
Lecture 6

pr@­n2nsi"eIS@n "mAd@lIN

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen,
Markus Nussbaum-Thom

Watson Group
IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{picheny,bhuvana,stanchen,nussbaum}@us.ibm.com

24 February 2016 and Mar 2 2016

Administrivia

Lab 2
Not graded yet; handed back next lecture.

Lab 3
Due nine days from now (Friday, Mar. 11) at 6pm.

2 / 96

Lab Grading

How things work:
Overall scale: -1 to +1 (-2 if don’t hand in).
Programming part: max score +0.5.
Short answers: default score 0, with small bonus/pens.
+0.5 bonus: if total pens of at most 0.2 (think

√
+).

Lab 1: +0.5 bonus wasn’t applied in original grading.
If your score changed, should have recv’d E-mail.
Contact Stan if you still have questions.

3 / 96

Feedback

Clear (4), mostly clear (3), unclear (1).
Pace: fast (2), OK (1).
Muddiest: pronunciation modeling (1), Laplace smoothing
(1).
Comments (2+ votes)

Handing out grades distracting, inefficient (2).

4 / 96

Review to date

Learned about features (MFCCs, etc.)
Learned about Gaussian Mixture Models
Learned about HMMs and basic operations (finding best
path, training models)
Learned about basic Language modeling.

5 / 96

Where Are We?

1 How to Model Pronunciation Using HMM Topologies

2 Modeling Context Dependence via Decision Trees

6 / 96

Where Are We?

1 How to Model Pronunciation Using HMM Topologies

Whole Word Models

Phonetic Models

Context-Dependence

7 / 96

In the beginning...

... . was the whole word model.
For each word in the vocabulary, decide on an HMM
structure.
Often the number of states in the model is chosen to be
proportional to the number of phonemes in the word.
Train the HMM parameters for a given word using examples
of that word in the training data.
Good domain for this approach: digits.

8 / 96

Example topologies: Digits

Vocabulary consists of (“zero”, “oh”, “one”, “two”, “three”,
“four”, “five”, “six”, “seven”, “eight”, “nine”).
Assume we assign two states per phoneme.
Models look like:
“zero”.

“oh”.

9 / 96

10 / 96

11 / 96

How to represent any sequence of digits?

12 / 96

“911”

13 / 96

Whole-word model limitations

The whole-word model suffers from two main problems.
Cannot model unseen words. In fact, we need several
samples of each word to train the models properly.
Cannot share data among models – data sparseness
problem.
The number of parameters in the system is
proportional to the vocabulary size.

Thus, whole-word models are best on small vocabulary
tasks with lots of data per word.

n.b. as the amount of public speech data continues to
increase this wisdom may be thrown into question.

14 / 96

Where Are We?

1 How to Model Pronunciation Using HMM Topologies

Whole Word Models

Phonetic Models

Context-Dependence

15 / 96

Subword Units

To reduce the number of parameters, we can compose
word models from sub-word units.
These units can be shared among words. Examples include

Units Approximate number
Phones 50.
Diphones 2000.
Syllables 5,000.

Each unit is small in terms of amount of speech modeled.
The number of parameters is proportional to the number of
units (not the number of words in the vocabulary as in
whole-word models.).

16 / 96

Phonetic Models

We represent each word as a sequence of phonemes. This
representation is the “baseform” for the word.

BANDS -> B AE N D Z

Some words need more than one baseform.

THE -> DH UH
-> DH IY

17 / 96

Baseform Dictionary

To determine the pronunciation of each word, we look it up
in a dictionary.
Each word may have several possible pronunciations.
Every word in our training script and test vocabulary must
be in the dictionary.
The dictionary is generally written by hand.
Prone to errors and inconsistencies.

18 / 96

Phonetic Models, cont’d

We can allow for a wide variety of phonological variation by
representing baseforms as graphs.

19 / 96

Phonetic Models, cont’d

Now, construct a Markov model for each phone.
Examples:

20 / 96

Embedding

Replace each phone by its Markov model to get a model for
the entire word

21 / 96

Reducing Parameters by Tying

Consider the three-state model.

Note that.
t1 and t2 correspond to the beginning of the phone.
t3 and t4 correspond to the middle of the phone.
t5 and t6 correspond to the end of the phone.

