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Administrivia

Lab 1 is due Friday at 6pm!
Use Piazza for questions/discussion.
Thanks to everyone for answering questions!

Late policy:
Can be late on one lab up to two days for free.
After that, penalized 0.5 for every two days (4d max).

Lab 2 posted on web site by Friday.
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Administrivia

Clear (11); mostly clear (6).
Pace: OK (7), slow (1).
Muddiest: EM (5); hidden variables (2); GMM
forumlae/params (2); MLE (1).
Comments (2+ votes):

good jokes/enjoyable (3)
lots of good examples (2)

Quote: "Great class, loved it. Left me speech-less."
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Components of a speech recognition system
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Recap: Probabilistic Modeling for ASR

Old paradigm: DTW.

w∗ = arg min
w∈vocab

distance(A′test,A
′
w )

New paradigm: Probabilities.

w∗ = arg max
w∈vocab

P(A′test|w)

P(A′|w) is (relative) frequency with which w . . .
Is realized as feature vector A′.

The more “accurate” P(A′|w) is . . .
The more accurate classification is.
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Recap: Gaussian Mixture Models

Probability distribution over . . .
Individual (e.g., 40d) feature vectors.

P(x) =
∑

j

pj
1

(2π)d/2|Σj |1/2 e−
1
2 (x−µj )

T Σ−1
j (x−µj )

Can model arbitrary (non-Gaussian) data pretty well.
Can use EM algorithm to do ML estimation of parameters of
the Gaussian distributions

Finds local optimum in likelihood, iteratively.
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Example: Modeling Acoustic Data With GMM
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What We Have And What We Want

What we have: P(x).
GMM is distribution over indiv feature vectors x.

What we want: P(A′ = x1, . . . ,xT ).
Distribution over sequences of feature vectors.
Build separate model P(A′|w) for each word w .
There you go.

w∗ = arg max
w∈vocab

P(A′test|w)
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Today’s Lecture

Introduce a general probabilistic framework for speech
recognition
Explain how Hidden Markov Models fit in this overall
framework
Review some of the concepts of ML estimation in the
context of an HMM framework
Describe how the three basic HMM operations are
computed
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Probabilistic Model for Speech Recognition

w∗ = arg max
w∈vocab

P(w |x , θ)

= arg max
w∈vocab

P(x |w , θ)P(w |θ)

P(x)

= arg max
w∈vocab

P(x |w , θ)P(w |θ)

w∗ Best sequence of words
x Sequence of acoustic vectors
θ Model Parameters
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Sequence Modeling

Hidden Markov Models . . .
To model sequences of feature vectors (compute
probabilities)
i.e., how feature vectors evolve over time.
Probabilistic counterpart to DTW.

How things fit together.
GMM’s: for each sound, what are likely feature vectors?
e.g., why the sound “b” is different from “d”.
HMM’s: what “sounds” are likely to follow each other?
e.g., why rat is different from tar.
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Acoustic Modeling

Assume a word is made up from a sequence of speech
sounds

Cat: K AE T
Dog: D AO G
Fish: F IH SH

When a speech sound is uttered, a sequence of feature
vectors is produced according to a GMM associated with
each sound
However, the distributions of speech sounds overlap! So
you cannot identify which speech sound produced the
feature vectors
If you did, you could just use the techniques we discussed
last week
Solution is the HMM
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Simplification: Discrete Sequences

Goal: continuous data.
e.g., P(x1, . . . ,xT ) for x ∈ R40.

Most of today: discrete data.
P(x1, . . . , xT ) for x ∈ finite alphabet.

Discrete HMM’s vs. continuous HMM’s.
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Vector Quantization

Before continuous HMM’s and GMM’s (∼1990) . . .
People used discrete HMM’s and VQ (1980’s).

Convert multidimensional feature vector . . .
To discrete symbol {1, . . . ,V} using codebook.

Each symbol has representative feature vector µj .
Convert each feature vector . . .

To symbol j with nearest µj .
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The Basic Idea

How to pick the µj?

µ1
µ2

µ3

µ4

µ5
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The Basic Idea

µ1
µ2

µ3

µ4

µ5

x1

x2

x3

x4

x5

x6

x1,x2,x3,x4,x5,x6 . . .⇒ 4,2,2,5,5,5, . . .
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Recap

Need probabilistic sequence modeling for ASR.
Let’s start with discrete sequences.

