A lossless approach to bi-level and Grey-scale image Compression using 2-dimensional
run-length encoding algorithm

Subhabrata Bhattacharya

B.E. 7" Semester,
Computer Science & Engineering,
Asansol Engineering College

Acknowledgments

I pay my sincere regards to Prof. Bhabatosh Chanda, Electronics and Communication Sciences Unit,
Computer and communication Sciences Division, Indian Statistical Institute, Kolkata; without whose
guidance the project could never been accomplished.

References

Digital Image Processing, Second Edition
Rafael C. Gonzalez and Richard E. Woods
Pearson Education Inc. 2002

Software Environment and tools used

The entire software is written in ANSI C programming language in GNU/Linux (kernel 2.4.7-10) platform.
The software is compiled using Gnu C compiler version 2.96 and entirely free for use and redistribution as
long as the terms and conditions of the GNU Public License are satisfied.

General Constraints

[1] The software is currently developed to work only in Unix-based platforms and cannot be used under
Windows based systems.

[2] Currently the software is fully functional for monochrome Windows bitmap files. Extended support for
0S/2 bitmaps and other file-formats are under development.

[3] Support for color and gray scale images are under development.

1. Introduction

Every day, an enormous amount of information is stored, processed and transmitted digitally. Companies
provide business associates, investors and potential customers with financial data, annual reports and
inventory and product information over the Internet. Order entry and tracking, two of the most basic
online transactions are routinely performed from the comfort of one’s own home. Because much of this on-
line information is graphical or pictorial in nature, the storage and communication requirements are
immense. Methods of compressing the data prior to storage and/or transmission are of significant practical
and commercial interest.

Image compression addresses the problem of reducing the amount of data required to represent a digital
image. The underlying basis of the reduction process is the removal of redundant data. From a
mathematical viewpoint, this amounts to transforming a 2-D pixel array into a statistically uncorrelated
data set. The transformation is applied prior to storage or transmission of the image. At some later time,
the compressed image is decompressed to reconstruct the original image or an approximation of it.

Image compression techniques broadly fall into two categories: information preserving (loss-less) and
lossy. The former allows an image to be compressed and decompressed without losing information while
the latter provide higher degrees of data reduction but result in a less than perfect reproduction of the
original image. Loss-less image compression techniques are useful in image archiving. Lossy image
compression techniques are used in television broadcast and video-conferencing where a certain degree of
error is an acceptable trade-off for increased compression performance. An image that can be compressed
must have data that are non-essential and simply restate that which is already known. This is called data
redundancy. The type of data redundancy that is being exploited to compress an image in this context is
interpixel redundancy. Because the value of any pixel can be predicted from the value of its neighbours,
the information carried by the individual pixels is relatively small. Much of the visual contribution of a
single pixel to an image is redundant; it could have been guessed on the basis of the values of its
neighbors. To reduce the interpixel redundancies in an image, the 2-D pixel array normally used for
human viewing and interpretation must be transformed into a more efficient (but usually “non-visual”)
format. In case of loss-less image compression, transformations of this type are reversible in nature
because the image can be reconstructed from the transformed data set.

The algorithm implemented in the project is an improvement over the one-dimensional run-length
algorithm. In the one-dimensional algorithm the correlation between contiguous pixels in a row is
exploited and this in turn reduces the inter-pixel redundancy. While in its improved counterpart the key
to elimination of inter-pixel redundancy lies in exploitation of the correlation between the adjacent rows in
addition to the correlation that is already discussed. Although the method is complicated and time
resource intensive; yet it ensures higher degree of compression. It has been seen that for any row of a
given image, the rows adjacent to it are more or less identical i.e. the gray-level distribution of pixels in

adjacent rows of an image is somewhat uniform.