If we force the output distributions for each member of
those pairs to be the same, then the training data
requirements are reduced.

22 / 96

Tying

A set of arcs in a Markov model are tied to one another if
they are constrained to have identical output distributions.
Similarly, states are tied if they have identical transition
probabilities.
Tying can be explicit or implicit.

23 / 96

Implicit Tying

Occurs when we build up models for larger units from
models of smaller units.
Example: when word models are made from phone models.
First, consider an example without any tying.

Let the vocabulary consist of digits 0,1,2,... 9.
We can make a separate model for each word.
To estimate parameters for each word model, we need
several samples for each word.
Samples of “0” affect only parameters for the “0” model.

24 / 96

Implicit Tying, cont’d

Now consider phone-based models for this vocabulary.

Training samples of “0” will also affect models for “3” and
“4”.
Useful in large vocabulary systems where the number of
words is much greater than the number of phones.

25 / 96

Explicit Tying

Example:

6 non-null arcs, but only 3 different output distributions
because of tying.
Number of model parameters is reduced.
Tying saves storage because only one copy of each
distribution is saved.
Fewer parameters mean less training data needed.

26 / 96

Where Are We?

1 How to Model Pronunciation Using HMM Topologies

Whole Word Models

Phonetic Models

Context-Dependence

27 / 96

Variations in realizations of phonemes

The broad units, phonemes, have variants known as
allophones

Example: p and ph (un-aspirated and aspirated p).
Exercise: Put your hand in front of your mouth and
pronounce spin and then pin Note that the p in pin has
a puff of air,. while the p in spin does not.

28 / 96

Variations in realizations of phonemes

Articulators have inertia, thus the pronunciation of a
phoneme is influenced by surrounding phonemes. This is
known as co-articulation

Example: Consider k in different contexts.
In keep the whole body of the tongue has to be pulled up to
make the vowel.
Closure of the k moves forward compared to coop

29 / 96

keep

30 / 96

coop
31 / 96

Phoneme Targets

Phonemes have idealized articulator target positions that may or
may not be reached in a particular utterance.

Speaking rate
Clarity of articulation

How do we model all this variation?

32 / 96

Triphone models

Model each phoneme in the context of its left and right
neighbor.
E.g. K IYP is a model for IY when K is its left context
phoneme and P is its right context phoneme.

"keep"→ K IY P→ wbKIY K IYP IY Pwb

If we have 50 phonemes in a language, we could have as
many as 503 triphones to model.
Not all of these occur, or only occur a few times. Why is this
bad?
Suggestion: Combine similar triphones together

For example, map K IYP and K IYF to common model

33 / 96

"Bottom-up" (Agglomerative) Clustering

Start with each item in a cluster by itself.
Find “closest” pair of items.
Merge them into a single cluster.
Iterate.

34 / 96

Triphone Clustering

Helps with data sparsity issue
BUT still have an issue with unseen data
To model unseen events, we can “back-off” to lower order
models such as bi-phones and uni-phones. But this is still
sort of ugly.
So instead, we use Decision Trees to deal with the
sparse/unknown data problem.

35 / 96

Where Are We?

1 How to Model Pronunciation Using HMM Topologies

2 Modeling Context Dependence via Decision Trees

36 / 96

Where Are We?

2 Modeling Context Dependence via Decision Trees

Decision Tree Overview

Letter-to-Sound Example

Basics of Tree Construction

Criterion Function

Details of Context Dependent Modeling

37 / 96

Decision Trees

38 / 96

OK. What’s a decision tree?

39 / 96

Types of Features

Nominal or categorical: Finite set without any natural
ordering (e.g., occupation, marital status, race).
Ordinal: Ordered, but absolute differences between values
is unknown (e.g., preference scale, severity of an injury).
Numerical: Domain is numerically ordered (e.g., age,
income).

40 / 96

Types of Outputs

Categorical: Output is one of N classes
Diagnosis: Predict disease from symptoms
Language Modeling: Predict next word from previous
words in the sentence
Spelling to sound rules: Predict phone from spelling

Continuous: Output is a continuous vector

Allophonic variation: Predict spectral characteristics
from phone context

41 / 96

Where Are We?

