Fundamental Equations

Bayes' decision rule:

$$\widehat{\omega} = \arg \max_{\omega} \{ P(\omega|O) \} = \arg \max_{\omega} \{ P(\omega) P_{\omega}(O) \}$$

- $P_{\omega}(O)$ acoustic model.
 - For word sequence ω , how likely are features *O*?
- $P(\omega)$ language model.
 - How likely is word sequence ω ?

Lecture 9

Speaker Adaptation

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen, Markus Nussbaum-Thom

Watson Group IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny, bhuvana, stanchen, nussbaum}@us.ibm.com

8 April 2016

Where Are We?

[0]

2 Segmentation and Clustering

3 Maximum Likelihood Linear Regression

4 Feature based Maximum Likelihood Linear Regression

5 Speaker Adaptive Training

Problem: Sources of Variability

- gender: male / female
- age: young / old
- accents: Texas, South-Carolina
- environment noise: office, car, shopping mall
- different types of microphone
- channel characteristics: high-quality, telephone, mobile phone

Question: Are all these effects covered in training ?

Changing Conditions (I)

- Training data: Should represent test data adequately.
- Problem: There will always be new speakers or conditions.
- Consequence: What will happen ?

• Recognition performance drops.

Changing Conditions (II)

- Why does the performance drop ?
- The features are different from training.
- Situation in training: Larger amount data for a specific set of speakers.
- Situation in recognition: Small amount of data from a target speaker.
- What can we do ?

Adaptation vs. Normalization

- What can we do to overcome the mismatch between training and recognition ?
- Change features *O* or the acoustic model $P(O|\omega, \theta)$.
 - O: feature sequence.
 - ω : word sequence.
 - θ : free model parameters.

- Model-based Feature-based:
 - Modify model to better fit the features \Rightarrow adaptation.
 - Transform features to better fit model \Rightarrow normalization.

- Speaker: Rather a concept for different signal conditions.
- Speaker-independent (SI) system: trained on complete data.
- Speaker-dependent (SD) system: trained on all the data per speaker.
- Speaker-adaptive (SA) system: adapted SI system using the speaker dependent data.

Adaptation/Normalization Types

• Supervised vs. Unsupervised: Is correct transcription of utterance available at test time ?

• Batch vs. Incremental adaptation/normalization: Whole vs. small (time critical) portion of the test data is available.

• Online vs. Offline system: Real-time demand vs. No time restriction.

Question answer (I)

- What is the concept of a speaker ?
- Are all speaker covered in the training data ? What happens ?
- How do we approach the problem of unseen speaker ?
- Supervised vs. unsupervised ?
- Batch vs. Incremental ?

Goal: Fit acoustic model/features to speaker.

- Use new acoustic adaptation data from the current speaker.
- Model-based Feature-based:
 - Modify model to better fit the features \Rightarrow adaptation.
 - Transform features to better fit model \Rightarrow normalization.
- Supervised Unsupervised:
 - Transcription is available for adaptation \Rightarrow supervised.
 - No transcription is available \Rightarrow unsupervised.
- Training:
 - Normalization/Adaptation also in training

 \Rightarrow Speaker Adaptive Training (SAT).

- Incremental Batch:
 - adaptation only on small parts \Rightarrow incremental.
 - adaptation on all data \Rightarrow batch.

Transformation of a Random Variable

- Consider a random variable O:
 - with density P(O)
 - and transform O' = f(O) (assume f can be inverted)

• Then the density P(O') is:

$$P(O') = \frac{1}{\left|\frac{df(O)}{dO}\right|} P(f^{-1}(O')) = \frac{1}{\left|\frac{df(O)}{dO}\right|} P(O)$$

• with Jacobian determinant:

$$\left|\frac{d f(O)}{d O}\right|$$

• or equivalent:

$$P(O) = \left| \frac{d f(O)}{d O} \right| P(O')$$

Supervised Normalization and Adaptation

Estimation of adaptation parameters

- Correct transcript ω of adaptation data is given.

Unsupervised Normalization and Adaptation

Estimation of adaptation parameters and generation of adaptation word sequence.

• Model based: $\theta' = f(\theta, \Phi)$

$$(\hat{\omega}, \hat{\Phi}) = \arg \max_{\omega, \Phi} P(O|\omega, \theta').$$

• Feature based: $O' = f(O, \Phi)$

$$(\hat{\omega}, \hat{\Phi}) = rg\max_{\omega, \Phi} \left| rac{d f(O, \Phi)}{d O} \right| P(O'|\omega, heta).$$

- In practice infeasable.
- In practice transcript ω of adaptation data is approximated.

