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Administrivia

Slides posted before lecture may not match lecture.
Lab 1

Not graded yet; will be graded by next lecture?
Awards ceremony for evaluation next week.
Grading: what’s up with the optional exercises?

Lab 2
Due nine days from now (Friday, Feb. 26) at 6pm.
Start early! Avail yourself of Piazza.
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Feedback

Clear (4); mostly clear (2); unclear (3).
Pace: fast (3); OK (2).
Muddiest: HMM’s in general (1); Viterbi (1); FB (1).
Comments (2+ votes):

want better/clearer examples (5)
spend more time walking through examples (3)
spend more time on high-level intuition before getting
into details (3)
good examples (2)
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Celebrity Sighting

New York Times
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http://www.nytimes.com/2016/02/15/technology/creating-a-computer-voice-that-people-like.html


Part I

The HMM/GMM Framework
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Where Are We?

1 Review from 10,000 Feet

2 The Model

3 Training

4 Decoding

5 Technical Details
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The Raw Data
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What do we do with waveforms?
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Front End Processing

Convert waveform to features.
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What Have We Gained?

Time domain⇒ frequency domain.
Removed vocal-fold excitation.
Made features independent.

9 / 99



ASR 1.0: Dynamic Time Warping
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Computing the Distance Between Utterances

Find “best” alignment between frames.
Sum distances between aligned frames.
Sum penalties for “weird” alignments.
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ASR 2.0: The HMM/GMM Framework
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Notation
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How Do We Do Recognition?

xtest = test features; Pω(x) = word model.

(answer) =???

(answer) = arg max
ω∈vocab

Pω(xtest)

Return the word whose model . . .
Assigns the highest prob to the utterance.
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Putting it All Together

Pω(x) = ???
How do we actually train?
How do we actually decode?

It’s a puzzlement by jubgo. Some rights reserved.
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https://www.flickr.com/photos/jugbo/78800936/
https://www.flickr.com/photos/jugbo/
https://creativecommons.org/licenses/by-nc-nd/2.0/


Where Are We?

1 Review from 10,000 Feet

2 The Model

3 Training

4 Decoding

5 Technical Details
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So What’s the Model?

Pω(x) =???

Frequency that word ω generates features x.
Has something to do with HMM’s and GMM’s.

Untitled by Daniel Oines. Some rights reserved.
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https://www.flickr.com/photos/dno1967b/6505682577/
https://www.flickr.com/photos/dno1967b/
https://creativecommons.org/licenses/by/2.0/


A Word Is A Sequence of Sounds

e.g., the word ONE: W→ AH→ N.
Phoneme inventory.

AA AE AH AO AW AX AXR AY B
BD CH D DD DH DX EH ER EY
F G GD HH IH IX IY JH K

KD L M N NG OW OY P PD
R S SH T TD TH TS UH UW
V W X Y Z ZH

What sounds make up TWO?
What do we use to model sequences?
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HMM, v1.0

Outputs on arcs, not states.
What’s the problem? What are the outputs?
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HMM, v2.0

What’s the problem? How many frames per phoneme?
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HMM, v3.0

Are we done?
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Concept: Alignment⇔ Path

Path through HMM⇒ sequence of arcs, one per frame.
Notation: A = a1 · · · aT .
at = which arc generated frame t .
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The Game Plan

Express Pω(x), the total prob of x . . .
In terms of Pω(x,A), the prob of a single path.
How?

P(x) =
∑

paths A

(path prob)

=
∑

paths A

P(x,A)

Sum over all paths.
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How To Compute the Likelihood of a Path?

Path: A = a1 · · · aT .

P(x,A) =
T∏

t=1

(arc prob)× (output prob)

=
T∏

t=1

pat × P(~xt |at)

Multiply arc, output probs along path.
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What Do Output Probabilities Look Like?

Mixture of diagonal-covariance Gaussians.