2 Modeling Context Dependence via Decision Trees

Decision Tree Overview

Letter-to-Sound Example

Basics of Tree Construction

Criterion Function

Details of Context Dependent Modeling

42 / 96

Decision Trees: Letter-to-Sound Example

Let’s say we want to build a tree to decide how the letter “p”
will sound in various words.
Training examples:

p loophole peanuts pay apple
f physics telephone graph photo
φ apple psycho pterodactyl pneumonia

The pronunciation of “p” depends on its letter context.
Task: Using the above training data, devise a series of
questions about the letters to partition the letter contexts
into equivalence classes to minimize the uncertainty of the
pronunciation.

43 / 96

Decision Trees: Letter-to-Sound Example,
cont’d

Denote the context as . . . L2 L1 p R1 R2 . . .
Ask potentially useful question: R1 = "h"?
At this point we have two equivalence classes: 1. R1 = “h”
and 2. R1 6= “h”.

The pronunciation of class 1 is either “p” or “f”, with “f” much
more likely than “p”.
The pronunciation of class 2 is either “p” or "φ"

44 / 96

Four equivalence classes. Uncertainty only remains in class 3.

45 / 96

Five equivalence classes, which is much less than enumerating each of the possibilities.
No uncertainy left in the classes.

A node without children is called a leaf. Otherwise it is called an internal node

46 / 96

Test Case: Paris

47 / 96

Test Case: gopher

Although effective on the training data, this tree does not
generalize well. It was constructed from too little data.

48 / 96

Where Are We?

2 Modeling Context Dependence via Decision Trees

Decision Tree Overview

Letter-to-Sound Example

Basics of Tree Construction

Criterion Function

Details of Context Dependent Modeling

49 / 96

Decision Tree Construction
How to Grow a Tree

1 Find the best question for partitioning the data at a given
node into 2 equivalence classes.

2 Repeat step 1 recursively on each child node.
3 Stop when there is insufficient data to continue or when the

best question is not sufficiently helpful.

Previous example - picked questions "out of the air"
Need more principled way to chose questions

50 / 96

Basic Issues to Solve

How do we determine the best question at a node?
Nature of questions to be asked (next 10-15 slides or
so)
Criterion for deciding between questions (the next set
of slides after that)

When to declare a node terminal or to continue splitting (the
final part of the lecture)

51 / 96

Decision Tree Construction – Fundamental
Operation

There is only 1 fundamental operation in tree construction:
Find the best question for partitioning a subset of the
data into two smaller subsets.
i.e. Take a node of the tree and split it (and the data at
the node) into 2 more-specific classes.

52 / 96

Decision Tree Greediness

Tree construction proceeds from the top down – from root to
leaf.
Each split is locally optimal.
Constructing a tree in this “greedy” fashion usually leads to
a good tree, but probably not globally optimal.
Finding the globally optimal tree is an NP-complete
problem: it is not practical.
n.b.: nor does it probably matter.....

53 / 96

Splitting

At each internal node, ask a question.
Goal is to split data into two "purer" pieces.

Example questions:
Age <= 20 (numeric).
Profession in (student, teacher) (categorical).
5000*Age + 3*Salary – 10000 > 0 (function of raw
features).

54 / 96

Dynamic Questions

The best question to ask at a node about some discrete
variable x consists of the subset of the values taken by x
that best splits the data.
Search over all subsets of values taken by x. (This means
generating questions on the fly during tree construction.).

x ∈ {A,B,C}
Q1:x ∈ {A}? Q2:x ∈ {B}? Q3:x ∈ {C}?
Q4:x ∈ {A,B}? Q5:x ∈ {A,C}? Q6:x ∈ {B,C}?

Use the best question found.
Potential problems:

Requires a lot of CPU. For alphabet size A there are∑
j

(A
j

)
questions.

Allows a lot of freedom, making it easy to overtrain.
55 / 96

Pre-determined Questions

The easiest way to construct a decision tree is to create in
advance a list of possible questions for each variable.
Finding the best question at any given node consists of
subjecting all relevant variables to each of the questions,
and picking the best combination of variable and question.
In acoustic modeling, we typically ask about 2-4 variables:
the 1-2 phones to the left of the current phone and the 1-2
phones to the right of the current phone. Since these
variables all span the same alphabet (phone alphabet) only
one list of questions is needed.

