediction: P(symptom|cause)=?

class
max� Classification:          P(class|data)

� Decision-making (given a cost function)

1C 2C

symptomsymptom

cause



Application Examples
APRI system developed at AT&T Bell Labs

learns & uses Bayesian networks from data to identify customers 
liable to default on bill payments

NASA Vista system
predict failures in propulsion systems

considers time criticality & suggests highest utility action

dynamically decide what information to show



Application Examples

Office Assistant in MS Office 97/ MS Office 95
Extension of Answer wizard
uses naïve Bayesian networks
help based on past experience (keyboard/mouse use) and task user is doing currently
This is the “smiley face” you get in your MS Office applications

Microsoft Pregnancy and Child-Care
Available on MSN in Health section
Frequently occurring children’s symptoms are linked to expert modules that repeatedly 

ask parents relevant questions
Asks next best question based on provided information
Presents articles that are deemed relevant based on information provided



Fault diagnosis using probes

Software or hardware
components

Goal:  finding  most-likely  diagnosis

1X

4T
1T

2T 3T

2X 3X
� Efficiency (scalability)

� Missing data/noise: 
sensitivity analysis

� “Adaptive” probing: 

� selecting “most-
informative” probes

� on-line 
learning/model 
updates

� on-line diagnosis
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Probe outcomes

Issues:

Pattern discovery, classification,
diagnosis and prediction

Pattern discovery, classification,
diagnosis and prediction

IBM’s systems management applications
Machine Learning for Systems @ Watson 

(Hellerstein, Jayram, Rish (2000)) (Rish, Brodie, Ma (2001))

End-user transaction
recognition

5R 5R3R 2R 2R1R2R

Remote Procedure Calls (RPCs)

BUY?
SELL?

OPEN_DB?
SEARCH?

Transaction1 Transaction2



Probabilistic Inference Tasks

∑=
X/Aa

*
k

*
1 e),xP(maxarg)a,...,(a 

evidence)|xP(X)BEL(X iii ==

� Belief updating:

� Finding most probable explanation (MPE) 

� Finding maximum a-posteriory hypothesis

� Finding maximum-expected-utility (MEU) decision  
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Belief Updating Task: Example

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea

P (smoking| dyspnoea=yes ) = ?



Belief updating: find P(X|evidence)

exp(w*))O(nComplexity:

“Moral” graph

S

X D

BC

P(s|d=1)

∑
= cxbd ,,,1

P(s)P(c|s)P(b|s)P(x|c,s)P(d|c,b)=

Variable Elimination

∑
=1d

∑
x

P(s) ∑
b

P(b|s)

),,,( xbdsf

∑
c

P(c|s)P(x|c,s)P(d|c,b)

C B

DX

Efficient inference: variable orderings, conditioning, approximations

W*=4
”induced width” 
(max induced clique size)

==∝
=
== 1)dP(s,
1)P(d
1)dP(s,



Variable elimination algorithms
(also called  “bucket-elimination”)

Belief updating: VE-algorithm elim-bel (Dechter 1996)

∑ ∏
b Elimination operator

P(a|e=0)

W*=4
”induced width” 
(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e=0

B

C

D

E

A

e)(a,h D

(a)h E

e)c,d,(a,h B

e)d,(a,h C



∏b
max Elimination operator

MPE 
probability

W*=4
”induced width” 
(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e=0

B

C

D

E

A

e)(a,h D

(a)h E

e)c,d,(a,h B

e)d,(a,h C

Finding
VE-algorithm elim-mpe  (Dechter 1996)

)xP(maxMPE
x

=

),|(),|()|()|()(max
by  replaced is              

,,,,
cbePbadPabPacPaPMPE

:

bcdea
=
∑ max 



Generating the MPE-solution

C: 

E: 

P(b|a)   P(d|b,a)   P(e|b,c)B: 

D:

A: P(a)

P(c|a)

e=0 e)(a,h D

(a)hE

e)c,d,(a,h B

e)d,(a,hC

(a)hP(a)max arga'  1. E

a
⋅=

0e'  2. =

)e'd,,(a'hmax argd'   3. C

d
=

)e'c,,d',(a'h
)a'|P(cmax argc'   4.