Unsupervised Normalization and Adaptation: First Best Approximation

First-best approximation

- A speaker independent system generates the first best output.
- Estimation is performed exactly as in the supervised case, but use first pass output as transcription.
- Most popular method.

Unsupervised Normalization and Adaptation: Word Graph Approximation

Word graph based approximation

- A first pass recognition generates a word graph.
- Use the forward-backward algorithm as in the supervised case based on the word graph.
- Weighted accumulation.

- Superprvised vs. Unsupervised adaptation ?
- Approximations ?

Where Are We?

[0]

2 Segmentation and Clustering

3 Maximum Likelihood Linear Regression

4 Feature based Maximum Likelihood Linear Regression

5 Speaker Adaptive Training

Objective: generate transcription from audio in real time.

- The audio has multiple unknown speakers and conditions.
- Requires fast adaptation with very little data (a couple of seconds).
- Can benefit from incremental adaptation which continuously updates the adaptation for new data.

Offline System (I)

Objective: generate transcription from audio. Multiple passed over the data are allowed.

- The audio has multiple unknown speakers and conditions.
- Segmentation and Clustering:

Offline System (II)

- Where are the speakers and conditions ? \Rightarrow
- Segmentation and Clustering
 - Segmentation: Partitioning of the audio into homogenous areas, ideally one speaker/condition per segment.
- What are the speakers are conditions ?
 - Clustering: Clustering into similar speakers/conditions.

The speakers unknown/no transcribed audio data
 ⇒ unsupervised adaptation.

Audio Segmentation(I)

- Objective: split audio stream in homogeneous regions
- Properties:
 - speaker identity,
 - recording condition (e.g. background noise, telephone channel),
 - signal type (e.g. speech. music, noise, silence), and
 - spoken word sequence.

Audio Segmentation (II)

- Segmentation affects speech recognition performance:
 - speaker adaptation and speaker clustering assume one speaker per segment,
 - language model assumes sentence boundaries at segment end,
 - non-speech regions cause insertion errors,
 - overlapping speech is not recognized correctly, causes errors at sorrounding regions,

Audio Segmentation: Methods

Metric based

- Compute distance between adjacent regions.
- Segment at maxima of the distances.
- Distances: Kullback-Leibler distance, Bayesian information criterion.
- Model based
 - Classify regions using precomputed models for music, speech, etc.
 - Segment changes in acoustic class.
- Decoder guided
 - Apply speech recognition to input audio stream.
 - Segment at silence regions.
 - Other decoder output useful too.

Audio Segmentation: Bayesian Information Criterion

Bayesian Information Criterion (BIC):

• Likelihood criterion for a model ⊖ given observations *O*:

$$\operatorname{BIC}(\Theta, \mathcal{O}) = \log p(\mathcal{O}|\Theta) - \frac{\lambda}{2} \cdot d(\Theta) \cdot \log(\mathcal{N})$$

 $d(\Theta)$: number of parameters in Θ , λ : penalty weight for model complexity.

• used for model selection: choose model maximizing BIC.

Change Point Detection: Modeling

Change point detection using BIC:

- Input stream is modeled as Gaussian process in the cepstral domain.
- Feature vectors of one segment: drawn from multivariate Gaussian: O^j_i := O_i...O_j ~ N(μ, Σ)
- For hypothesized segment boundary t in O^T₁ decide between
 - $O_1^T \in \mathcal{N}(\mu, \Sigma)$ and
 - $O_1^t \in \mathcal{N}(\mu_1, \Sigma_1) \ O_{t+1}^T \in \mathcal{N}(\mu_2, \Sigma_2)$
- Use difference of BIC values:

$$\Delta \text{BIC}(t) = \text{BIC}(\mu, \Sigma, \mathcal{O}_1^{\mathsf{T}}) - \text{BIC}(\mu_1, \Sigma_1, \mathcal{O}_1^{\mathsf{t}}) - \text{BIC}(\mu_2, \Sigma_2, \mathcal{O}_{t+1}^{\mathsf{T}})$$

Change Point Detection: Criterion

• Detect single change point in $O_1 \dots O_7$:

$$\hat{t} = \arg \max_{t} \left\{ \Delta \text{BIC}(t) \right\}$$

Change Point Detection: Example

• $\Delta BIC(t)$ can be simplified to:

 $\Delta \mathrm{BIC}(t) = T \log |\Sigma| - t \log |\Sigma_1| - (T - t) \log |\Sigma_2| - \lambda P$

number of parameters P = (D+1/2)/2 log T,
D: dimensionality.

t	1	2	3	4	5	6
O_1^6	4	3	2	9	5	7
Σ	5.67					
$\Sigma_{1,t}$	0	0.25	0.67	7.25	5.84	5.67
$\Sigma_{2,t}$	6.56	6.69	2.67	1	0	0
$\Delta BIC(t)$	-0.89	5.57	8.68	2.48	-0.17	0

Question answer (II)

• What should a segmentation ideally do ?

