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Optimization Flow Control—I: Basic Algorithm
and Convergence

Steven H. Low,Senior Member, IEEE, and David E. Lapsley

Abstract—We propose an optimization approach to flow control
where the objective is to maximize the aggregate source utility
over their transmission rates. We view network links and sources
as processors of a distributed computation system to solve the
dual problem using a gradient projection algorithm. In this
system, sources select transmission rates that maximize their
own benefits, utility minus bandwidth cost, and network links
adjust bandwidth prices to coordinate the sources’ decisions.
We allow feedback delays to be different, substantial, and time
varying, and links and sources to update at different times and
with different frequencies. We provide asynchronous distributed
algorithms and prove their convergence in a static environment.
We present measurements obtained from a preliminary prototype
to illustrate the convergence of the algorithm in a slowly time-
varying environment. We discuss its fairness property.

Index Terms—Asynchronous algorithm, congestion pricing,
convergence, gradient projection, optimization flow control.

I. INTRODUCTION

I T SEEMS better to serve elastic traffics [31] with variable
bandwidth using, in the context of ATM for instance,

available bit rate (ABR) rather than constant bit rate (CBR)
service. Indeed, this folklore can be formally proved in the
following abstract model: suppose a network offers fixed and
variable bandwidth to a set of elastic sources and prices them
according to excess demand, and the sources freely purchase
them to maximize their own benefits. The interpretation is that
a source that desires only fixed bandwidth in the model would
subscribe to CBR in practice, and a source that desires both
fixed and variable bandwidth would subscribe to ABR with
a minimum cell-rate guarantee. We show in [23], [24] that
at equilibrium, where all sources are at their optimality and
demand equals supply,everysource desires astrictly positive
amount of variable bandwidth. This observation provides per-
haps another motivation for end-to-end flow control because
reactive flow control, where sources adjust their transmission
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rates in response to changes in network conditions, is a
practical way to provision variable bandwidth.

The purpose of this paper is to propose an optimization
approach to flow control, where the control mechanism is
derived as a means to optimize a global measure of network
performance. We will present synchronous and asynchronous
algorithms, and prove their convergence in a static network
environment. We will then describe a prototype and present
experimental measurements to illustrate the algorithm’s con-
vergence in a slowly time-varying environment.

A. Summary

Consider a network that consists of a setof unidirectional
links of capacities The network is shared by a
set of sources, where sourceis characterized by a utility
function that is concave increasing in its transmission
rate The goal is to calculate source rates that maximize the
sum of the utilities over subject to capacity
constraints. Solving this problem centrally would require not
only the knowledge of all utility functions, but worse still,
complex coordination among potentially all sources due to
coupling of sources through shared links. Instead, we propose
a decentralized scheme that eliminates this requirement and
adapts naturally to changing network conditions. The key
is to consider the dual problem whose structure suggests
treating the network links and the sources as processors of
a distributed computation system to solve the dual problem
using gradient projection method. Each processor executes a
local algorithm, communicates its computation result to others,
and the cycle repeats.

The algorithm takes the familiar form of reactive flow
control. Based on the localaggregatesource rate each link

calculates a “price” for a unit of bandwidth at link A
source is fed back the scalar price where the sum
is taken over all links that uses, and it chooses a transmission
rate that maximizes its own benefit utility
minus the bandwidth cost. These individually optimal rates

may not be socially optimal for a general price
vector i.e., they may not maximize the aggregate
utility. The algorithm iteratively approaches a price vector

that aligns individual and social optimality such
that indeed maximizes the aggregate utility.

The algorithm is partially asynchronous[5, Ch. 6] in
which the sources and links may compute based on outdated
information, they may communicate at different times and with
different frequencies, and the communication delays may be
substantial, different and time-varying. We prove that as long

1063–6692/99$10.00 1999 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 12, 2008 at 13:23 from IEEE Xplore.  Restrictions apply.



862 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 6, DECEMBER 1999

as the intervals between updates are bounded, the algorithm
converges to yield the optimal rate.

In equilibrium, sources that share the same links do not
necessarily equally share the available bandwidth. Rather, their
shares reflect how they value the resources as expressed by
their utility functions and how their use of the resources
implies a cost on others. This could be a basis to provide
differentiated services in terms of different rate allocations.

The basic algorithm is derived and its convergence proved in
a static environment, where link capacities and the set of active
sources remain unchanged. The algorithm generalizes directly
to the case of time-varying environment. We present measure-
ments from our prototype that illustrate the convergence of the
algorithm when network condition changes.

The paper is structured as follows. In Section II, we present
the optimization problem and its dual that motivate our ap-
proach. In Section III, we derive a synchronous algorithm
and describe its convergence. This algorithm and its con-
vergence proof are extended to an asynchronous setting in
Section IV. In Section V, we remark on fairness and pricing.
In Section VI, we present experimental results on convergence
obtained from our prototype. Proofs of convergence are in the
two Appendices.