B
c

×
×=

       

)c'b,|P(e')a'b,|P(d'
)a'|P(bmax argb'  5.

b
××

×=
     

)e',d',c',b',(a'  Return



Complexity of VE-inference: ))(exp ( *
ownO

).  (denoted
Ggraph   theof thecalled is graph  induced  theof width The

ordering. in thefirst   thelast to from  node,each  of neighborsearlier 
connectingy recursivelby  obtained is    ordering  thealong '  The

nodes. all among (X) width maximum  theisgraph  a of  width  The
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*
o
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Ordering is important!  But finding min-w* ordering is NP- hard…
Inference is also NP-hard in general case [Cooper].

4*
1

=ow 2*
2

=ow“Moral” graph
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D E
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B

C

D

E

A

E

D

C

B
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Learning Bayesian Networks

� Incremental learning:   P(H)   or

S C� Learning causal relationships:

� Efficient representation and 
inference

� Handling missing data:      <1.3  2.8 ??  0  1 >

<9.7  0.6  8  14 18>
<0.2  1.3  5  ??  ??>  
<1.3  2.8  ??  0  1 >
<??   5.6  0   10 ??>

……………….

� Combining domain expert 
knowledge with data



Learning tasks: four main cases

� Known graph

C

S
B

DX

�Complete data:
parameter estimation (ML, MAP)

�Incomplete data: 
non-linear parametric 
optimization (gradient descent, EM)

P(S)

P(B|S)

P(X|C,S)

P(C|S)

P(D|C,B)

– learn  parameters

C
S

B

DX

)ˆ Score(G max arg  G
G

=

C
S

B

DX

� Unknown graph
�Complete data: 

optimization (search 
in space of graphs)

�Incomplete data:
structural EM,
mixture models

– learn graph and parameters 



Learning Parameters: complete data
(overview)

� ML-estimate: )|(logmax Θ
Θ

DP - decomposable!

� MAP-estimate
(Bayesian statistics)

)()|(logmax ΘΘ
Θ

PDP

Conjugate priors  - Dirichlet ),...,|( ,,1 XXX mDir papapa ααθ

X

C B

XPa

)|(
   ,

X

x

xP
X

pa
pa =θ

Multinomial

      )ML( 
,

,
,

∑
=

x
x

x
x

X

X

X N
N

pa

pa
paθ

counts

      ) MAP(
,,

,,
,

∑∑ +
+

=

x
x

x
x

xx
x

XX

XX

X N
N

papa

papa
pa α

α
θ Equivalent sample size

(prior knowledge)



Learning Parameters
(details)













Learning Parameters: incomplete data

EM-algorithm:
iterate until convergence

Initial parameters 

Current model
)(G,Θ

Non-decomposable marginal likelihood (hidden nodes)

S  X  D  C  B
<? 0  1  0  1>  
<1  1  ? 0  1>
<0  0  0  ? ?>
<?  ? 0  ? 1>………

Data

Expected  counts

Expectation 
Compute EXPECTED 
Counts via inference in BN

Update parameters 
(ML, MAP)

Maximization

),,|,(

][

1

,)(

Gyxp

NE
k

N

k
x

xXP X

Θ

=

∑
=

��������

pa



Complete data – local computations

Incomplete data (score non-
decomposable):stochastic methods

Local greedy search; K2 algorithm

Learning graph structure

NP-hard
optimization

� Heuristic search:
G

maxargFind )ˆ Score(G               G =

C

S

BC

S

B

Add S->B

C

S
B

Delete 
S->B

C

S
B

Reverse
S->B

� Constrained-based 
methods (PC/IC algorithms)
� Data impose independence 
relations (constraints) on graph 
structure



Scoring function:
Minimum Description Length (MDL)

� Learning � data compression

� Other: MDL = -BIC (Bayesian Information Criterion)
� Bayesian score (BDe) - asymptotically equivalent to MDL

||
2

log),|(log)|( Θ+Θ−= NGDPDBNMDL

DL(Model) DL(Data|model)

<9.7  0.6  8  14 18>
<0.2  1.3  5  ??  ??>  
<1.3  2.8  ??  0  1 >
<??   5.6  0   10 ??>

……………….