P(~x |a) =
∑

comp j

(mixture wgt)
∏

dim d

(Gaussian for dim d)

=
∑

comp j

pa,j

∏
dim d

N (xd ;µa,j,d , σa,j,d)
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The Full Model

P(x) =
∑

paths A

P(x,A)

=
∑

paths A

T∏
t=1

pat × P(~xt |at)

=
∑

paths A

T∏
t=1

pat

∑
comp j

pat ,j

∏
dim d

N (xt ,d ;µat ,j,d , σ
2
at ,j,d)

pa — transition probability for arc a.
pa,j — mixture weight, j th component of GMM on arc a.
µa,j,d — mean, d th dim, j th component, GMM on arc a.
σ2

a,j,d — variance, d th dim, j th component, GMM on arc a.
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Pop Quiz

What was the equation on the last slide?
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Where Are We?

1 Review from 10,000 Feet

2 The Model

3 Training

4 Decoding

5 Technical Details
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Training

How to create model Pω(x) from examples xω,1, xω,2, . . . ?
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What is the Goal of Training?

To estimate parameters . . .
To maximize likelihood of training data.

Crossfit 0303 by Runar Eilertsen. Some rights reserved.
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https://www.flickr.com/photos/runare/10884114646/
https://www.flickr.com/photos/runare/
https://creativecommons.org/licenses/by-nc-nd/2.0/


What Are the Model Parameters?

pa — transition probability for arc a.
pa,j — mixture weight, j th component of GMM on arc a.
µa,j,d — mean, d th dim, j th component, GMM on arc a.
σ2

a,j,d — variance, d th dim, j th component, GMM on arc a.
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Warm-Up: Non-Hidden ML Estimation

e.g., Gaussian estimation, non-hidden Markov Models.
How to do this? (Hint: ??? and ???.)

parameter description statistic
pa arc prob # times arc taken
pa,j mixture wgt # times component used
µa,j,d mean xd

σ2
a,j,d variance x2

d

Count and normalize.
i.e., collect a statistic; divide by normalizer count.
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How To Estimate Hidden Models?

The EM algorithm⇒ FB algorithm for HMM’s.
Hill-climbing maximum-likelihood estimation.

Uphill Struggle by Ewan Cross. Some rights reserved.
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https://www.flickr.com/photos/ewancross/4454497924/
https://www.flickr.com/photos/ewancross/
https://creativecommons.org/licenses/by-nc-nd/2.0/


The EM Algorithm

Expectation step.
Using current model, compute posterior counts . . .
Prob that thing occurred at time t .

Maximization step.
Like non-hidden MLE, except . . .
Use fractional posterior counts instead of whole counts.

Repeat.
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E step: Calculating Posterior Counts

e.g., posterior count γ(a, t) of taking arc a at time t .

γ(a, t) =
P(paths with arc a at time t)

P(all paths)

=
1

P(x)
× P(paths from start to src(a))×

P(arc a at time t)× P(paths from dst(a) to end)

=
1

P(x)
× α(src(a), t − 1)× pa × P(~xt |a)× β(dst(a), t)

Do Forward algorithm: α(S, t), P(x).
Do Backward algorithm: β(S, t).
Read off posterior counts.
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M step: Non-Hidden ML Estimation

Count and normalize.
Same stats as non-hidden, except normalizer is fractional.
e.g., arc prob pa

pa =
(count of a)∑

src(a′)=src(a) (count of a′)
=

∑
t γ(a, t)∑

src(a′)=src(a)

∑
t γ(a′, t)

e.g., single Gaussian, mean µa,d for dim d .

µa,d = (mean weighted by γ(a, t)) =

∑
t γ(a, t)xt ,d∑

t γ(a, t)

36 / 99



Where Are We?

1 Review from 10,000 Feet

2 The Model

3 Training

4 Decoding

5 Technical Details
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What is Decoding?

(answer) = arg max
ω∈vocab

Pω(xtest)
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What Algorithm?

(answer) = arg max
ω∈vocab

Pω(xtest)

For each word ω, how to compute Pω(xtest)?
Forward or Viterbi algorithm.
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What Are We Trying To Compute?

P(x) =
∑

paths A

P(x,A)

=
∑

paths A

T∏
t=1

pat × P(~xt |at)

=
∑

paths A

T∏
t=1

(arc cost)
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Dynamic Programming

Shortest path problem.

(answer) = min
paths A

TA∑
t=1

(edge length)

Forward algorithm.