Each question on this list consists of a subset of the
phonetic phone alphabet.

56 / 96

Sample Questions

Phones Letters
{P} {A}
{T} {E}
{K} {I}
{B} {O}
{D} {U}
{G} {Y}
{P,T,K} {A,E,I,O,U}
{B,D,G} {A,E,I,O,U,Y}
{P,T,K,B,D,G}

57 / 96

More Formally - Discrete Questions

A decision tree has a question associated with every
non-terminal node.
If x is a discrete variable which takes on values in some
finite alphabet A, then a question about x has the form:
x ∈ S? where S is a subset of A.

Let L denote the preceding letter in building a
spelling-to-sound tree. Let S=(A,E,I,O,U). Then L ∈ S?
denotes the question: Is the preceding letter a vowel?
Let R denote the following phone in building an acoustic
context tree. Let S=(P,T,K). Then R ∈ S ? denotes the
question: Is the following phone an unvoiced stop?

58 / 96

Continuous Questions

If x is a continuous variable which takes on real values, a
question about x has the form x<q? where q is some real
value.
In order to find the threshold q, we must try values which
separate all training samples.

We do not currently use continuous questions for speech
recognition.

59 / 96

Types of Questions

In principle, a question asked in a decision tree can have
any number (greater than 1) of possible outcomes.
Examples:

Binary: Yes No.
3 Outcomes: Yes No Don’t_Know.
26 Outcomes A B C ... Z

In the case of determining speech recognition allophonic
variation, only binary questions are used to build decision
trees.

60 / 96

Simple Binary Question

A simple binary question consists of a single Boolean
condition, and no Boolean operators.
X1 ∈ S1? Is a simple question.
((X1 ∈ S1)&&(X2 ∈ S2))? is not a simple question.
Topologically, a simple question looks like:

61 / 96

Complex Binary Question

A complex binary question has precisely 2 outcomes (yes,
no) but has more than 1 Boolean condition and at least 1
Boolean operator.
((X1 ∈ S1)&&(X2 ∈ S2))? Is a complex question.
Topologically this question can be shown as:

All complex binary questions can be represented as binary
trees with terminal nodes tied to produce 2 outcomes.

62 / 96

Where Are We?

2 Modeling Context Dependence via Decision Trees

Decision Tree Overview

Letter-to-Sound Example

Basics of Tree Construction

Criterion Function

Details of Context Dependent Modeling

63 / 96

Configurations Currently Used

All decision trees currently used for determining allophonic
variation in speech recognition use:

a pre-determined set
of simple,
binary questions.
on discrete variables.

64 / 96

Tree Construction - Detailed Recap

Let x1 . . . xn denote n discrete variables whose values may
be asked about. Let Qij denote the j th pre-determined
question for xi .
Starting at the root, try splitting each node into 2 sub-nodes:

1 For each xi evaluate questions Qi1,Qi2, . . . and let Q′i
denote the best.

2 Find the best pair xi ,Q′i and denote it x ′,Q′
3 If Q′ is not sufficiently helpful, make the current node a

leaf.
4 Otherwise, split the current node into 2 new sub-nodes

according to the answer of question Q′ on variable x ′.
Stop when all nodes are either too small to split further or
have been marked as leaves.

65 / 96

Question Evaluation

The best question at a node is the question which
maximizes the likelihood of the training data at that node
after applying the question.

66 / 96

Question Evaluation, cont’d

For simplicity, assume the output is a single discrete
variable x with M outcomes (e.g., illnesses, pronunciations,
etc.)
Let x1, x2, . . . , xN be the data samples
Let each of the M outcomes occur cj times in the overall
sample, j = 1 . . .M
Let Qi be a question which partitions this sample into left
and right sub-samples of sizes N = nl + nr .
Let c l

j , c
r
j denote the frequency of the j th outcome in the left

and right sub-samples, nl =
∑

j c l
j ,n

r =
∑

j cr
j

The best question Q′ for is defined to be the one which
maximizes the conditional (log) likelihood of the combined
sub-samples.