B. Extensions

We now comment on past works and extensions. The
basic algorithm has been presented in [20] and a preliminary
prototype is briefly discussed in [19]. In this paper, we analyze
its convergence and fairness properties through analysis and
implementation. The basic algorithm requires communication
of link prices to sources and source rates to links, and hence,
cannot be implemented on the Internet. This communication
requirement is greatly simplified in [25], [21], as follows. In
[25], we describe a way for links to estimate source rates using
local information and prove that optimality is still maintained.
This eliminates the need for explicit communication from
sources to links. In the reverse direction, we proposed a
method in [21] that accomplishes the communication from
links to sources using only binary feedback. This can be im-
plemented using the proposed explicit congestion notification
(ECN) bit in the IP header [9], [27]. These two simplifications
are combined into a flow-control scheme we call random early
marking (REM), a variant of random early detection (RED)
[10], that not only stabilizes network queues, but also tracks
a global optimum. REM is made more robust in the face of
large feedback delays by having links take weighted averages
of past prices [1]. REM and its enhancements will be detailed
in Part II of this paper.

The value of the optimization model presented in this
paper is twofold. First, although it may not be possible, or
critical, that optimality is exactly attained in a real network,
the optimization framework offers a means to explicitly steer
the entirenetwork toward a desirable operating point. We will
see below that flow control can be regarded as a distributed
computation over the network, and hence the behavior of
the network as a whole is easily understandable. Second,
it is useful to treat practical flow-control schemes simply

as implementations of a certain optimization algorithm. The
optimization model then makes possible a systematic method
to design and refine these schemes where modifications to a
flow-control mechanism are guided by modifications to the
optimization algorithm. For instance, it is well known that the
Newton algorithm has much faster convergence than gradient
projection algorithm. By replacing the gradient projection
algorithm presented in this paper by the Newton algorithm,
we derive in [2] a practical Newton-like flow-control scheme
that can be proved to maintain optimality and has the same
communication requirement as the basic scheme here but
enjoys a much better convergence property. We have also
applied pole-placement technique in linear control to the model
here to stabilize its transient in the face of large feedback
delays. This has led to a more robust REM, presented in [1].

C. Related Works

An extensive literature exists on flow control, including the
original TCP flow control [15] and recent enhancement in
[10], the binary feedback schemes of, e.g., [28], [6], two-bit
feedback scheme of [22], the control theoretic approach of,
e.g., [3], [29], [7], etc. Also, see a recent review in [14].

A key premise of optimization based flow control [8],
[11]–[13], [16], [17], [19]–[21], [25] is that sources with
different valuation of bandwidth should react differently to
network congestion. All these works motivate flow control by
an optimization problem and derive their control mechanisms
as solutions to the optimization problem. They differ in their
choice of objective functions or their solution approaches,
and result in rather different flow-control mechanisms to
be implemented at the sources and the network links. Our
model is closest to that in [16], [17]. Indeed, both their work
and ours have the same objective of maximizing aggregate
source utility. In [16], [17], this objective is decomposed into
optimization subproblems for the network and the sources, and
they propose a different mechanism for its solution where each
source chooses a willingness to pay and the network allocates
rates to these sources in a way that is proportionally fair. An
interesting feature of their approach is that it allows the users to
decide their payments and receive what the network allocates,
whereas in our approach, the users decide their rates and pay
what the network charges. See a more detailed comparison in
Remark 3 after Algorithm A1 in Section III.

II. OPTIMIZATION PROBLEM

In this section, we state the optimization problem that leads
to our congestion control framework, and suggest a solution
approach. Algorithms to solve the problem will be given in
the following sections.

A. Primal Problem

Consider a network that consists of a set
of unidirectional links of capacity The network
is shared by a set of sources. Source is
characterized by four parameters The path

is a set of links that source uses, is
a utility function, and are the minimum and
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maximum transmission rates, respectively, required by source
Source attains a utility when it transmits at rate

that satisfies We assume is increasing and
strictly concave in its argument. Let denote the
range in which source rate must lie and
be the vector. For each link let
be the set of sources that use linkNote that if and
only if

Our objective is to choose source rates
so as to

(1)

subject to (2)

The constraint (2) says that the aggregate source rate at any
link does not exceed the capacity. A unique maximizer, called
the primal optimal solution, exists since the objective function
is strictly concave, and hence continuous, and the feasible
solution set is compact.

Though the objective function is separable in the source
rates are coupled by the constraint (2). Solving the primal
problem (1)–(2) directly requires coordination among possibly
all sources and is impractical in real networks. The key to a
distributed and decentralized solution is to look at its dual.

