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Abstract

While approaches based on bags of features excel at low-
level action classification, they are ill-suited for recogniz-
ing complex events in video, where concept-based temporal
representations currently dominate. This paper proposes
a novel representation that captures the temporal dynam-
ics of windowed mid-level concept detectors in order to
improve complex event recognition. We first express each
video as an ordered vector time series, where each time
step consists of the vector formed from the concatenated
confidences of the pre-trained concept detectors. We hy-
pothesize that the dynamics of time series for different in-
stances from the same event class, as captured by simple
linear dynamical system (LDS) models, are likely to be sim-
ilar even if the instances differ in terms of low-level visual
features. We propose a two-part representation composed
of fusing: (1) a singular value decomposition of block Han-
kel matrices (SSID-S) and (2) a harmonic signature (H-
S) computed from the corresponding eigen-dynamics ma-
trix. The proposed method offers several benefits over alter-
nate approaches: our approach is straightforward to imple-
ment, directly employs existing concept detectors and can
be plugged into linear classification frameworks. Results
on standard datasets such as NIST’s TRECVID Multimedia
Event Detection task demonstrate the improved accuracy of
the proposed method.

1. Introduction
Recognition of complex events [2, 20] in unconstrained

videos continues to be a challenging problem across the
computer vision research community. Recent research in
this direction emphasizes on concept based approaches [16]
as they provide a richer semantic interpretation than bags of
low-level features. Consider the complex event, changing
a vehicle tire where the following objects: human, vehicle,
tire, tools interact in a specific temporal order in a particu-
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Figure 1. Temporal evolution of concept detector responses during,
changing a vehicle tire. The proposed representation explicitly captures
the joint dynamics of these detectors to better recognize complex events.

lar scene (typically in an outdoor environment). Thus, for
changing a vehicle tire, the following sequence of human-
object interactions can typically be observed in a consis-
tent temporal order: rolling tire, squatting, jacking-up vehi-
cle, turning wrench (Fig. 1). Such interactions can also be
termed as spatiotemporal action concepts. Earlier research
(e.g., [11]) has demonstrated the feasibility of repeatably
detecting such concepts in unconstrained settings; concept-
based event representations are expected to gain additional
research attention in the future [10].

While concept detectors can provide reasonable esti-
mates of the probability of a particular action being ob-
served during a specified temporal interval, how best to
integrate this information in order to accurately recognize
complex events remains a challenge. Probabilistic graphi-
cal models such as Hidden Markov Models [19, 26], Con-
ditional Random Fields (CRF) [5], Bayesian Networks
(BNs) [8] and Dynamic Bayesian Networks (DBNs) [7]
have been popular for similar tasks in a variety of domains.
Although such methods have performed well in other ap-
plications, they seem to be sensitive to noise in the con-
cept detection and require the application of significant do-
main knowledge in order to achieve computational tractabil-
ity. This has recently led to the exploration of alternate ap-
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Figure 2. Similarity in evolution of concept sequences within same event categories. 2 sample vector time-series each obtained from a single event class is
shown here. Each of the 5 columns represent a complex event.

proaches that serve as motivation for our work [15, 16].
Li et al. [16] use a dictionary of low-level spatiotemporal

attributes (e.g., left arm moving up) that are modeled using
simple dynamical systems [9,12] and finally represent each
event as a histogram of these attributes. By contrast, we:
(a) use bag of visual words model at the attribute detection
phase and (b) model events using ideas from Linear Dynam-
ical Systems (LDS) [12, 21].

In our approach, a video is decomposed into a sequence
of overlapping fixed-length temporal clips, on which low-
level feature detectors are applied. Each clip is then repre-
sented as a histogram (bag-of-visual-words) which is used
as a clip level feature and tested against a set of pre-trained
action concept detectors. Real-valued confidence scores,
pertaining to the presence of each concept are recorded for
each clip, converting the video into a vector time series.
Fig. 2 illustrates sample vector time-series from different
event classes through time. We model each such vector
time series using a single linear dynamical system, whose
characteristic properties are estimated using two different
ways. The first technique (termed SSID-S) is indirect and
involves computing principal projections on the Eigen de-
composition of block Hankel Matrix [21] constructed from
the vector time series. The second one (termed H-S) in-
volves directly estimating harmonic signature parameters of
the LDS using a method inspired by PLiF [14]. The rep-
resentations generated by SSID-S and H-S are individually
compact, discriminative and complementary, enabling us to
perform late fusion in order to achieve better accuracies in
complex event recognition.