67 / 96

log likelihood computation

The likelihood of the data, given that we ask question Q

L(x1, . . . , xN |Q) =
M∏

j=1
(pl

j)
c l

j
M∏

j=1
(pr

j)
cr

j

log L(x1, . . . , xN |Q) =
M∑

j=1
c l

j log pl
j +

M∑
j=1

cr
j log pr

j

The above assumes we know the "true" probabilities pl
j ,p

r
j

68 / 96

log likelihood computation (continued)

Using the maximum likelihood estimates of pl
j ,p

r
j gives:

log L(x1, . . . , xN |Q) =
MX

j=1

c l
j log

c l
j

nl
+

MX
j=1

cr
j log

cr
j

nr

=
MX

j=1

c l
j log c l

j − log nl
MX

j=1

c l
j +

MX
j=1

cr
j log cr

j − log nr
MX

j=1

cr
j

=
MX

j=1

{c l
j log c l

j + cr
j log cr

j } − nl log nl − nr log nr

The best question is the one which maximizes this simple expression.
c l

j , c
r
j ,n

l ,nr are all non-negative integers.

The above expression can be computed very efficiently using a
precomputed table of n log n for non-nonegative integers n

69 / 96

Ballad of 5.60

Free energy and entropy were swirling in his brain,
With partial differentials and Greek letters in their train,

For Delta, Sigma, Gamma, Theta, Epsilon, and Pi’s,
Were driving him distracted as they danced before his eyes.

Chorus: Glory, Glory, dear old Thermo,
Glory, Glory, dear old Thermo,
Glory, Glory, dear old Thermo,

It’ll get you by and by.

70 / 96

Entropy

Let x be a discrete random variable taking values a1, . . . ,aM with
probabilities p1, . . . ,pM respectively.

Define the entropy of the probability distribution p = (p1p2 . . . pM)

H = −
M∑

i=1

pi log2 pi

H = 0⇔ pj = 1 for some j and pi = 0 for i 6= j

H >= 0

Entropy is maximized when pi = 1/M for all i . Then H = log2 M

Thus H tells us something about the sharpness of the distribution p.

71 / 96

What does entropy look like for a binary
variable?

72 / 96

Entropy and Likelihood

Let x be a discrete random variable taking values a1, . . . aM

with probabilities p1, . . . ,pM respectively.
Let x1, . . . , xM be a sample of x in which ai occurs ci times

The sample log likelihood is: log L =
M∑

i=1
ci log pi

The maximum likelihood estimate of pi is p̂i = ci/N
Thus, an estimate of the sample log likelihood is

log L̂ =
M∑

i=1
Np̂i log2 p̂i ∝ −Ĥ

Therefore, maximizing likelihood⇔ minimizing entropy.

73 / 96

“p” tree, revisited

p loophole peanuts pay apple cp = 4
f physics telephone graph photo cf = 4
φ apple psycho pterodactyl pneumonia cφ = 4,N = 12

Log likelihood of the data at the root node is

log2 L(x1, . . . , x12) =
3∑

i=1
ci log2 ci − N log2 N

= 4 log2 4 + 4 log2 4 + 4 log2 4− 12 log2 12 = −19.02
Average entropy at the root node is

H(x1, . . . , x12) = − log2 L(x1, . . . , x12)/N
= 19.02/12 = 1.58 bits

Let’s now apply the above formula to compare three
different questions.

74 / 96

“p” tree revisited: Question A

75 / 96

“p” tree revisited: Question A
Remember formulae for Log likelihood of data:

MX
i=1

{c l
i log c l

i + cr
i log cr

i } − nl log nl − nr log nr

Log likelihood of data after applying question A is:

log2 L(x1, . . . , x12|QA) =

cl
pz }| {

1 log2 1 +

cl
fz }| {

4 log2 4 +

cr
pz }| {

3 log2 3 +

cr
φz }| {

4 log2 4−

nlz }| {
5 log2 5−

nrz }| {
7 log2 7 = −10.51

Average entropy of data after applying question A is

H(x1, . . . , x12|QA) = − log2 L(x1, . . . , x12|QA)/N = 10.51/12 = .87 bits

Increase in log likelihood due to question A is -10.51 - (-19.02) = 8.51
Decrease in entropy due to question A is 1.58-.87 = .71 bits

Knowing the answer to question A provides 0.71 bits of information about the
pronunciation of p. A further 0.87 bits of information is still required to remove
all the uncertainty about the pronunciation of p.