- What problems can occur due to segmenting (LM, Non-Speech, Overlap) ?
- What methods exist for segmentation ?
- What ist the Bayesian Information criterion ?
- How does change point detection work ?

Speaker Clustering: Introduction

- Objective: Group speech segments into clusters for adaptation.
- Segments from same or similar speakers should be grouped.

BIC Method

- Uses acoustic features only.
- Greedy, bottom up clustering.
- BIC used to control number of clusters.

Speaker Clustering: BIC Clustering

- Greedy, bottom up, BIC clustering method.
- Each cluster is modeled using single Gaussian, full covariance.
- BIC criterion, Requirement: Clustering should give lowest possible adaptation WER.
- Algorithm:
 - Start with one cluster for each segment.
 - Iry all possible pairwise cluster merges.
 - Merge the pair that gives the largest increase in BIC.
 - Iterate from 1, until BIC starts to decrease.

Where Are We?

[0]

2 Segmentation and Clustering

Maximum Likelihood Linear Regression

4 Feature based Maximum Likelihood Linear Regression

5 Speaker Adaptive Training

Remember ? Batch Adaptation

Maximum Likelihood Linear Regression (MLLR)

Goal: Modify speaker indpendent model to better fit featues.

• Speaker dependent transform:

$$f(\mu, (A, b)) = A \cdot \mu + b$$

Simplified to $f(\mu, A) = A \cdot \mu$

• Maximum likelihood:

$$(\hat{A}, \hat{\omega}) = \arg \max_{A, \omega} \left\{ P(\omega) P(O|\omega, \mu, \sigma, A) \right\}$$

• Is a simultaneous optimization practical ?

Maximum Likelihood Linear Regression (MLLR)

• \hat{W} is the result from a speaker independent system.

$$\hat{A} = rg\max_{A} \left\{ P(W) P(O | \hat{W}, A)
ight\}$$

• EM-Algorithm:

- Find best state sequence for \hat{W} for given \hat{A} .
- 2 Estimate new parameters \hat{A} based on given \hat{W} .
- Iterate 1.

• EM Estimate: Maximum Likelihood or Forward backward.

Remember ? Gaussian Mixture Models

The Speaker Dependent Model is a Gaussian Mixture Model (GMM).

Probability of an utterance given a hypothesized word sequence:

$$P(O|\omega,\mu,\sigma) = \prod_{t=1}^{N} \sum_{k=1,\dots,K} \frac{p_k}{\sqrt{2\pi}\sigma_k} e^{-\frac{(O_t-\mu_k)^2}{2\sigma_k^2}}$$

• Log-likelihhood is just as good:

$$\log P(O|\omega,\mu,\sigma) = \sum_{t=1}^{T} \ln \left[\sum_{k=1,\dots,K} \frac{p_k}{\sqrt{2\pi}\sigma_k} e^{-\frac{(O_t-\mu_k)^2}{2\sigma_k^2}} \right]$$

Remember ? Maximum Approximation

• For simplification: Maxium approximation

$$\log P(O|\omega,\mu,\sigma) = \sum_{t=1}^{T} \ln \left[\max_{k=1,\dots,K} \frac{p_k}{\sqrt{2\pi\sigma_k}} e^{-\frac{(O_t-\mu_k)^2}{2\sigma_k^2}} \right]$$

• Path:

$$s_{1}^{t} = s_{1}, \dots, s_{t} = \arg\max_{k_{1}^{T}} \ln\left[\sum_{t=1}^{T} \ln \frac{p_{k_{t}}}{\sqrt{2\pi}\sigma_{k_{t}}} e^{-\frac{(O_{t}-\mu_{k_{t}})^{2}}{2\sigma_{k_{t}}^{2}}}\right]$$

Simple Linear Regression - Review (I)

Say we have a set of points $(O_1, \mu_{s_1}), (O_2, \mu_{s_2}), \dots, (O_N, \mu_{s_T})$ and we want to find coefficients *A* so that

$$\sum_{t=1}^{T} (O_t - (\boldsymbol{A}\mu_{\boldsymbol{s}_t}))^2$$

is minimized.