Linear dynamical systems have been employed for a va-
riety of tasks in video, including video texture analysis [6],
tracking moving objects [17, 22, 25], motion segmenta-
tion [3, 18] and human action recognition [4, 13]. However,
to our knowledge, ours is the first work to compute discrim-

inative video event signatures from vector time series mod-
eled as LDS.

2. Temporal Dynamics
In our formulation, we represent a video V as a sequence

of n fixed-length clips, with a certain number of overlap-
ping frames (n differ for videos of different lengths). On
each clip, a fixed set of C concept detectors are applied
and their respective responses denoting the probability of
presence of the corresponding concepts, are recorded. Thus
V ≡ {c0, c1, . . . cn−1}, where each ct ∈ RC , is a vec-
tor containing concept detector responses. Thus each corre-
sponding element of vectors c0, . . . , cn−1 form a sequence
of probabilities of detection of a given concept across time
in a video.

Now, each concept sequence could be treated indepen-
dently as an individual time series or modeled using tech-
niques such as Auto Regressive Moving Average [1] pro-
cesses, from which features or model parameters could
be computed. However, doing so ignores the interactions
across such series within a video (see Fig. 2). Linear dy-
namical systems provide a more natural way to model such
interactions, with an additional advantage of dimensionality
reduction, and can be defined as:

ct = Kxt +N (0, α) (1)
xt = φxt−1 +N (0, β); (2)

where K is the observation matrix ∈ RC×d that maps each
observed vector ct to a relatively lower dimensional hidden
state vector xt ∈ Rd, and φ is the dynamics or transition
matrix ∈ Rd×d that maps between previous and current hid-
den states. α, β are variances for the Gaussian noise models.

The parameters K, φ, α, β and the initial state x0, need
to be identified to characterize a system defined in Eqn.(2).



However, this being a non-convex problem [9, 14, 21],
the parameters can only be locally approximated. More-
over, representing these parameters in an appropriate fea-
ture space for discriminative classification (for event recog-
nition), is another challenging task. This motivates us to ex-
plore strategies discussed next, to derive compact discrimi-
native signatures from a vector time series representation of
a video.

2.1. SSID Signatures

In linear systems theory [21], a vector time-series that
obeys Eqn.(2) can be arranged in a block Hankel matrix
pattern with constant entries along its skew-diagonals as fol-
lows:

H =


c0 c1 c2 . . . cn−r

c1 c2 c3 . . . cn−r+1

c2 c3 c4 . . . cn−r+2

. . . . . . . . . . . . . . .
cr−1 cr cr+1 . . . cn−1

 , (3)

where r captures the temporal range over which dynamics
can be computed. Note that entries in each successive col-
umn of H are shifted by a single time step and each column
is itself of dimension C × r (since each cj element denotes
a C-dimensional vector of concept responses). Thus, with a
reasonable r, one can intuitively identify a reduced number
of distinct time groups (columns) required to represent the
system in Eqn.(2). In application,H is typically normalized
in a preprocessing step using the Frobenius norm:

H =
H

Tr(H ·HT )
1
2

. (4)

It is well known from the system identification community
that the singular value decomposition (SVD) of a Hankel
matrix provides the state space realization of its underly-
ing system. Since H is typically not square, we perform
singular value decomposition on H · HT to obtain the or-
thonormal bases (singular vectors, E) and singular values
in diagonal matrix D.