P(x) =
∑

paths A

T∏
t=1

(arc cost)

Viterbi algorithm.

P(x) ≈ max
paths A

T∏
t=1

(arc cost)

Any semiring will do.
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Scaling

How does decoding time scale with vocab size?
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The One Big HMM Paradigm: Before
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The One Big HMM Paradigm: After

one

two

three

four

�ve

six

seven
eight

nine

zero

How does this help us?
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Pruning

What is time complexity of Forward/Viterbi?
How many values α(S, t) to fill?

Idea: only fill k best cells at each frame.
What is time complexity?
How does this scale with vocab size?

45 / 99



How Does This Change Decoding?

Run Forward/Viterbi once, on one big HMM . . .
Instead of once for every word model.

Same algorithm; different graph!

one

two

three

four

�ve

six

seven
eight

nine

zero
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Forward or Viterbi?

What are we trying to compute?
Total prob? Viterbi prob? Best word?

one

two

three

four

�ve

six

seven
eight

nine

zero
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Recovering the Word Identity

one

two

three

four

�ve

six

seven
eight

nine

zero

48 / 99



Where Are We?

1 Review from 10,000 Feet

2 The Model

3 Training

4 Decoding

5 Technical Details
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Hyperparameters

What is a hyperparameter?
A tunable knob or something adjustable . . .
That can’t be estimated with “normal” training.

Can you name some?

Number of states in each word HMM.
HMM topology.
Number of GMM components.
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“Estimating” Hyperparameters

How does one set hyperparameters?
Just try different values⇒ expensive!

Testing value⇒ train whole HMM/GMM system.
What criterion to optimize?

Normal parameter: Likelihood (smooth).
Hyperparameters: Word-error rate (noisy).
Gradient descent unreliable; grid search instead.

Ask an old-timer.
What are good hyperparameter settings for ASR?
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How Many States?

Rule of thumb: three states per phoneme.
A phoneme has a start, middle, and end?

Example: TWO is composed of phonemes T UW.
Two phonemes⇒ six HMM states.

T1 T2 T3 UW1 UW2 UW3

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

What guarantee each state models intended sound?
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Which HMM Topology?

A standard topology.
Must say sounds of word in order.
Can stay at each sound indefinitely.

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

Can we skip sounds, e.g., fifth?
Use skip arcs ⇔ arcs with no output.
Need to modify Forward, Viterbi, etc.

g1/0.4 g2/0.4 g3/0.4 g4/0.4 g5/0.4 g6/0.4

g1/0.4 g2/0.4 g3/0.4 g4/0.4 g5/0.4 g6/0.4

�/0.2 �/0.2 �/0.2 �/0.2 �/0.2
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The Smallest Number in the World

Demo.
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Probabilities and Log Probabilities

P(x) =
∑

paths A

T∏
t=1

pat

∑
comp j

pat ,j

∏
dim d

N (xt ,d ;µat ,j,d , σ
2
at ,j,d)

1 sec of data⇒ T = 100⇒ Multiply 4,000 likelihoods.
Easy to generate values below 10−307.
Cannot store in C/C++ 64-bit double.

What to do?
Solution: store log probs instead of probs.

Compute logα(S, t), not α(S, t).
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Viterbi Easy, Forward Tricky

Viterbi algorithm

α̂(S, t) = max
S′

xt→S
P(S′ xt→ S)× α̂(S′, t − 1)

log α̂(S, t) = max
S′

xt→S

[
log P(S′ xt→ S) + log α̂(S′, t − 1)

]
Forward algorithm

α(S, t) =
∑

S′
xt→S

P(S′ xt→ S)× α(S′, t − 1)

logα(S, t) = log
∑

S′
xt→S

exp
[
log P(S′ xt→ S) + logα(S′, t − 1)

]
See Holmes, p. 153–154.
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What Have We Learned So Far?

Single-word recognition.
How to recognize a single word.
e.g., can handle a digit, not a digit string.

What’s this good for?

Old-time voice dialing.
Recognizing digits in old-time phone menus.
Not much else.