2. Working Methodology

The project broadly consists of two softwares: the encoder and the decoder. In this context we describe
each of them in detail. Both the encoder and decoder are subdivided into different modules and the way
control and data flow from one module to the other are being shown in the subsequent schematic diagrams

Encoder: The encoder has the following modules : File format reader, Matrix generator, 2D runlength
encoder, ASCII converter and File formatter

File format reader: This module is responsible for taking input from the user in the form of different
image files. It is programmed to read the file header and pass the necessary information like the image
resolution, color content and algorithm used to encode the image is passed to the next module. Currently
it has been programmed to accept only Windows bitmap files ((bmp) with only two gray levels (black &
white) but the support for different file formats and multiple gray-level can be increased with minor
modifications in the existing software.

Matrix generator: On the basis of the information gathered from the previous module, it generates a two-
dimensional array or matrix containing the gray-level value of each pixels of the image. Thus the
resolution of the image (width and height), color content and method used while encoding the image
becomes an absolute must for this module to generate an accurate matrix that maps each of its elements
to the corresponding position as well as the gray-level value at that position in the actual image.

1 1 0 1 1
0 1 1 0 1
oo 111
1 1 1 0 1
A 5x4 monochrome bitmap image Equivalent binary matrix

While dealing with color or gray-scale images that have more than just 2 colors, we first decompose the
gray coded image into a series of binary images. This is called bit-plane decomposition. The gray-levels of
an m-bit gray-scale image can be represented in the form of the base 2- polynomial:

Am12™l + am22m2 + .+ a12! + a¢2°

The coefficients of the polynomial (a;) can only have values 0 and 1

g =a [0 a«w 0ism?2
gm-1: Adm1

Thus a pixel with gray-level 244 can be represented in the binary form as:

2" 2% [2° |2 [2® |2 |2' |2
1 0 0 1 0 0 0 0

The corresponding gray code is calculated ass follows:

&
I
[y

gs1= agil.e. gr=a
ge=ag ar=1
gs= as a6=0
gi=a; as=1
g3= asg a4=0
8o = Qg a3=0
gi=a az=0
go= ao a1=0

co°9PrRoooO
I
COCHEHOK

Hence gray code corresponding to the pixel with gray-level 244 is 11011000. The gray coded image is now
decomposed into m 1-bit planes. This is done to avoid complexity in the bit planes that is created due to
small changes in gray levels of the individual pixels.

Thus for an 8-bit image 8 separate binary matrices are generated from the gray codes and the matrices
are passed as input to the next module.

2D runlength encoder: This module is responsible for the encoding. Each row from the matrix that is input
from the previous module is encoded with the help of some predetermined code constraints. The 2D
runlength-encoding algorithm is discussed shortly in the next section. The matrix is converted into a
string of 0’s and 1’s and the string is written into a temporary file, which is passed to the next module for
further processing.

ASCII converter: It accepts the file containing the string of 0’s and 1’s and taking 8 characters at a time, it
converts it into an equivalent ASCII characters and the stream of ASCII characters are further written
into a file (which is 1/8" of the previous intermediate file) and is being passed to the final module for last
rites.

File formatter: This is the ultimate module of the encoder software, which generates a header from the file
information previously fetched by the file format reader, and adds this header to the intermediate ASCII
file. This file is now ready for future storage/transmission and decompression process.

Schematic Diagram of the Encoder:

Source bi-level image

(Blaclk and white)

File format reader
and biatriz generator
H
1

Terminating
Binary Image ! Mdalkeupe code
Twlatrize H table

2 Funlength
— " Encoder

w

Text file with

encoded string

consisting of
1"z and O7=

A 20T conwverter

: ASCIT file of the
H compressed itmage

File Format
generator

Final Compressed file reads
for storageftranstmission

Description of the Algorithm used

The 2-dimensional runlength coding approach adopted for both the CCITT Group 3 and 4 standards is a
line-by-line method in which the position of each black-to-white or white-to-black run transition is coded
with respect to the position of a reference element a0 that is situated on the current coding line; the
reference line for the first line of each new image is an imaginary white line. The basic coding process for a
single scan line is shown in the flowchart that follows this section. A changing element is defined as a
pixel whose value is different from that of the previous pixel on the same line. The most important
changing element is a0 (the reference element), which is either set to the location of an imaginary white
“changing element” to the left of the first pixel of each new coding line or determined from the previous
coding mode. After a0 is located, al is identified as the location of the next changing element to the right
of a0 on the current coding line, a2 as the next changing element to the right of al on the same coding
line, bl as the changing element of the opposite value of (a0) and to the right of a0 on the reference (or
previous) line, and b2 as the next changing element to the right of bl on reference line. If any of these
changing elements are not detected, they are set to the location of an imaginary pixel to the right of the
last pixel on the appropriate line.