76 / 96

“p” tree revisited: Question B

77 / 96

“p” tree revisited: Question B

Log likelihood of data after applying question B is:

log2 L(x1, . . . , x12|QB) =

2 log2 2 + 2 log2 2 + 3 log2 3 + 2 log2 2 + 2 log2 2− 7 log2 7− 5 log2 5 = −18.51

Average entropy of data after applying question B is

H(x1, . . . , x12|QB) = − log2 L(x1, . . . , x12|QB)/N = 18.51/12 = .87 bits

Increase in log likelihood due to question B is -18.51 - (-19.02) = .51
Decrease in entropy due to question B is 1.58-1.54 = .04 bits

Knowing the answer to question B provides 0.04 bits of information (very
little) about the pronunciation of p.

78 / 96

“p” tree revisited: Question C

79 / 96

“p” tree revisited: Question C

Log likelihood of data after applying question C is:

log2 L(x1, . . . , x12|QC) =

2 log2 2 + 2 log2 2 + 2 log2 2 + 2 log2 2 + 4 log2 4− 4 log2 4− 8 log2 8 = −16.00

Average entropy of data after applying question C is

H(x1, . . . , x12|QC) = − log2 L(x1, . . . , x12|QC)/N = 16/12 = 1.33 bits

Increase in log likelihood due to question C is -16 + 19.02 = 3.02
Decrease in entropy due to question C is 1.58-1.33 = .25 bits

Knowing the answer to question C provides 0.25 bits of information about the
pronunciation of p.

80 / 96

Comparison of Questions A, B, C

Log likelihood of data given question:
A -10.51.
B -18.51.
C -16.00.

Average entropy (bits) of data given question:
A 0.87.
B 1.54.
C 1.33.

Gain in information (in bits) due to question:
A 0.71.
B 0.04.
C 0.25.

These measures all say the same thing:
Question A is best. Question C is 2nd best. Question B
is worst.

81 / 96

Where Are We?

2 Modeling Context Dependence via Decision Trees

Decision Tree Overview

Letter-to-Sound Example

Basics of Tree Construction

Criterion Function

Details of Context Dependent Modeling

82 / 96

Using Decision Trees to Model Context
Dependence in HMMs

Listen closely, this is the whole point of this lecture!

Remember that the pronunciation of a phone depends on
its context.
Enumeration of all triphones is one option but has problems
Idea is to use decision trees to group triphones in a
top-down manner.

83 / 96

Using Decision Trees to Model Context
Dependence in HMMs

Align training data (feature vectors) against set of
phonetic-based HMMs
For each feature vector, tag it with ID of current phone and
the phones to left and right.

84 / 96

Using Decision Trees to Model Context
Dependence in HMMs

For each phone, create a decision tree by asking questions
about the phones on left and right to maximize likelihood of
data.
Leaves of tree represent context dependent models for that
phone.
During training and recognition, you know the phone and its
context (why?) so no problem in identifying the
context-dependent models on the fly.

85 / 96

New Problem: dealing with real-valued data

We grow the tree so as to maximize the likelihood of the
training data (as always), but now the training data are
real-valued vectors.
Can’t use the discrete distribution we used for the
spelling-to-sound example (why?)
instead, estimate the likelihood of the acoustic vectors
during tree construction using a diagonal Gaussian model.

86 / 96

Diagonal Gaussian Likelihood

Let Y = y1, y2 . . . , yn be a sample of independent p-dimensional acoustic
vectors arising from a diagonal Gaussian distribution with mean ~µ and
variances ~σ2. Then

log L(Y |DG(~µ, ~σ2)) = 1
2

n∑
i=1
{p log 2π +

p∑
j=1

logσ2
j +

p∑
j=1

(yij − µj)
2/σ2

j }

The maximum likelihood estimates of ~µ and ~σ2 are

µ̂j = 1/n
n∑

i=1
yij , j = 1, . . . ,p

σ̂2
j = 1/n

n∑
i=1

y2
ij − µ2

j , j = 1, . . .p

Hence, an estimate of log L(Y) is:

log L(Y |DG(~µ, ~σ2)) = 1/2
n∑

i=1
{p log 2π +

p∑
j=1

log σ̂2
j +

p∑
j=1

(yij − µ̂j)
2/σ̂2

j }

87 / 96

Diagonal Gaussian Likelihood

Now
n∑

i=1

p∑
j=1

(yij − µ̂j)
2/σ̂j

2 =
p∑

j=1

1
σ̂j

2

n∑
i=1

(y2
ij)− 2µ̂j

n∑
i=1

yij + nµ̂j
2

=
p∑

j=1

1
σ̂j

2

{
(

n∑
i=1

y2
ij)− nµ̂j

2
}

=
p∑

j=1

1
σ̂j

2 nσ̂2
j =

p∑
j=1

n

Hence

log L(Y |DG(µ̂, σ̂2)) = −1/2{
n∑

i=1
p log 2π +

n∑
i=1

p∑
j=1

σ̂j
2 +

p∑
j=1

n}

= −1/2{np log 2π + n
p∑

j=1
σ̂j

2 + np}

88 / 96

Diagonal Gaussian Splits

Let Q be a question which partitions Y into left and right
sub-samples Yl and Yr , of size nl and nr .
The best question is the one which maximizes
log L(Yl) + logL(Yr)
Using a diagonal Gaussian model.

89 / 96

Diagonal Gaussian Splits, cont’d

Thus, the best question Q minimizes:

DQ = nl

p∑
j=1

log σ̂2
lj + nr

p∑
j=1

log σ̂2
rj

Where

σ̂2
lj = 1/nl ∑

y∈Yl

y2
j − 1/nl 2(

∑
y∈Yl

yj)
2

σ̂2
rj = 1/nr ∑

y∈Yr

y2
j − 1/nr 2(

∑
y∈Yr

yj)
2

DQ involves little more than summing vector elements and their
squares.

90 / 96

How Big a Tree?

Cross-validation.
Measure performance on a held-out data set.
Choose the tree size that maximizes the likelihood of
the held-out data.

In practice, simple heuristics seem to work well.
A decision tree is fully grown when no terminal node can be
split.
Reasons for not splitting a node include:

Insufficient data for accurate question evaluation.
Best question was not very helpful / did not improve the
likelihood significantly.
Cannot cope with any more nodes due to CPU/memory
limitations.

91 / 96

Recap

Given a word sequence, we can construct the
corresponding Markov model by:

Re-writing word string as a sequence of phonemes.
Concatenating phonetic models.
Using the appropriate tree for each phone to determine
which allophone (leaf) is to be used in that context.

In actuality, we make models for the HMM arcs themselves
Follow same process as with phones - align data
against the arcs
Tag each feature vector with its arc id and phonetic
context
Create decision tree for each arc.

92 / 96

Example

93 / 96

Some Results

System T1 T2 T3 T4
Monophone 5.7 7.3 6.0 9.7
Triphone 3.7 4.6 4.2 7.0
Arc-Based DT 3.1 3.8 3.4 6.3

From Julian Odell’s PhD Thesis (Cambridge U., 1995)
Word error rates on 4 test sets associated with 1000 word
vocabulary (Resource Management) task

94 / 96

Strengths & Weaknesses of Decision Trees

Strengths.
Easy to generate; simple algorithm.
Relatively fast to construct.
Classification is very fast.
Can achieve good performance on many tasks.

Weaknesses.
Not always sufficient to learn complex concepts.
Can be hard to interpret. Real problems can produce
large trees...
Some problems with continuously valued attributes
may not be easily discretized.
Data fragmentation.

95 / 96

Course Feedback

Was this lecture mostly clear or unclear?
What was the muddiest topic?
Other feedback (pace, content, atmosphere, etc.).

96 / 96

	How to Model Pronunciation Using HMM Topologies
	Whole Word Models
	Phonetic Models
	Context-Dependence

	Modeling Context Dependence via Decision Trees
	Decision Tree Overview
	Letter-to-Sound Example
	Basics of Tree Construction
	Criterion Function
	Details of Context Dependent Modeling