B. Dual Problem

Define the Lagrangian

Notice that the first term are separable in and hence

The objective function of the dual problem is
thus (e.g., [5, Sec. 3.4.2], [26])

where

(3)

(4)

and the dual problem is

(5)

The first term of the dual-objective function is decom-
posed into separable subproblems (3)–(4). If we interpret

as the price per unit bandwidth at link then is the
total price per unit bandwidth for all links in the path of
Hence, represents the bandwidth cost to sourcewhen

it transmits at rate and represents the maximum
benefit can achieve at the given price We shall see below
that this scalar summarizes all the congestion information
source needs to know. A source can be induced to
solve maximization (3) by bandwidth charging. For each
a unique maximizer, denoted by exists since is
strictly concave.

In general, may not be primal optimal, but
by duality theory, there exists a dual optimal price
such that is indeed primal optimal. Hence, we
will focus on solving the dual problem (5). Once we have
obtained the primal optimal source rates
can be computed by individual sourcesby solving (3), a
simple maximization (see (6) below). The important point
to note is that, given individual sources can solve (3)
separately without the need to coordinate with other sources.
In a sense, serves as a coordination signal that aligns
individual optimality of (3) with social optimality of (1).

C. Notations and Assumptions

Unless otherwise specified,usually denotes a vector whose
th component is some defined before is introduced. For

a vector or matrix denotes its transpose. For a set
denotes its cardinality. For a vector denotes the

Euclidean norm, and
without subscript denotes any norm. For a matrix

denotes the corresponding induced norm.
It will sometimes be convenient to represent the information

and in terms of a routing matrix whose th
entry is if (or ), and 0 otherwise.

For each source the th component of
is the (path) bandwidth price thatfaces. For each link

the th component of is the aggregate
source rate at link

Let be the unique maximizer in (3). We will abuse
notation and use both as a function of scalar price

and of vector price When is a scalar,
by the Kuhn-Tucker theorem, is given by

(6)

where Here is the inverse of
which exists over the range since

is continuous and strictly concave (condition C1 below).
Indeed is the demand function in microeconomics. It is
illustrated in Fig. 1. When is a vector,

The meaning should be clear from the context.
Let

Assumptions on the utility functions are:
C1: on the interval the utility functions

are increasing, strictly concave, and twice continuously
differentiable. For feasibility, assume for all

C2: the curvatures of are bounded away from zero on
for all
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Fig. 1. Source ratexs(p) (y axis) as a function of (scalar) pricep (x axis).

III. SYNCHRONOUS DISTRIBUTED ALGORITHM

In this section, we present the basic synchronous algorithm
and prove its convergence under conditions C1 and C2. This
algorithm and its convergence proof form the basis of the
asynchronous algorithm and the proof of its convergence, to
be described in the next section.

We will solve the dual problem using the gradient projection
method (e.g., [26], [5]) where link prices are adjusted in
opposite direction to the gradient as follows:

(7)

Here is a stepsize, and Recall that
denotes the unique maximizer in (3). Then

Since are strictly concave, is continuously differen-
tiable (see [5, p. 669]) with derivatives given by

(8)

where is the aggregate source rate at
link Substituting (8) into (7) we obtain the following price
adjustment rule for link

(9)

This is indeed consistent with the law of supply and demand: if
the demand for bandwidth at link

exceeds the supply raise price otherwise, reduce
price As with (3), the decentralized nature of (9) is
striking: though the dual problem is not separable ingiven
aggregate source rate that goes through link the
adjustment algorithm (9) is completely distributed and can be
implemented by individual links using only local information.

This suggeststreating the network links and the sources
as processors in a distributed computation systemto solve

the dual problem (5). In each iteration, sourcesindividually
solve (3) and communicate their results to links
on its path. Links then update their prices according to (9)

and communicate the new prices to sourcesand the cycle
repeats. We summarize.

Algorithm A1: Synchronous Gradient Projection—
Link ’s Algorithm: At times link

1) receives rates from all sources that go
through link

2) computes a new price

where
3) communicates new price to all sources

that use link

Source ’s Algorithm: At times source

1) receives from the network the sum
of link prices in its path;

2) chooses a new transmission rate for the next
period1

where is given by (6);
3) communicates new rate to links in

its path.

Remarks:

1) As noted in Section I-B, a link requires the aggregate
source rates and a source the path price
for their updates. This communication can be greatly
simplified, leading to the REM algorithm discussed in
[21], [1].

2) Newton’s method, where the direction of price adjust-
ment is the negative gradient scaled by the inverse of
the Hessian typically has a much faster conver-
gence than the gradient projection algorithm. However,
according to Lemma 3 below, this requires that a link
know the (second derivative of the) utility functions of
nonlocal sources, and hence is not practical. In [2], we
describe and prove the optimality of a practical Newton-
like algorithm that enjoys a better performance.

3) Our work is closely connected to Kelly’s as described
in [16], [17], [12]. Both solve the same optimization
problem (1)–(2), but differ in the solution approach
which leads to different flow-control algorithms, which
in turn lead to different marking implementation of the
algorithms.