After identification of the current reference element and associated changing elements, two simple
tests are performed to select one of the three possible coding modes: pass mode, horizontal mode or
vertical mode. The initial test, which corresponds to the first branch point of the following flow-chart,
compares the location of b2 to that of bl. The second test, which corresponds to the second branch-point of
the flow chart, computes the distance (in pixels) between the locations of al and bl and compares it
against 3. Depending on the outcome of these tests, one of the three outlined coding blocks of the flow
chart is entered and the appropriate coding process is executed .A new reference element is then
established, as per the flow chart, in preparation for the next coding iteration.

Specific codes are defined, that are to be used for each of the three possible coding modes. In pass
mode, which specifically excludes the case in which b2 is directly above al, only the pass mode codeword
0001 is needed. This mode identifies white or black reference line runs that do not overlap the current
white or black coding line runs. In horizontal coding mode, the distance from a0 to al and al to a2 must be
coded in accordance with the terminating and makeup codes defined by CCITT and then appended to the
horizontal mode code word 001. This is indicated by the notation 001 + M (a0 ~ al) + M (al ~a2), where a0
~al and al ~ a2 both denote the distances from a0 to al and al to a2, respectively.

For example, consider the image line

1 2 1723 1724 | 1725 | 1276 1727

Here we consider a pair of adjacent rows from an image. The first changing element for each new line i.e.
a0 is set to the left of the first pixel of the line so a0 = 0, al = 1 etc. Likewise in the second iteration we
have the next changing element is 1725 because at 1725 a transition from a continuous white run to black
occurs. Finally, in vertical coding mode, one of the six special variable-length codes is assigned to the
distance between al and b1.

To summarize the various coding modes can be shown as:

Mode Code Word
Pass 0001
Horizontal 001 + M (a0 ~al)+ M (al ~ a2)
Vertical

Al below bl (al ~ bl =0) 1

Alone to the right of b1 (al ~ bl =-1) 011

Al two to the right of bl (al ~ bl =-2) 000011

Al three to the right of bl (al ~ bl =-3) 0000011

A1l one to the left of bl (al ~ bl =1) 010

A1l two to the left of bl (al ~ bl = 2) 000010

A1 three to the left of bl (al ~ bl = 3) 0000010
Extension 0000001xxx

The extension mode code word at the bottom of the table is used to enter an optional facsimile-coding
mode. For example, the 0000001111 codeword is used to initiate an uncompressed mode of transmission.

The runlengths can be obtained from the CCITT terminating and make up code tables that are given as

follows.

CCITT Terminating Codes

Run White Black Run White Black Code Run White Code Black Code
Len Code Code Length Code Word Length Word Word
gth Word Word Word

0 110101 110111 22 11 110111 44 101101 1010100
1 111 10 23 100 101000 45 100 1010101
2 111 11 24 101000 10111 46 101 1010110
3 1000 10 25 101011 11000 47 1010 1010111
4 1011 11 26 10011 11001010 48 1011 1100100
5 1100 11 27 100100 11001011 49 1010010 1100101
6 1110 10 28 11000 11001100 50 1010011 1010010
7 1111 11 29 10 11001101 51 1010100 1010011
8 10011 101 30 11 1101000 52 1010101 100100
9 10100 100 31 11010 1101001 53 100100 110111
10 111 100 32 11011 1101010 54 100101 111000
11 1000 101 33 10010 1101011 55 1011000 100111
12 1000 111 34 10011 11010010 56 1011001 101000
13 11 100 35 10100 11010011 57 1011010 1011000
14 110100 111 36 10101 11010100 58 1011011 1011001
15 110101 11000 37 10110 11010101 59 1001010 101011
16 101010 10111 38 10111 11010110 60 1001011 101100
17 101011 11000 39 101000 11010111 61 110010 1011010
18 100111 1000 40 101001 1101100 62 110011 1100110
19 1100 1100111 41 101010 1101101 63 110100 1100111
20 1000 1101000 42 101011 11011010