The SSID signature (SSID-S) is constructed from the m
largest singular values along with their corresponding vec-
tors by flattening the matrix given by:

[S]rC×m = [E]rC×m · [D]m×m (5)

into an rCm-dimensional vector.
Fig. 3 shows an intuitive visualization of SSID-S’s bene-

fits over the mid-level concept feature space, computed us-
ing 100 videos from each of 5 event classes. Fig. 3(left)
shows inter- video Euclidean distance between max-pooled
concept detection scores, with each concept score max-
pooled temporally to generate a C-dimensional vector per

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

Birthday Party

Changing Tire

Vehicle Unstuck

Parkour

Sewing Project

SSID-S from Concepts Time Series

Birthday Party

Changing Tire

Vehicle Unstuck

Parkour

Sewing Project

Max-pooled Concepts

 

 

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Visualizing distances between videos in conventional max-
pooled concept feature space (Top) and in the proposed SSID-S space (Bot-
tom). The strong block diagonal structure of the second distance matrix
shows that complex events are better separated in SSID-S.

video. While there is some block structure, we see sig-
nificant confusion between classes (e.g., Birthday Party vs.
Vehicle Unstuck). Fig. 3(right) shows the Euclidean dis-
tance matrix between videos represented using the proposed
SSID signature. The latter is much cleaner, showing im-
proved separability of event classes, even using a simple
distance metric.

2.2. Harmonic Signatures

As observed by Li et al. in the context of the PLiF fea-
ture [14], the hidden state vector, xt can be analyzed as a
second-order system, whose behavior (e.g., damped oscil-
lation) is characterized by the eigenvalues ({λi . . . λL}) of
the dynamics matrix (φ). Following Li et al., we decompose
φ:

[φ] = [U ]d×L · [Λ]L×L · UT , (6)

where Λ is the diagonal matrix of eigenvalues, grouped into
their conjugate pairs and ordered according to their phases,
and U contains the corresponding eigenvectors. This can
be used to transform the hidden state variables, which are



otherwise not directly comparable, into a canonical form
where their meaning is consistent across videos:

x̂0 = UT · x0, and, (7)
x̂t−1 = UT · xt−1. (8)

Similarly, the dynamics matrix in Eqn.(2) can be canonical-
ized as:

KH = K · U. (9)

KH is the Harmonics mixing matrix, where eigenvectors
of U are grouped appropriately. Using the above relation
in Eqn.(8) enables us to model the observed concept detec-
tor responses for the given video (ct) in the canonical state
space, using the eigen dynamics matrix (Λ):

x̂t = Λt−1 · x̂0 +N (0, β) (10)
ct = KH · Λt−1 · x̂0 +N (0, α). (11)

As in Li et al. [14], we recover an estimate for the harmonic
mixing matrix, KH , in Eqn.(11) using an Expectation-
Maximization based algorithm. We observe that estimates
forKH require fewer than 10 iterations to converge in prac-
tice. The dimensionality of the hidden state vector (d) is a
free parameter but as shown in Section 3, the overall mAP
is relatively insensitive to its setting.

Finally, we generate a real-valued Harmonic Signature
(H-S) for a given video by flattening the magnitudes of
the entries in KH (similar to PLiF). However, unlike PLiF
which is computed in batch over a set of data, the harmonic
signature for each video is computed individually, enabling
parallelized processing of videos.

Fig. 4 shows an intuitive visualization of H-S’s benefits
over the mid-level concept feature space, computed using
the same 100 videos from each of five event classes as seen
in Fig. 3. Dots (corresponding to videos) in the max-pooled
concept feature space are C-dimensional, whereas those in
H-S space areCd dimensional. The scatter plot is generated
by projecting each point in the feature spaces to two dimen-
sions using PCA. We observe that the videos are much more
separable in H-S space as compared to the max-pooled con-
cept feature space: four of the five complex event classes
are visually separable, even in the 2D visualization.

3. Experiments

This section details our experimental protocols and de-
scribes the video datasets. We also discuss the baseline
methods against which we compare the proposed approach.
A small section on selection of parameters is provided to-
wards the end, as well as brief look at the computational
complexity of the entire system.
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Figure 4. Visualizing separability between events in max-pooled concept
space (top) and H-S space (bottom). Each data point is a video from one
of five event classes.

3.1. Datasets

A number of datasets have been released by NIST as part
of TRECVID MED competition1 that has been organized
since 2010. We have selected two datasets for our eval-
uation. The first, referred to as MED11 Event Collection
(MED11EC) was released in 2011 and consists of 2,062
videos from 15 different complex event categories. The sec-
ond, referred to as MED12 Event Collection (MED12EC) is
similar to the first, containing 2,000 videos pertaining to 10
additional events. The event names and the corresponding
videos available in each event category are summarized in
Table 1.