The approach taken in [16], [17] decomposes
problems (1)–(2) into a user subproblem and a network
subproblem. The user subproblem is to choose a
willingness-to-pay given the path price in order to
maximize its benefit, and the network subproblem is to
choose source rates given users’ willingness-
to-pay vector in order to maximize

It is shown in [16] that there exist path
prices source rates and
willingness-to-pay with such
that solves user ’s subproblem, and solves the

1Here, we abuse notation and usexs(�) both as a function of time, to
denote source rate at timet under Algorithm A1, and as a function of price
given by (6). The meaning should be clear from the context.
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network subproblem and the system (primal) problem
(1)–(2). Our approach is simply to solve the dual of
problem (1)–(2) using gradient projection algorithm.

A major effort in [17] is to solve the network
subproblem, or equivalently, the dual of the network
subproblem [not to be confused with our dual problem

in (5)].2 To this end, they propose the following
primal algorithm:

(10)

(11)

to solve a relaxation of the network subproblem, and
the following dual algorithm to solve a relaxation of its
dual (given

(12)

(13)

The rate adjustment (10) has the attractive feature of
multiplicative decrease and additive increase common in
several popular flow-control schemes. Either algorithm
(10)–(11) or (12)–(13) can be used to compute the
equilibrium source rates.

Our gradient projection algorithm is closer to Kelly’s
dual algorithm (12)–(13). Indeed, in the special case
where our algorithm A1 reduces
to (12)–(13), provided we take in (12),
though this choice of does not satisfy certain
conditions required for the stability proof in [17].

In [17], the nonnegativity constraint on the source
rates and link prices is relaxed in (10)–(13). This allows
a simple and elegant stability proof via a Lyapunov
argument. In our case, the projection to the positive
quadrant complicates the stability analysis considerably
(see the Appendices). In a sense, the dual-objective
function can be thought of as a Lyapunov function
for the discrete time system (9),provided the stepsize
is sufficiently small.

In [12], a marking scheme is proposed to implement
the primal algorithm (10)–(11), where the marks convey
to a source the charge and the source adjusts
its rate to equalize the charge with its willingness-
to-pay In Part II of this paper, we describe a
marking scheme that implements our algorithm where
the marks allow a source to estimate its path price
that is needed in its rate adjustment. In view of the
remark above, this can also be regarded as a marking

2Of course, ifUs(xs) = ws log xs; then our primal problem (1)–(2) and
its dual (5) are equivalent to their network subproblem and its dual.

implementation of Kelly’s dual algorithm (12)–(13) for
a specific utility function.

Our first main result states that Algorithm A1 generates a
sequence that approaches the optimal rate allocation, provided
conditions C1 and C2 are satisfied. These conditions imply
that is Lipschitz which guarantees the convergence of
gradient projection algorithms. Define

and In words,
is the length of a longest path used by the sources,is the
number of sources sharing a most congested link, andis the
upper bound on all (see Section II-C).

Theorem 1: Suppose assumptions C1 and C2 hold, and
the stepsize satisfies Then starting from any
initial rates and prices every accu-
mulation point of the sequence generated
by Algorithm A1 are primal-dual optimal.

Proof: See Appendix I.
Though there is a unique maximizer to the primal

problem, there may be multiple dual optimal prices because at
optimality only thesumof link prices is constrained,

Theorem 1 does not guarantee convergence to
a unique pair though any convergent subsequence
yields the optimal rate allocation

We now comment on the convergence rate when the dual
optimal price is unique. Then letting be
the deviation from the unique limit point, it can be shown that
the price process linearized around satisfies

where diag is an diagonal matrix
with diagonal elements defined by (24) in Appendix I.
Hence, the rate of convergence near the equilibrium is de-
termined by the spectral radius of the positive semidefinite
matrix

IV. A SYNCHRONOUSDISTRIBUTED ALGORITHM

The synchronous model of the last section assumes that
updates at the sources and the links are synchronized to
occur at times In this section, we will extend
the model to an asynchronous setting which better resembles
the reality of large networks. In such networks sources may
be located at different distances from the network links.
Network state (prices in our case) may be probed by different
sources at different rates, e.g., the resource management (RM)
cells in an ATM networks are sent at different rates by
different sources. Feedbacks may reach different sources after
different, and variable, delays. These complications make
our distributed computation system consisting of links and
sources asynchronous. In such a system, some processors may
compute faster and execute more iterations than others, some
processors may communicate more frequently than others,
and the communication delays may be substantial and time-
varying.

We now present the asynchronous version of Algorithm A1
and prove its convergence. Our asynchronous model and the
convergence proof follow the approach of [32] and belong to
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the class of partially asynchronous algorithms discussed in [5,
Ch. 7] (see comments after Theorem 2 below).