21 10111 1101100 43 101100 11011011

CCITT Makeup Codes

Run White Code Black Code Word Run White Code Black Code Word
Length Word Length Word

64 11011 0000001111 960 011010100 0000001110011
128 10010 000011001000 1024 011010101 0000001110011
192 010111 000011001001 1088 011010110 0000001110101
256 0110111 000001011011 1152 011010111 0000001110110
320 00110110 000000110011 1216 011011000 0000001110111
384 00110111 000000110100 1280 011011001 0000001010010
448 01100100 000000110101 1344 011011010 0000001010011
512 01100101 0000001101100 1408 011011011 0000001010100
576 01101000 0000001101101 1472 010011000 0000001010101
640 01100111 0000001001010 1536 010011001 0000001011010
704 011001100 0000001001011 1600 010011010 0000001011011
768 011001101 0000001001100 1664 011000 0000001100100
832 011010010 0000001001101 1728 010011011 0000001100101
896 011010011 0000001110010

Run Length Code Word Run Length Code Word

1792 00000001000 2240 000000010110

1856 00000001100 2304 000000010111

1920 00000001101 2368 000000011100

1984 000000010011 2432 000000011101

2048 000000010011 2496 000000011110

2112 000000010100 2560 000000011111

2176 000000010101

And finally the unique codeword 000000000001 is used to indicate the end of each coding line and is
concatenated with each line of coded strings. This end-of-line indicator is used to signal the first line of
each new image. Thus with the number of end-of-line indicators we can easily evaluate the number of
rows in the image.

Flow-Chart depicting the 2D runlength coding process

Line
v

Fut a0l before the first
pixel

N
"

Detect al

v

Detect bl

v

{ Start new Coding

Detect b2

Is b2 left of
al?

> Iz al—-b1=37

Mo

b J

| Detect a2 | Wertical mode
Pass mode Coding ¥ Coding
Horizontal mode Coding

v '

Put al under b2 ¥ Fut all on al
Fut all on a2

-
il
L
" Mo End of Yes | End of
* Line? 7| coding line
Decoder

The decoder has the following modules: File header reader, Information extractor, ASCII to binary
converter Line decoder, Matrix generator, Matrix to image file converter

File header reader: This module is programmed to read the file header. It validates the input (in this case,
the file) to be used by the subsequent modules. It also sends the raw header data to the next module for
further processing and usage.

Information extractor: It accepts the raw-header that is being passed to it and converts it to useful
information that is required by subsequent modules in the entire decoding process. Numbers of columns
in the image, colors used are being passed to the modules working in the next stage.

ASCII to binary converter: This module accepts raw ASCII data stream without the header. Each ASCII
character is converted into its binary equivalent (a cluster of eight 1’s and 0’s). Thus a stream of 1’s and 0’s
is generated which starts and ends with an end-of-line indicator, 000000000001. The end-of-line count
gives the number of rows in the image.

Line decoder: This module is responsible for extracting an encoded string delimited by two end-of-line
indicators and decoding it. The code words are separated from each other by exhaustive look-up in the
code-tables through efficient search mechanism and appropriate values of a0, al and a2 are calculated
from them. These values are passed to the next module.

Matrix generator: It accepts the value of a0, al and a2 as being passed by the previous module and
develops individual rows of the matrix. For example, for each row a0 is initially set to 0. al is calculated
from the mode of coding as depicted from the code word by the Line decoder. So starting from a0 to the
position just left of al are filled with white. al onwards will be filled with the color opposite of a0 i.e. black
and so on.

The above two modules need to work simultaneously to build the matrix.

Matrix to image file converter: The matrix that is generated is being passed to the ultimate stage of the
decoder, which is responsible for the converting the matrix into a bitmap file format or a format that is
easily readable by any image-viewer software.