Simpler than continuous.
What was used first in ASR.

Let’s go!
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Part I

Nonhidden Sequence Models
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Case Study: Coin Flipping

Let’s flip (unfair) coin 10 times: x1, . . . x10 ∈ {T,H}, e.g.,
T, T, H, H, H, H, T, H, H, H

Design P(x1, . . . xT ) matching actual frequencies . . .
Of sequences (x1, . . . xT ).

What should form of distribution be?
How to estimate its parameters?
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Where Are We?

1 Models Without State

2 Models With State
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Independence

Coin flips are independent !
Outcome of previous flips doesn’t influence . . .
Outcome of future flips (given parameters).

P(x1, . . . x10) =
10∏

i=1

P(xi)

System has no memory or state.
Example of dependence: draws from deck of cards.

e.g., if last card was A♠, next card isn’t.
State: all cards seen.
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Modeling a Single Coin Flip P(xi)

Multinomial distribution.
One parameter for each outcome: pH ,pT ≥ 0 . . .

Modeling frequency of that outcome, i.e., P(x) = px .
Parameters must sum to 1: pH + pT = 1.
Where have we seen this before?
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Computing the Likelihood of Data

Some parameters: pH = 0.6, pT = 0.4.
Some data:

T, T, H, H, H, H, T, H, H, H
The likelihood:

P(x1, . . . x10) =
10∏

i=1

P(xi) =
10∏

i=1

pxi

= pT × pT × pH × pH × pH × · · ·
= 0.67 × 0.43 = 0.00179

How many such sequences are possible?
What is the likelihood of

T, H, H, T, H, T, H, H, H, H
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Computing the Likelihood of Data

More generally:

P(x1, . . . xN) =
N∏

i=1

pxi

=
∏

x

pc(x)
x

log P(x1, . . . xN) =
∑

x

c(x) log p(x)

where c(x) is count of outcome x .
Likelihood only depends on counts of outcomes . . .

Not on order of outcomes.
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Estimating Parameters

Choose parameters that maximize likelihood of data . . .
Because ML estimation is awesome!

If H heads and T tails in N = H + T flips, log likelihood is:

L(xN
1 ) = log(pH)H(pT )T = H log pH + T log(1− pH)

Taking derivative w.r.t. pH and setting to 0.

H
pH
− T

1− pH
= 0 pH =

H
H + T

=
H
N

H − H × pH = T × pH pT = 1− pH =
T
N
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Maximum Likelihood Estimation

MLE of multinomial parameters is an intuitive estimate!
Just relative frequencies: pH = H

N , pT = T
N .

Count and normalize, baby!
MLE is the probability that maximizes the likelihood of the
sequence

0 H
N 1

P
(x

N 1
)

pH
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Example: Maximum Likelihood Estimation

Training data: 50 samples.

T, T, H, H, H, H, T, H, H, H, T, H, H, T, H, H, T, T, T, T, H,
T, T, H, H, H, H, H, T, T, H, T, H, T, H, H, T, H, T, H, H, H,
T, H, H, T, H, H, H, T

Counts: 30 heads, 20 tails.

pMLE
H =

30
50

= 0.6 pMLE
T =

20
50

= 0.4

Sample from MLE distribution:

H, H, T, T, H, H, H, T, T, T, H, H, H, H, T, H, T, H, T, H, T,
T, H, T, H, H, T, H, T, T, H, T, H, T, H, H, T, H, H, H, H, T,
H, T, H, T, T, H, H, H
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Recap: Multinomials, No State

Log likelihood just depends on counts.

L(xN
1 ) =

∑
x

c(x) log px

MLE: count and normalize.

pMLE
x =

c(x)

N

Easy peasy.
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Where Are We?

1 Models Without State

2 Models With State
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Case Study: Two coins

Consider 2 coins:
Coin 1: pH = 0.9,pT = 0.1
Coin 2: pH = 0.2,pT = 0.8

Experiment:
Flip Coin 1.
If outcome is H, flip Coin 1 ; else flip Coin 2.