Let be a set of times at which link
adjusts its price based on its current knowledge of source
rates. At times link prices are unchanged, i.e.,

Similarly, let
be a set of times at which sourceupdates its rate. At times

At times link computes an estimate of the
gradient and updates its price according to

(14)

The estimate is computed using aggregate past source
rates at link [cf. (8)]

(15)

(16)

(17)

with

with (18)

In (15)–(16), is the aggregate estimated
source rates. The estimate of individual source rate is the
weighted average of its past rates [see (17)–(18)]. It depends
on and can be different for different link-source pairs

and at different times It includes the possibility of
information arriving at link out of order. This model is very
general and allows in particular the following two popular
types of policies.

1) Latest data only:only the last received rate for
some (possiblyunknown) is used
to estimate i.e., if and 0
otherwise.

2) Latest average:only the average over the latestre-
ceived rates is used in estimate i.e.,
for and 0 otherwise, for some
(possiblyunknown)

The interpretation in both cases is that rates for
have not been received at linkby time and rates for

or for have been discarded.
At times source computes an estimate of

path price and updates its rate according to

(19)

where is given by (6), and

(20)

(21)

with

with (22)

In (19)–(20), the source computation is the same as in the
synchronous case, except that it is based on its current estimate

of path prices. As in the link algorithm, the estimated link
price is obtained by “averaging” over the past available
prices [see (21)–(22)], and can depend on Again the
“averaging” model is very general and include the policy of
using only the last received price or the average over the last

prices; see above.
Note that (17) and (21) above tacitly assume that the one-

way delay between any pair is no more than
We now present the asynchronous algorithm A2. A2 is

similar to A1, except that communications are not coordinated
and computations are carried out using possibly outdated
information.

Algorithm A2: Asynchronous Gradient Projection—
Link ’s Algorithm:

1) From time to time, link receives source rates from
sources that go through link Link replaces the oldest
rates in its local memory with the newly received rates.

2) At each update time link computes an estimate
of (see (15)–(18) above) and adjusts

its price according to

At times
3) From time to time link communicates the current price

to sources that go through link

Source ’s Algorithm:

1) From time to time, source receives bandwidth prices
fed back from links in its path. Source replaces the
oldest prices in its local memory with the newly received
ones.

2) At each update time source chooses a new
rate based on its current estimate of path price
(see (20)–(22) above)

It then transmits at this rate until the next update, i.e.,
for

3) From time to time, source communicates the current
source rate to links in its path.

This concludes our description of Algorithm A2. We now
turn to its convergence.

Let be theideal rate if source knows the exact price
at time instead of its estimate

(23)

where is given by (6) and evolves according
to Algorithm A2. Our second main result states that the
difference between the various estimates and their true values
converges to zero and that Algorithm A2 yields the optimal
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rate allocation, provided the following additional assumption
is satisfied:

C3: For all links and sources the time between consecu-
tive updates (i.e., the difference between consecutive elements
of or is bounded.

Theorem 2: Suppose assumptions C1–C3 hold. Provided
that the stepsize is sufficiently small, then starting from any
initial rates and prices every accu-
mulation point of the sequence generated
by Algorithm A2 are primal-dual optimal. Moreover, for all
sources the error in price estimation and
rate calculation converges to zero, and the
error in gradient estimation by the links
converges to zero.

Proof: See Appendix II.
As in [32], the key to the proof is to show that the price

adjustment (14) remains in the descent direction and hence,
the value of the dual-objective function is decreased in each
iteration. The proof in our case is somewhat more complicated
because, since our minimization is a dual problem, the gradient
estimate depends on previous prices in a
more complex way through (15)–(33). Moreover, a critical
assumption that is natural in the routing context there ([33,
eq. 3.11], which is needed to derive their equations (A.6)
and (A.9)) has no equivalent in our context, and hence, other
properties of our algorithm need to be exploited in order
to prove that descent direction is maintained [see Lemma
4c)–4e)] and Lemma 5 in Appendix II).

V. FAIRNESS, QUASI-STATIONARITY , AND PRICING

In this section, we comment on some fairness and imple-
mentation issues.

A. Fairness

A proportionally fair rate vector is defined in [16] as a
feasible rate vector such that for any other feasible
vector the aggregate of proportional changes is
nonpositive

The primal optimal solution is proportionally fair
when all user utilities are logarithmic,
As shown in [17], this follows from the optimality condition:
for all feasible

where thestrict inequality follows from the strict concavity
of

If user utilities are all equal but not necessarily logarithmic,
then the following properties on homogeneous sources follow
from (6).

Theorem 3: Suppose condition C1 holds and, for all
and Let be

the primal optimal rate vector.

a) If sources and share the same path,
then

b) If the path of is a subset of then

c) More generally, supposeis a dual-optimal price vector.
If then and equality holds if and
only if

We now comment on these properties. If and share
the same path but one has a higher marginal utility, say

for all then Hence, the choice of
utility function implements priority among connections with
the same path.