Old-timey cell phones by Vaguely Artistic. Some rights reserved.
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https://www.flickr.com/photos/vaguelyartistic/344727991/
https://www.flickr.com/photos/vaguelyartistic/
https://creativecommons.org/licenses/by-nc-nd/2.0/


Part II

Continuous Word ASR
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Where Are We?

1 Single Word To Continuous Word ASR

2 One More Thing

3 Discussion
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Next Step: Isolated Word Recognition

It’s . . . when . . . you . . . talk . . . like . . . this.
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Training Data, Test Data

What you need: silence-based segmenter.
Chop up training data.

Chop up test data.
Reduces to single-word ASR.
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Continuous Word Recognition

It’s when you talk like this.
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Continuous Word Recognition

Single word.
Find word model with highest prob:

arg max
ω∈vocab

Pω(xtest)

V -way classification.
Continuous word.

Find word sequence with highest prob:

arg max
ω∈vocab∗

P(xtest|ω)

∞-way classification.
This sounds hard.
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Decoding Continuous Word Data

Have single-word models Pω(x).
How to decode continuous words?
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One Big HMM Paradigm

How to modify HMM . . .
To accept word sequences instead of single words?

one

two

three

four

�ve

six

seven
eight

nine

zero

Loop!
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What Do We Need To Change in Viterbi?

Nada.
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Training on Continuous Word Data

Isolated word.

Continuous word.

Don’t know where words begin and end!
67 / 99



How Does Training Work Again?

Isolated word.

Continuous word: what to do?

Idea: concatenate HMM’s!
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What Do We Need To Change in FB?

Nada.
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Recap: Continuous Word ASR

Use “one big HMM” paradigm for decoding.
Modify HMM’s for decoding and training in intuitive way.
Everything just works!
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Where Are We?

1 Single Word To Continuous Word ASR

2 One More Thing

3 Discussion
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One More Thing

What happens if we feed isolated speech . . .
Into our continuous word system?

one

two

three

four

�ve

six

seven
eight

nine

zero
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What To Do About Silence?

Treat silence as just another word (∼SIL).
How to design HMM for silence?

g1/0.4 g2/0.4 g3/0.4

g1/0.4 g2/0.4 g3/0.4

�/0.2 �/0.2
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Silence In Decoding

Where may silence occur?
How many silences can occur in a row?
Rule of thumb: unnecessary freedom should be avoided.

cf. Patriot Act.

HMMsil HMMsil
HMMsil

HMMone

HMMtwo

HMMthree

. . . . . .

HMMone

HMMtwo

HMMthree

. . . . . .

HMMsil

�

HMMsil

�

HMMsil

�

HMMone

HMMtwo

HMMthree

. . . . . .

HMMone

HMMtwo

HMMthree

. . . . . .
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Silence In Training

Usually not included in transcripts.
e.g., HMM for transcript: ONE TWO

HMMsil HMMtwo HMMsil HMMone HMMsil

HMMtwo HMMone

Lab 2: graphs constructed for you.
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Recap: Silence

Don’t forget about silence!
Silence can be modeled as just another word.
Generalization: noises, music, filled pauses.

Silence by Alberto Ortiz. Some rights reserved.
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https://www.flickr.com/photos/citizen_poeta/1446906402/
https://www.flickr.com/photos/citizen_poeta/
https://creativecommons.org/licenses/by-nc-nd/2.0/


Where Are We?

1 Single Word To Continuous Word ASR

2 One More Thing

3 Discussion
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HMM/GMM Systems Are Easy To Use

List of inputs.
Hyperparameters.

HMM topology, # states; # GMM components.
What else?∗

Utterances with transcripts.
Automatically induces word begin/ends, silences.

Period.

∗Small vocabulary only.
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HMM/GMM Systems Are Flexible

Same algorithms for:
Single word, isolated word, continuous word ASR.

Just change how HMM is created!
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HMM/GMM Systems Are Scalable

As training data, vocabulary grows.
In decoding speed.

Pruning⇒ time grows slowly.∗

In model size.
Number of parameters grow slowly.∗

∗When using large-vocab methods described in next few lectures.
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HMM/GMM’s Are The Bomb

State of art since invented in 1980’s.
That’s 30+ years!