We also directly compare the performance of our pro-
posed approach against two recent state-of-the-art algo-
rithms on TRECVID MED DEV-T, a dataset consisting of
10,723 videos from five categories Attempting a board trick,
Feeding an animal, Landing a fish, Wedding ceremony, and
Working on a woodworking project as well as a large num-
ber of null class videos that do not correspond to any of
these classes. Given 150 training videos from each class,
the goal is to retrieve the desired videos among distractors.

1http://www.nist.gov/itl/iad/mig/med.cfm
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Table 1. Summary of two datasets used in this paper. The first half (E001–
E015) is from MED11EC, while the second half (E021–E030) is from
MED12EC. The number of videos ranges from 111 for to 299 per class.

ID Event Name [N] ID Event Name [N]

E001 Board-trick 287 E002 Feeding Animal 299
E003 Landing Fish 234 E004 Wedding 251
E005 Woodworking 263 E006 Birthday 173
E007 Changing Tire 111 E008 Flash-mob 173
E009 Vehicle Unstuck 132 E010 Grooming Animal 138
E011 Making Sandwich 126 E012 Parade 138
E013 Parkour 112 E014 Repairing Appl. 123
E015 Sewing Project 120

E021 Bike-trick 200 E022 Giving Directons 200
E023 Dog-show 200 E024 Wedding 200
E025 Marriage Proposal 200 E026 Renovating Home 200
E027 Rock-climbing 200 E028 Town-hall Meet 200
E029 Winning Race 200 E030 Metal crafts 200

3.2. Spatiotemporal Concept Detectors

Following Jiang et al. [11], we identify a set of 93 unique
spatiotemporal concepts by parsing the textual definition
of events provided within NISTs TRECVID MED 11–12
database. We obtain a small number of training samples
for each of these concepts (<30) from a subset of videos
(<50 videos per event class) in the TRECVID MED 11–12
dataset. As an example, the following mid-level concepts:
person clapping, person blowing candles, etc. are all trained
from clips taken from videos of the Birthday Party complex
event. Human annotators are asked to mark the approximate
beginning and ending frame of the concepts in the videos.
A list of the 93 concepts is available on the project website.
We use a bag of words technique on dense trajectory based
spatiotemporal features [24], extracted from each annotated
clip to represent it. A vocabulary size of 2, 048 is observed
to deliver optimal trade-off between performance and com-
putational constraints, and is hence chosen as the default vo-
cabulary size for all experiments. A publicly available im-
plementation2 of binary SVM classifiers with histogram in-
tersection kernels are used as our concept detectors. These
concept detectors are applied on BoVW representations of
each fixed-length clips (300 frames with an overlap of 60
frames) from every video. Confidence scores ∈ (0, 1) cor-
responding to each of the 93 concept detectors are collected
to create a vector time series for every video.

3.3. Baseline Methods

Since, the datasets are relatively new and research on
concept detection is still in its infancy, it is very difficult
to compare our work with published methods [2, 20] that
involve fusion of multiple low-level feature representations.

2 http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
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HMMs (dHMM) and black – Continuous HMMs (cHMM). H-S has sig-
nificantly higher mAP scores compared to dHMMs and cHMMs and is
relatively insensitive to the dimensionality of the hidden state vector d.

To make fair comparisons, we implemented three indepen-
dent baseline methods that all share the same mid-level con-
cept representation.

The first baseline extracts Discrete Cosine Transform
(DCT) coefficients for each concept detector response se-
quence and coefficients from all sequences from a video are
concatenated to form the final temporal descriptor. A linear
SVM is used to predict event labels. The best performance
is achieved for 64 coefficients per time-series, requiring a
93× 64 dimensional feature per video.

The other two baselines are implemented with two vari-
ants of HMMs: discrete HMM and continuous HMM.
In both cases we perform experiments with 6 different
choices for the dimensionality of the hidden state vector,
d ∈ {2 . . . 64} (doubling at each step). Initial parameters
for both experimental settings (refer Eqn.(2)), such as the
prior (x0), transmission matrix (φ) and observation matrix
(K) are determined from a stochastic process input with
N (0, 1).