Theorem 3b) implies that our scheme discriminates against
long connections. We emphasize, however, that by “long” we
mean connections that go through more links, not necessarily
those merely having higher propagation delays in accessing the
network. This is natural from the perspective of maximizing
the total utility; since all utility functions are identical, the
longer a connection, the more resources it consumes for
each unit of increase in aggregate utility, and hence, short
connections should be favored. If this is undesirable, it can
be remedied by weighting the utility functions. Indeed, almost
any desirable rate vector can be attained in equilibrium by
appropriate choice of utility functions (see Theorem 4 below).

Theorem 3c) justifies treating the bandwidth price
as a measure of congestion thatfaces: the higher

the congestion the lower the rate.
A rate vector is calledfeasibleif it satisfies the capacity

constraint (2). It is calledattainable if there exist utility
functions that satisfy condition C1 for which the unique
primal optimal rate vector is A link is calledsaturated
with respect to if Assume:

C4: every link has a single-link connection, i.e., for each
there exists a source with
We can restrict utility functions to be of the form

or and choose the parameters or
appropriately to achieve almost any desirable allocation in a
static network.

Theorem 4: Suppose C1 and C4 hold, and suppose util-
ity functions are for all (or

for all Then,
a feasible rate vector is attainable provided all links are
saturated and, for all

or

Proof: A feasible rate vector is primal optimal if and
only if the Kuhn–Tucker condition
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and the complementary slackness are satisfied. Since all links
are saturated by assumption, the complementary slackness
holds. By C4, we can express Substituting
this into the Kuhn–Tucker condition, using the appropriate
utility functions, yields the theorem.

Theorem 4 implies, in particular, that a max–min fair or
proportionally fair rate can be attained by appropriate choice
of utility functions.

B. Time-Varying Environment

Algorithms A1 and A2 are derived, and their convergence
proved, assuming that the link capacities the set of
sources and their utility functions are unchanged. However
the algorithms extend directly to the case when these quantities
are time varying. They have the important virtue of not
requiring to be restarted when network condition changes.

Each source that comes on board executes the same source
algorithm [(A1) or (A2)] with the time invariant utility func-
tion replaced by the current utility at time Each
link executes the same link algorithm, except that in computing

at time in Step 2, thecurrent link capacity
is used in place of the constant capacityand the set
of currently active sources through linkis used in place of
the constant set

If the change in link capacities and sources is slow relative
to the convergence of the algorithm, the algorithm tracks the
moving optimal rates. This is illustrated by the experimental
measurements presented in Section VI below.

C. Pricing and Traffic Control

Though network feedbacks are discussed in terms of band-
width “prices,” they may or may not be part of the charge a
user pays. If they are, then bandwidth charging provides an
incentive for the sources to choose socially (primal) optimal
rates. In addition to encouraging efficient sharing of resources,
pricing for network services also serves other functions. If
congestion pricing interferes too much with these functions,
then the “prices” discussed in this paper should be regarded
as simply a control signal to guide sources’ decisions.

VI. EXPERIMENTAL RESULTS

In this section, we briefly summarize a user-space imple-
mentation of the basic algorithm and present experimental
measurements that illustrate its convergence in a slowly time-
varying environment. A detailed description of the prototype
can be found in [19].

A. Overview of Implementation

Our experimental network consists of two IBM-compatible
PC’s (Pentium 233 MHz) running the FreeBSD-2.2.5 oper-
ating system. Each PC was equipped with 64 MB of RAM
and 100-MB/s PCI ethernet cards. The PC’s were connected
via ethernet. Implementing the protocol involved writing two
applications:ofc client application, andofcd routing demon.
We refer to our algorithm as OFC.

Fig. 2. Logical topology. Source Si transmits to destinations Di; i = 1; 2; 3:

Two instances of theofc client application are required
for each connection: a source instance operating in ACTIVE
mode and a destination instance operating in PASSIVE mode.
Whenever the OFC transport protocol is used, theofcddemon
must be run on all computers that have OFC clients (sources
or destinations) and on intermediate computers. Theofc client
processes communicate with each other via theofcd routing
demons. All OFC clients transmit their packets to the routing
demon on their host, which then either forward the packet
to another machine, or deliver it to a client process on the
host. The OFC demons are also responsible for calculating the
price on their outgoing links and placing this price in special
control packets as they pass through.

Each computer has a standard internet protocol stack con-
sisting of TCP/UDP running on IP, which sits above the
network device drivers. The OFC protocol runs on top of the
UDP layer, with OFC packets transported across the network
on UDP connections. OFC packets are 500-B long and consist
of a 10-B header, 1-B end of packet marker, and a 489-B data
payload. The header contains, among other things, fields that
indicate payload type, bandwidth price, and source rate.

An in-kernel implementation of the protocol would have
a better performance, but this would require recompiling the
kernel of every machine on which we want to implement OFC.
A user-space implementation is much more portable: we only
need to recompile the application software and execute it on
the target machine. We opted for portability over performance.
We have tried a number of different architectures and designs,
and have found that the design with the best performance was
a single context, monolithic implementation (see [18]) where
all of the packet processing was performed within a single
thread (see [19] for more details).