Schematic Diagram of the Decoder

Compressed
Image file

File Header reader and
information extractor
A BCTI file :
writhout
header
w
Image
Fesoluticns

other details

LSO to binar
T conwverter

File with only :

1°'s and 7= H
H Terminating
i dlakeup
' code table

TLine Decoder and

matriz generator

Image
informaticon

Tdatrix to image file
conwverter

Oiriginal
Image File

Statistical Comparison

Here a standard Windows bitmap image of resolution 800 x 600, saved under the Windows monochrome
bitmap scheme is saved using other popular encoding algorithm and the results are given as follows:

Algorithm/File format used Size in KB Type of Compression
Original Image 58.594 | -ememee-

BMP (Windows Bitmap) 58.654 Loss less

JPEG 126.51 Lossy

GIF (Graphics Interchange Format) 16.025 Loss less

PNG (Portable Network Graphics) 9.067 Loss less

TIFF (Tagged Image File Format) 58.871 Loss less

PBM (Portable Bit Map) 58.627 Loss less

TDR 13.969 Loss less

The study reveals that the compression achieved in the “TDR” file format (as generated by the encoder
software), implemented through 2-dimensional runlength coding algorithm is significantly higher than
most of the popular encoding techniques.

The same procedure was applied with 10 other monochrome bitmap files and an average compression ratio
of 5:1 was observed.

The technique described in the above context can prove to be highly effective to store and transfer
documents. Large documents that are saved as image files like this can be easily transmitted over a
network because of their less file size.

Image samples on which the algorithm is tested:
a) Figure 1 (docl.bmp)

B sedfault - WordPad — =] =]
File Edit Wiew Insert Format Help

D)@ Sl s | | |<f =

|AndaIeMnnn LI |'|EI ﬂ ﬂ ’?1|g ’g§|§| =
g"'L"'L"'I"'2"'l---3---l---4---l-"5|_ [ey b T

~]

7.0ften faunlty programming practices indulge accessing out of bound array elements. Always
check whether your code accesses array elements within the array indexes 0 and size-1, where
size is the =size of the array.

B8.Attempting to dereference a vrariable i.e. attempting to access a variable after it has bheen
terminated by a null pointer. This occurs mainly in case of linked lists, trees eto.

9.Hot putting a null character at the end of a custom-created string and then calling string
manipulation functions that expect the end of the string to be marked with a null character.

Always end a character array with a nmnull character whenever you intend to use the array
as a string.

10.Streams are always to be passed by references as they are indefinite in length. While
working with streams use malloc{) for necessary memory allocation.

And finally one word with the malloc{} statement. In UnixfLinux the sizeof{) function doesn’t
work properly as it does in DOS bhased systems .We have this tendency to allocate memory for a
pointer as in the following statement:

Hode ={(struct HODE *)mallocy{l00*sizeof{struct HODE)) :

In Linux it is adrisable to calculate the sizre of the structure or specify the size of the
data-type in use to avoid dire conseguences.

A1l the ahovre pieces of information are gathered from my personal programming experience
during my projects and it doesn’t cover all the details. I'd bhe satisfied if this article
provres to be handful enough for fellow developers like me. If you do hare any suggestions about
any¥thing that is left over please email me at subh arvadiéwvahoo.com.

For Help, press F1

i Start T N B S E T |%|segfau|t—w'urdpad] 303 AM

b) Figure 2 (doc2.bmp)

ERAES #M E K4 PP @« vE-H-B 2 - ODO00OE =- W

B Acrobat Reader - [resume_format.pdf] — =] =]
ﬁ File Edit Document Wiew Window Help == x|

+ Warked at wwew . MP3.com as a web developer; edited PERL code Lo cutput HTML,
Javascripls; developed graphic layoul and XML templates for the jobs sectian at MP3.com;;
engineered the code for a dymamically generated cascading menu using DHTML and
JavaScript for the MP3 .com Emploeyee Intranet.