Taking derivatives with respect to A we get

$$\sum_{t=1}^{T} 2\mu_{s_t}(O_t - \mu_{s_t}^T A) = 0$$

Simple Linear Regression - Review (II)

Taking derivatives with respect to A we get

$$\sum_{t=1}^{T} 2\mu_{s_t}(O_t - \mu_{s_t}^T A) = 0$$

$$\Leftrightarrow \sum_{t=1}^{T} 2\mu_{s_t}O_t^T = \sum_{t=1}^{T} 2\mu_{s_t}\mu_{s_t}^T A$$

$$\Leftrightarrow A = \left[\sum_{t=1}^{T} \mu_{s_t}\mu_{s_t}^T\right]^{-1} \sum_{t=1}^{T} \mu_{s_t}O_t^T$$

so collecting terms we get

$$\boldsymbol{A} = \left[\sum_{t=1}^{T} \mu_{s_t} \mu_{s_t}^{T}\right]^{-1} \sum_{t=1}^{T} \mu_{s_t} \boldsymbol{O}_t^{T}$$

MLLR: Estimation

• Minimize the speaker transformed log-likelihood:

$$\sum_{t=1}^{T} \ln \left[\max_{k=1,\dots,K} \frac{1}{\sqrt{2\pi\sigma}} \ e^{-\frac{(O_t - A\mu_k^T)^2}{2\sigma^2}} \right]$$

• Consider observations O_1, \ldots, O_T and path s_1, \ldots, s_T :

$$\frac{d}{dA} \left\{ \sum_{t=1}^{T} \frac{(O_t - A\overline{\mu}_{s_t})^2}{\sigma^2} \right\} = 0$$
 (1)

• Compare with linear regression:

$$\boldsymbol{A} = \left[\sum_{t=1}^{T} \mu_{s_t} \mu_{s_t}^{T}\right]^{-1} \sum_{t=1}^{T} \mu_{s_t} \boldsymbol{O}_t^{T}$$

MLLR - Multiple Transforms

- Single MLLR transform for all of speech is very restrictive.
- Multiple transforms can be created having state dependent transforms.
- Arrange states in form of tree
- If there are enough frames at a node, a separate transform is estimated for all the phones at the node.

MLLR - Performance

Where Are We?

[0]

2 Segmentation and Clustering

3 Maximum Likelihood Linear Regression

Feature based Maximum Likelihood Linear Regression

Feature based Maximum Likelihod Linear Regression (fMLLR)

Goal: Normalize features to better fit speaker.

• Speaker dependent transform:

$$O_t' = A \cdot O_t + b$$

- Transformation of Gaussian: $P(O'_t) = \mathcal{N}(O'_t | \mu_k, \sigma_k) \Leftrightarrow P(O_t) = |A| \mathcal{N}(AO_t + b | \mu_k, \sigma_k)$
- Pure feature transform ⇒ no changes to decoder necessary.
- Speaker adaptive training easy to implement.

Where Are We?

[0]

2 Segmentation and Clustering

3 Maximum Likelihood Linear Regression

4 Feature based Maximum Likelihood Linear Regression

Speaker Adaptive Training

• Introduction:

- Adaptation compensates for speaker differences in recognition.
- But: We also have speaker differences in training corpus.
- Question: How can we compensate for both these differences?
- Speaker-Adaptive Normalization:
 - Apply transform on training data also.
 - Model training using transformed acoustic features.
- Speaker-Adaptive Adaptation:
 - Interaction between model and transform requires simultaneous model and transform parameter training.
 - Cannot simply retrain model modified acoustic model training necessary.

Speaker Adaptive Training: Training

- Training Procedure:
 - Estimate speaker independent model.
 - Ocmpute viterbi path using a simple target model.
 - Use simple viterbi path to estimate fMLLR adaptation supervised for each speaker in training.
 - Transform features using the estimated fMLLR adaptation.
 - Train speaker adaptive model MSAT on transformed features, starting from the speaker independent system.

Speaker Adaptive Training: Recognition

- Recognition Procedure:
 - First pass recognition using speaker independent model.
 - Estimate fMLLR adaptation unsupervised using simple target model.
 - Transform features using the estimated fMLLR adaptation.
 - Second pass using the speaker adaptive model using the transformed features.

Performance of MLLR and fMLLR

	Test1	Test2
BASE	9.57	9.20
MLLR	8.39	8.21
fMLLR	9.07	7.97
SAT	8.26	7.26

- Task is Broadcast News with a 65K vocabulary.
- 15-26% relative improvement.