B. Convergence

We now present two sets of experimental results and com-
pare them with theoretical prediction. As expected, the bot-
tlenecks of our testbed, which are links in our theoretical
model, are not the transmission medium (ethernet) but the host
processing. This set of bottlenecks can be represented by the
logical network in Fig. 2.

Experiment 1—Homogeneous Sources:Each source trans-
mitted data for a total of 120 s, with their starting times
staggered by intervals of 40 s: source 1 started transmitting
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(a) (b)

Fig. 3. Experiment 1—homogeneous sources. Heavy lines are theoretical rates and prices and light lines are measured ones. The sum of user rates is
approximately 200 cells per 500-ms measurement interval. (a) Theoretical rate is the optimal ratexs for each source (all have identical utility). (b) Theoretical
price is the path price of the longest connection that was on and should roughly equal the sum of the measured link prices.

at time 0, source 2 at time 40 s, and source 3 at time 80 s. The
utility functions of the sources were set to
with equal to 1 10 for all sources The
stepsize used by the router to adjust its link prices was set
to 1.5 10 Client applications as well as routers dumped
receive/transmit statistics to file every 500 ms. The routers also
calculated new prices every 500 ms. The target bandwidth was
set at 200 packets per 500 ms measuring interval (1.6 MB/s).

Fig. 3(a) shows the destination receive rates for each source.
The sum of the traces is constant at about 200 packets per
measuring interval, which was the target value set at the
routers. The destination receive rates varied in accordance with
the changes in link prices in Fig. 3(b). From 80 to 120 s, when
all sources were active, each destination was receiving data at
the same rate, and that the longer connections S1-D1 and S2-
D2 were not discriminated against. This was because link 1
was not saturated and hence had zero price.

Also shown in both graphs is the steady-state rate and
price calculated by solving the primal and dual problems in
Section II. Note that in Fig. 3(b), the measured prices are link
prices and the theoretical price is the path price which should
equal the sum of the link prices. We see that the prototype
behaved as expected and that, provided network conditions
vary slowly, our algorithm tracks the optimum.

Experiment 2—Heterogeneous Sources:The setup in this
experiment is the same as in Experiment 1, except that the
utility function of source 3 has double that of
sources 1 and 2.

Fig. 4(a) and (b) show, respectively, the destination receive
rates and the link prices. As in Experiment 1, the source
rates adjusted dynamically as new sources started or stopped
transmitting. Again, note the close fit between the theoretical
and the measured traces. Due to its higher marginal utility,
source 2 gained twice as much bandwidth as each of sources 1
and 3, and caused the price on link 2 to be pushed higher than
in Experiment 1. It suggests that our algorithm can support
differentiated service in terms of different shares of resource
allocation.

VII. CONCLUSION

We have described an optimization approach to reactive
flow control, and derived a simple asynchronous distributed
algorithm. We allow the sources and network links to commu-
nicate and update their controls asynchronously at different
times, with different frequencies, and after substantial and
random delays. The algorithm is provably convergent to the
global optimal when network conditions are static and seems
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(a) (b)

Fig. 4. Experiment 2—heterogeneous sources. Heavy lines are theoretical rates and prices and light lines are measured ones. (a) Theoretical rate is for
source 1 from time= 0 to 120, and for source 2 fort = 120 to 160, and source 3 fort � 160: (b) Theoretical price is the path price of the longest
connection that was on and should roughly equal the sum of the measured link prices.

to track the optimum when network conditions vary slowly.
The scheme has desirable fairness properties and is extensible
to a multicasting environment.

The algorithm presented in this paper requires commu-
nication between sources and links. As noted in Section I
a practical implementation using only binary feedback from
links to sources is the REM scheme described in [21] and Part
II of this paper. The abstract model here serves as a convenient
framework to systematically refine REM, as illustrated in
[1], [2].

APPENDIX I
PROOF OF THEOREM 1

We will often use vector notation when it is more conve-
nient. We start with the basic properties of the dual objective
function that follow directly from C1.

Lemma 1: Under assumption C1, the dual objective func-
tion is convex, lower bounded, and continuously differ-
entiable.

For any price vector in define by

if

otherwise
(24)

where is defined in (4) and is the unique maximizer
of (3). Let diag be the
diagonal matrix with diagonal elements Note that from
assumption C2 in Section II-C for all

(25)

Recall the routing matrix defined in Section II-C.
Lemma 2: Under condition C1, the Hessian of is given

by where it exists.
Proof: Let denote the Jacobian matrix

whose element is When it exists

if

otherwise

Using (24), we have

(26)

Now from (8), we have and hence

which together with (26) yields the result.
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Recall and defined in Section III before Theorem 1.
Lemma 3: Under conditions C1 and C2, is Lipschitz

with

for all
Proof: Given any using Taylor theorem and

Lemma 2, we have
for some 3.

Hence, We
now show that which yields the desired
result.