* lead web designer and developer for www. dealmixer.cam, which was co-Tounded with 2
olther undergraduoate students,

* As a parl of a direcl group study pragramming project, developed and authored a
software module which read through student records so as 1o generate Lthe required HTHL
documents,

Tutor / Teaching Assitant
*Tular for a data struclures & object-oriented programming class, evaluated and graded
students’ programming assignmentis, aided students with design arnd implementation in
Jawa & C++ pragramming, and helpaed students write pragramiming code in the lab.

Ak] 44 1 0fd PoMl B5x110n O = &R

=]

File »
@ Degaree: Bacholors of Scicenooe in Computer Scionoe fexpected Jute 20013), -
; Institation Uniwversity of Califarmia, San Diego.
- .
2 Course Work Corngicted
= Object-oriented Programming, Discrelte Mathematics, Algorithms and Systems Analysis,
" Assembly Language / Svstems Programming, Data Structures, Computlational Models,
Tg Compiler Construction, Components and Design Techniques for Digital Systems, and
2 igital Systerms Laboratery.
=
=
= Froficiont in the following programirmning fangusgos

HTML, DHTML, PERL, JAVA f JavaScripts, C, C~—, PHP, SQL, UNIX shell.
EXPERIENCE
Programmer

O

g Start T N B £ & 7 ¥]untitled - Paint | 3] my career |||L“‘|-Acrobat Reader - [res... & F:06 AM

¢) Figure 3 (doc3.bmp)

_ 18] x|

java_questions - Notepad
File Edit Format Help

l>— when do wou extend an interface. o]
‘This s a design question. U may extend interface anﬁt"lme you do not want to add methods an
xisting interface already in use (Cimplemented) by other classes. So u don't have a choice but to
ixtend and use it...

Even otherwise to represent the design correctly u may extend a interface. shape is a interface,
(ircle and sSguare can he interfaces extending from shape.

f this was my interview, I'd say that was fairly <lose. what I was looking for was a simple:
only when creating an interface as a subtype, as wou would "implement’ an Tnterface to create a
ubclass. "

t only goes to show that the guestion was not guite clear. Thank you.

really, 1 wonder if people really use uMmL in thedir projects (especially web based - server side
Z2ae kind of- proqectsg. I have come across projects where there is a big noise about using umML

luring the dnitial stages. but as people get going with the project nobody bothers with €.

£ s useful. aAlthough I am not permitted to discuss the different technologies used within my
[omparny SFIIEC"I‘F"IC&-|-|¥, I have seen a number of projects use them. almost all of the medium
fomtracts (1 - 4 M1l range) reguire alot of paperwork that will be read and referenced by the
(1ient.

'he only one standard that I have seen more often than UML were database ERDs fTor the past 4
rears.

iUt wou are missing the point of the question. There are two things being mesured:

.. If you take any patterns_book or 12EE book or jawva programming concepts books (1ike a J1DBC
ook for dinstancel, ‘r:he;gr will use class diagrams wich are based on uUmL. SUM's own documentation
lakes use of seguence diagrams as well. During an interwview, I would need to find out things
ike 4f this guy doesn't know how to mplement a command pattern, <an he Took it up and
inderstand the answer.

. The aobjects I chose bare no specific purpuse in a given task that is obvious during an
nterview. I would not ask this guestion 1f the interviewse Tooked stressed, because this can hbe
stressful guestion. This part mesures the candidate's inginuity, adaptability, and
inderstanding of relationships within the programming world.

.dapter <lasses are those which when extended avoid the need of implementing all the methods of =

aStart| N B E P W]docz - Paint | [my career | 4% Tips For Resume | {=java_question... < 3108 AM

Related Screenshots

a) The Encoder

"[E] === Konsole - root@localhost:/cprogs/prilSlfencoder - Konsole == FI==
File Sessions Settings Help

), [Erme

b) Decoder
r

[[] === Konsole - rooti@localhost:fcprogsiprilSlidecoder - Konsole =] v
File Sessions settings Help

GES

Scope of improvement

Apart from the constraints that are being discussed earlier there are a few areas where performance of the
software can be improved. Since the algorithm implemented through the software is not an optimal one,
there is always a scope of increased compression by use of general data compression algorithms over it.