Model selection trade-offs

class)|P(f1 class)|P(f2
class)|P(fn

1f feature nf feature2f feature

Class

Naïve Bayes – too simple
(less parameters, but bad model)

class)|P(f1 class)|P(f2
class)|P(fn

1f feature nf feature2f feature

Class

Unrestricted BN – too complex
(possible overfitting + complexity)

Various approximations between the two extremes

class)|P(f1 class)|P(f2
class)|P(fn

1f feature nf feature2f feature

Class
TAN:
tree-augmented Naïve Bayes
[Friedman et al. 1997]

Based on Chow-Liu Tree Method
(CL) for learning trees
[Chow-Liu, 1968]



Tree-structured distributions

C

A

B

ED

A joint probability distribution is tree-structured if it can be written as 

∏
=

=
n

i
iji xxPP

1
)( )|()(����

Not a tree – has an (undirected) cycle

C

A

B

ED
A tree (with root A)

P(A,B,C,D,E)=
P(A)P(B|A)P(C|A)
P(D|C)P(E|B)

 tree)directed (a  P(x)for network Bayesian in     ofparent   theis  where )( iij xx

A tree requires only [(d-1) + d(d-1)(n-1)] parameters, where d is domain size
Moreover, inference in trees is O(n) (linear) since their w*=1



Approximations by trees

C

A

B

ED

C

A

B

ED

True distribution P(X) Tree-approximation  P’(X)

How good is approximation? Use cross-entropy (KL-divergence):

∑=
����

����

����

����

)('
)(log)()',(

P
PPPPPD

D(P,P’) is non-negative, and D(P,P’)=0 if and only if P coincides with P’ (on a set of measure 1)

How to find the best tree-approximation?



Optimal trees: Chow-Liu result  
� Lemma 

Given a joint PDF P(x) and a fixed tree structure T, the best 
approximation P’(x) (i.e., P’(x)  that minimizes D(P,P’) ) satisfies

Such P’(x) is called the projection of P(x) on T.

� Theorem [Chow and Liu, 1968]
Given a joint PDF P(x),  the KL-divergence D(P,P’)  is minimized by 
projecting P(x) on a maximum-weight spanning tree  (MSWT) over 
nodes in X, where the weight on the edge                    is defined by 
the mutual information measure
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Proofs
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Chow-Liu algorithm
[As presented in Pearl, 1988]

1. From the given distribution P(x) (or from data generated by P(x)), 
compute the joint distribution 

2. Using the pairwise distributions from step 1, compute the mutual 
information                   for each pair of nodes and assign it as the 
weight   to the corresponding edge                  .

3. Compute the maximum-weight spanning tree (MSWT):
a. Start from the empty tree over n variables
b. Insert the two largest-weight edges
c. Find the next largest-weight edge and add it to the tree if no cycle is 

formed; otherwise, discard the edge and repeat this step.
d. Repeat step (c) until n-1 edges have been selected (a tree is 

constructed).

4. Select an arbitrary root node, and direct the edges outwards from 
the root. 

5. Tree approximation P’(x) can be computed as a projection of P(x) on 
the resulting directed tree (using the product-form of P’(x)).

jixxP ji ≠ allfor  )|(

 );( ji XXI
 ),( ji XX



Summary:
Learning and inference in BNs

� Bayesian Networks – graphical probabilistic models
� Efficient representation and inference
� Expert knowledge + learning from data

� Learning:
� parameters (parameter estimation, EM) 
� structure (optimization w/ score functions – e.g., MDL)
� Complexity trade-off:

� NB, BNs and trees

� There is much more: causality, modeling time (DBNs, HMMs), 
approximate inference, on-line learning, active learning, etc.



Online/print resources on BNs

Conferences & Journals
UAI, ICML, AAAI, AISTAT, KDD

MLJ, DM&KD, JAIR, IEEE KDD, IJAR, IEEE PAMI

Books and Papers 
Bayesian Networks without Tears by Eugene Charniak. AI 

Magazine: Winter 1991.

Probabilistic Reasoning in Intelligent Systems by Judea Pearl. 
Morgan Kaufmann: 1998.

Probabilistic Reasoning in Expert Systems by Richard 
Neapolitan. Wiley: 1990.

CACM special issue on Real-world applications of BNs, March 
1995



Online/Print Resources on BNs

AUAI online: www.auai.org.   Links to:
Electronic proceedings for UAI conferences

Other sites with information on BNs and reasoning under 
uncertainty

Several tutorials and important articles

Research groups & companies working in this area

Other societies, mailing lists and conferences



Publicly available s/w for BNs

List of BN software maintained by Russell Almond at 
bayes.stat.washington.edu/almond/belief.html

several free packages: generally research only

commercial packages: most powerful (& expensive) is 
HUGIN; others include Netica and Dxpress

we are working on developing a Java based BN toolkit here at 
Watson