Now (e.g., see [5, p. 635])

i.e., is upper bounded by the product of the
maximum row sum and the maximum column sum of the

matrix Since is symmetric,
and hence

where is the number of links in the path of source
By definition and hence

as desired.
These lemmas establish our first main result.
Proof of Theorem 1:The dual objective function is

lower bounded and is Lipschitz from Lemmas 1 and 3.
Then, any accumulation point of the sequence
generated by the gradient projection algorithm for the dual
problem is dual optimal (see [5, p. 214]).

Let be a subsequence converging to
At least one exists since it is easy to show that the level
set of is compact and that
the sequence is decreasing in and hence, in
the level set, provided To show that the
subsequence converges to the
primal optimal source rate note that is
defined on a compact set Moreover it is continuous
and one-to-one (because of thestrict concavity of and
hence, its inverse is continuous on [31,
Theorem 4.17]. From (6), is continuous. Therefore,

3Wherer2D(w) may not exist, at points wherews = U 0

s
(ms) or

ws = U 0

s
(Ms) for some s; derivatives should be replaced by convex

subgradients in the proof. Then, Lemma 3 and Theorem 1 hold. For simplicity,
we will ignore these issues in this paper.

APPENDIX II
PROOF OF THEOREM 2

Define as Let
be the vector of prices

at times For any vector let

denote its th component. Given any define

by

(27)

We assume that conditions C1–C3 hold.
We start with a collection of useful facts. Recall the bound
on defined in assumption C2 of Section II-C, and

the gradient estimate defined in (15)–(18).
Lemma 4:

a) For all
b) There exists a constant such that, for all

and all we have
c) For any

where it exists.
d) For all

e) For all

Proof:

a) For applying the projection theorem ([4, Propo-
sition 2.1.3]) to the scalar
we have

and hence This inequality
holds trivially for and hence, for all

for all

Summing over yields the desired result.
b) By Lemma 2, is symmetric and positive

semidefinite, and hence [4, Appendix A]
where is the largest

eigenvalue of the matrix We claim that
is bounded for all because from Lemma 2

trace

Here, the first inequality follows from the fact that the
trace of a matrix is the sum of all its eigenvalues and
that eigenvalues of a positive semidefinite matrix are all
nonnegative. The second inequality follows from (25)
and the definition of and
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c) The claim follows from chain rule and (25).
d) Now and

where is defined in (27),
is defined by

if
otherwise

and is defined by

if
otherwise.

Hence, by the mean value theorem and applying part (c)
of the lemma, we have, for some

e) We have by the mean value theorem and (25)

The next lemma bounds the error in gradient estimation in
terms of the successive price change

Lemma 5: There exists a constant such that

(28)

Proof: From (8), (15)–(17), and (23), we have

Hence, for some constant we have

where the last inequality follows from (19) and (23) and from
the fact that projection is nonexpansive [4, Proposition 2.1.3].
Applying Lemma 4(d) and (e), we have

where the third inequality follows from
The proof is complete since norms in finite-

dimensional vector space are all equivalent.
The next lemma shows that converges to zero.
Lemma 6: Provided is sufficiently small we have for

all
where and are the constants in

Lemmas 4 and 5, respectively. Hence, as
Proof: Applying Lemma 4(a) and (b) to the second-order

Taylor expansion of we have for some
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Applying Lemma 5, we have

(29)

where the last inequality holds because the convex function
attains a unique minimum over

at the origin. Summing (29) over
all we have

(30)

as desired.
Since the above inequality holds for all we can choose
sufficiently small such that

Then, since is lower bounded (Lemma 1), letting
we must have and hence

as (31)

These lemmas establish Theorem 2.
Proof of Theorem 2:We first prove that the various errors

due to asynchronism all converge to zero. For all sources
we have from (20)–(21)

which by (31) converges to zero as From (19), (23)
and (6), and are projections of onto
Since projection is nonexpansive [4, Proposition 2.1.3], we

have

where the last inequality follows from Lemma 4(d). Hence, by
(31), for all The error
in gradient estimation converges to zero by Lemma 5 and (31).

We now show that every accumulation point of the sequence
generated by Algorithm A2 minimizes the dual prob-

lem. Let be an accumulation point of At least one
exists since the level set of is
compact and that the sequence is in the level set
provided is sufficiently small [see (30)]. Moreover, since the
interval between consecutive updates is bounded (condition
C3), is also an accumulation point of Let

be a sequence such that converges to
Since is continuous (Lemma 1) and

(Lemma 5), we have

Hence

where the last equality follows from (31). Then the projection
theorem [4, Proposition 2.1.3]) implies

for all

which, due to the concavity of implies that minimizes
over

By duality is the unique primal optimal rate.
We now show that it is a limit point of generated by
Algorithm A2. Consider the subsequence Since it
is in the compact set there exists a sequence

such that converges. Since
we have

where the second equality follows from (23). This completes
the proof.
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