For the discrete HMM baseline, we obtain the maximum
confidence at each time step from every observation (ct) in
a given vector time series, and associate the corresponding
concept label to generate the input symbol sequence. This
step is not required in a continuous HMM framework, as
each state variable in this case is modeled using the dis-
tribution of confidences at each time step. In both cases,
event-specific models are trained. Given a testing sequence,
the maximum likelihood of generating the input sequence
given an event model is computed using a forward Viterbi
algorithm, with the highest-scoring event returned as the
prediction from the model.

3.4. Parameter Selection for SSID-S

Fig. 6 empirically illustrates how different combination
of parameters affect recognition performance over subsets
of videos from MED11EC and MED12EC datasets, using

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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used for projection (m). Subsets of samples from both MED11EC (left)
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the proposed SSID-S algorithm. While constructing block
Hankel matrix, we experiment with three different over-
lap settings, i.e. r ∈ {4, 8, 16}. For each overlap set-
ting, we evaluate four settings for dimensionality reduction
m ∈ {1, 2, 4, 8} in computing the SSID-S feature. Perfor-
mance is relatively insensitive to parameter choice; we use
r = 4, and m = 2 in our subsequent experiments.

3.5. Computational Complexity

Since our approach employs existing concept detectors,
our analysis focuses on the specific computational cost of
the proposed descriptors. For the SSID-S algorithm, the
Block Hankel Matrix involves only stacking vectors in a
specific pattern depending on the overlap (r) owing toO(r).
The complexity of Singular Value decomposition onH ·HT

is O(m(Cr)3), where m is the number of largest eigenval-
ues, C being the number of concepts. The main compu-
tational complexity of the Harmonics Signatures algorithm
is in the iterative E-M stage, which while theoretically un-
bounded, never took more than 200 steps among the videos
in our datasets. In terms of wall-clock time, on a standard
laptop (2.6 GHz CPU with 4GB physical memory), the av-
erage run time for extracting SSID-S from a single video
(20 clips) is 540ms, while that for H-S is 2200ms.

4. Results
This section presents details about our experimental re-

sults. In Sec. 4.1, we compare against baselines that em-
ploy the same mid-level concept time series representation
as the proposed method. Sec. 4.2 presents insights on how
our approach can be directly fused with concept-level clas-
sifiers for complex event recognition. Finally, Sec. 4.3 com-
pares our approach against two state-of-the-art methods that
also exploit temporal information for complex event recog-
nition.

4.1. Comparison with Baselines

Here we report results on the MED11EC and MED12EC
datasets. For each event category, we use around 100 pos-
itive sample videos (not used during training of concept

detectors) and equal number of negative samples (videos
from all other event classes). The same mixture is used for
evaluation across all three baselines and our variants of our
proposed approach. For our approach, we consider SSID-S
alone, H-S alone and a weak fusion of the two. Fig. 7 re-
ports comprehensive summary of mAP across all 25 events
using the six methods (3 baselines and 3 variants of the pro-
posed method).

We make the following observations. First, we see that
all three baselines under-perform all of the variants of the
proposed method, even though all methods employ exactly
the same time series mid-level concept representation. The
DCT baseline is poorest at representing the vector time se-
ries data, and this may be attributed to its inability to capture
the complexity of the concept dynamics, particularly with a
limited number of bases.

As there is no principled way to determine the optimal
number of hidden states for the two HMM baselines, we
experiment with a different number of hidden states along
with corresponding Gaussian stochastic prior matrices. We
note that the best-performing discrete HMM employs 64
hidden states while the best continuous HMM yields high-
est mAP with just 8 states. The continuous HMM consis-
tently outperforms the discrete HMM, both on MED11EC
and MED12EC datasets (Fig. 7). However, estimating the
mixture parameters is computationally intensive and for a
significant fraction of the videos in our datasets, the train-
ing does not converge.