Until a couple years ago . . .
Basically every production system was HMM/GMM.
Most probably still are.

BOMB by Apionid. Some rights reserved.
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https://www.flickr.com/photos/apionid/19862433253/
https://www.flickr.com/photos/apionid/
https://creativecommons.org/licenses/by-nc-nd/2.0/


Segue: What Have We Learned So Far?

Small-vocabulary continuous speech recognition.
What’s this good for?

Digit strings.
Not much else.

What’s next: large-vocabulary CSR.
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Part III

Language Modeling

83 / 99



Where Are We?

1 The Fundamental Equation of Speech Recognition
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Demo

85 / 99



What’s the Point?

ASR works better if you say something “expected”.
Otherwise, it doesn’t do that well.
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Wreck a Nice Peach?

Demo.
THIS IS OUR ROOM FOR A FOUR HOUR PERIOD .
THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD

IT IS EASY TO RECOGNIZE SPEECH .
IT IS EASY TO WRECK A NICE PEACH .

Homophones; acoustically ambiguous speech.
How does it get it right . . .

Even though acoustics for pair is same?
(What if want other member of pair?)

Need to model “expected” word sequences!
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How Do We Do Recognition?

xtest = test features; P(x|ω) = HMM/GMM model.

(answer) =???

(answer) = arg max
ω∈vocab∗

P(xtest|ω)

Return the word sequence that . . .
Assigns the highest prob to the utterance.
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Does This Prefer Likely Word Sequences?

e.g., P(xtest|OUR ROOM) vs. P(xtest|HOUR ROOM).
If I say AA R R UW M, how do these compare?
They should be about the same.
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How Do We Fix This?

Want term P(ω).
Prior over word sequences; prefers likely sequences.

What HMM/GMM’s give us: P(x|ω).
Old: word sequence that maximizes likelihood of feats.

(answer) = arg max
ω

P(x|ω)

Idea: most likely word sequence given feats!?

(answer) = arg max
ω

P(ω|x)

90 / 99



Bayes’ Rule

The rule:

P(x, ω) = P(ω)P(x|ω) = P(x)P(ω|x)

P(ω|x) =
P(ω)P(x|ω)

P(x)

Substituting:

(answer) = arg max
ω

P(ω|x)

= arg max
ω

P(ω)P(x|ω)

P(x)

= arg max
ω

P(ω)P(x|ω)
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The Fundamental Equation of ASR

Old way:
(answer) = arg max

ω
P(x|ω)

New way:

(answer) = arg max
ω

P(ω|x) = arg max
ω

P(ω)P(x|ω)

Added term P(ω), just like we wanted.
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Remember This!

(answer) = arg max
ω

(language model)× (acoustic model)

= arg max
ω

(prior prob over words)× P(feats|words)

= arg max
ω

P(ω)P(x|ω)

Forgot What I Wanted to Remember by Flood G.. Some rights reserved.
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https://www.flickr.com/photos/_flood_/6732863457/
https://www.flickr.com/photos/_flood_/
https://creativecommons.org/licenses/by-nc-nd/2.0/


Does This Fix Our Problem?

(answer) = arg max
ω

(language model)× (acoustic model)

= arg max
ω

P(ω)P(x|ω)

What about homophones?
THIS IS OUR ROOM FOR A FOUR HOUR PERIOD .
THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD

What about confusable sequences in general?
IT IS EASY TO RECOGNIZE SPEECH .
IT IS EASY TO WRECK A NICE PEACH .
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Language Modeling: Goals

Describe which word sequences are likely.
Eliminate nonsense; restrict choices given to AM.

The fewer choices, the better you do!
Save acoustic model’s ass.
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Pop Quiz

What is the fundamental equation of ASR?
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Part IV

Epilogue
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What’s Next

Language modeling: on the road to LVCSR.
Lecture 6: Pronunciation modeling.

Acoustic modeling for LVCSR.
Lectures 7, 8: Training, finite-state transducers, search.

Efficient training and decoding for LVCSR.
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Course Feedback

1 Was this lecture mostly clear or unclear? What was the
muddiest topic?

2 Comments on difficulty of Lab 1?
3 Other feedback (pace, content, atmosphere)?
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