Both of our proposed signatures perform better than the
baseline methods by a significant margin (22−−35%). We
observe a significant reduction (∼ 24%) in mAP on the
MED12EC dataset in comparison to MED11EC. This is
primarily because the mid-level concept detectors (trained
only on MED11EC), do not have sufficient coverage on the
10 new event classes in MED12EC. While our proposed
methods still outperform the baselines on MED12EC, the
cross-dataset drop in performance underscores the impor-
tance of employing a sufficiently broad set of concept de-
tectors so as to cover the observed actions in the test set.
We also observe that the late fusion of SSID-S and H-S (de-
noted “combined temporal representation”) helps more on
the MED12EC dataset.

4.2. Fusion with Direct Video-Level Predictions

Our earlier experiments employed SSID-S or H-S (or
their fused combination) in exclusion to the mid-level fea-
tures. However, a natural question is whether we can fur-
ther improve performance by performing late fusion using
SSID-S and H-S with video-level complex event predictions
generated directly from the mid-level concept detectors.

Table 2 presents mAP results from this experiment. BoC
denotes the video-level prediction generated from average-
pooling the concept predictions through time. BoVW de-
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three variants of the proposed method (SSID-S alone, H-S alone, weak fusion of both signals). All variants of the proposed method consistently dominate
the baselines, with weak fusion providing a slight benefit among variants of the proposed method.

Table 2. Results of fusion with low-level event classifiers.

Datasets BoC BoVW CTR F1 [CTR+BoC] F2 [CTR+BoVW]

MED11EC 0.72 0.75 0.76 0.77 0.79
MED12EC 0.46 0.48 0.53 0.50 0.56

notes direct video-level predictions generated using a large
vocabulary of MBH features. CTR denotes the late fusion
of SSID-S with H-S (Combined Temporal Representation),
discussed above. The remaining two entries, F1 and F2
show the fusion of CTR with video-level predictions from
BoC and BoVW, respectively. The results indicate that fus-
ing our approach with video-level predictions helps both on
MED11EC and MED12EC.

4.3. Comparison with State-of-the-Art Methods

Following the same protocol as suggested in [16, 23],
we report our performance on five events from the DEV-T
dataset in Table 3. Both Tang et al. [23] and Li et al. [16]
analyze the temporal structure of videos using different dy-
namical system formulations. Columns 3 and 4 are quoted
from the results published in [16]. Our results are shown
in the last three columns, with CTR denoting late fusion of
SSID-S and H-S.

It is interesting to observe that despite their relatively
simple formulations, both SSID-S and H-S (as well as their
fusion – CTR) outperform both of the more complicated
earlier methods. Note also that the mAP scores reported
here are lower than those in Table 2 and Fig. 7. This is
mainly due to the fact that over 9, 500 videos contained in
the DEV-T dataset do not match the small number of event
categories from which the concept detectors are trained. We
conjecture that expanding the pool of concept detectors to a
substantially larger set could address this limitation.

5. Conclusion
Modeling the temporal dynamics of spatiotemporal con-

cepts occurring in a video can provide useful cue towards

Table 3. Performance comparison with the state of the art for 5 training
events from the DEV-T dataset (> 10,000 videos).

Events Random [23] [16] SSID-S H-S CTR

Board-Trick 0.011 0.15 0.29 0.31 0.33 0.33
Feed Animal 0.010 0.03 0.07 0.11 0.09 0.12
Land Fish 0.008 0.14 0.28 0.26 0.27 0.27
Wedding 0.007 0.15 0.22 0.29 0.32 0.31
Woodworking 0.009 0.08 0.18 0.17 0.21 0.22

mAP 0.009 0.11 0.21 0.23 0.23 0.24

understanding its semantic structure. We introduce two
different techniques to model the temporal relationships
among spatiotemporal concepts of a video using founda-
tions from Linear dynamical systems. Through several de-
tailed experiments, we demonstrate the efficacy of our pro-
posed method over contemporary methods that are used ex-
tensively by computer vision and multimedia researchers to
analyze the temporal structure of videos. Our proposed ap-
proach is straightforward to implement and computation-
ally inexpensive and could also be used effectively on other
tasks, such as multimedia event recounting, which demand
a better understanding of the temporal structure in multime-
dia data. As part of future work, we plan to extend these
ideas to large corpora of concepts, which may be learned in
a less supervised fashion, given a collection of videos.
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