H H T T (0.0648)
H T H T (0.0018)

Sequence has memory! Order matters.
Order matters for speech too (rat vs tar)
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A Picture: State space representation

14 

1 
 

2 
 

H 0.9 
T 0.1 

T 0.8 

H 0.2 

State sequence can be uniquely determined from the
observations given the initial state
Output probability is the product of the transition
probabilities

Example:
Obs: H T T T
St: 1 1 2 2
P: 0.9x0.1x0.8x0.8
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Case Study: Austin Weather

From National Climate Data Center.
R = rainy = precipitation > 0.00 in.
W = windy = not rainy; avg. wind ≥ 10 mph.
C = calm = not rainy and not windy.

Some data:

W, W, C, C, W, W, C, R, C, R, W, C, C, C, R, R, R, R, C,
C, R, R, R, R, R, R, R, R, C, C, C, C, C, R, R, R, R, R,
R, R, C, C, C, W, C, C, C, C, C, C, R, C, C, C, C

Does system have state/memory?
Does yesterday’s outcome influence today’s?
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State and the Markov Property

How much state to remember?
How much past information to encode in state?

Independent events/no memory: remember nothing.

P(x1, . . . , xN)
?
=

N∏
i=1

P(xi)

General case: remember everything (always holds).

P(x1, . . . , xN) =
N∏

i=1

P(xi |x1, . . . , xi−1)

Something in between?
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The Markov Property, Order n

Holds if:

P(x1, . . . , xN) =
N∏

i=1

P(xi |x1, . . . , xi−1)

=
N∏

i=1

P(xi |xi−n, xi−n+1, · · · , xi−1)

e.g., if know weather for past n days . . .
Knowing more doesn’t help predict future weather.

i.e., if data satisfies this property . . .
No loss from just remembering past n items!
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A Non-Hidden Markov Model, Order 1

Let’s assume: knowing yesterday’s weather is enough.

P(x1, . . . , xN) =
N∏

i=1

P(xi |xi−1)

Before (no state): single multinomial P(xi).
After (with state): separate multinomial P(xi |xi−1) . . .

For each xi−1 ∈ {rainy,windy, calm}.
Model P(xi |xi−1) with parameter pxi−1,xi .

What about P(x1|x0)?
Assume x0 = start, a special value.
One more multinomial: P(xi |start).

Constraint:
∑

xi
pxi−1,xi = 1 for all xi−1.
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A Picture

After observe x , go to state labeled x .
Is state non-hidden?

R W

Cstart

W/pR;W

R/pW;R

C
/p
R
;C

R/pC;R
W
/
p
C
;W

C/pW;C

C/pstart;C

R/pstart;R

C/pC;C

W/pW;WR/pR;R

W/pstart;W
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Computing the Likelihood of Data

Some data: x = W, W, C, C, W, W, C, R, C, R.

R W

Cstart

W/0.5

R/0.6

C
/0
.4

R/0.7

W
/0.2

C/0.1

C/0.5

R/0.2

C/0.1

W/0.3R/0.1

W/0.3

The likelihood:

P(x1, . . . , x10) =
N∏

i=1

P(xi |xi−1) =
N∏

i=1

pxi−1,xi

= pstart,W × pW,W × pW,C × . . .
= 0.3× 0.3× 0.1× 0.1× . . . = 1.06× 10−6
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Computing the Likelihood of Data

More generally:

P(x1, . . . , xN) =
N∏

i=1

P(xi |xi−1) =
N∏

i=1

pxi−1,xi

=
∏

xi−1,xi

pc(xi−1,xi )
xi−1,xi

log P(x1, . . . xN) =
∑

xi−1,xi

c(xi−1, xi) log pxi−1,xi

x0 = start.
c(xi−1, xi) is count of xi following xi−1.

Likelihood only depends on counts of pairs (bigrams).
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Maximum Likelihood Estimation

Choose pxi−1,xi to optimize log likelihood:

L(xN
1 ) =

∑
xi−1,xi

c(xi−1, xi) log pxi−1,xi

=
∑

xi

c(start, xi) log pstart,xi +
∑

xi

c(R, xi) log pR,xi +∑
xi

c(W, xi) log pW,xi +
∑

xi

c(C, xi) log pC,xi

Each sum is log likelihood of multinomial.
Each multinomial has nonoverlapping parameter set.

Can optimize each sum independently!

pMLE
xi−1,xi

=
c(xi−1, xi)∑
x c(xi−1, x)
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Example: Maximum Likelihood Estimation

Some raw data:

W, W, C, C, W, W, C, R, C, R, W, C, C, C, R, R, R, R, C,
C, R, R, R, R, R, R, R, R, C, C, C, C, C, R, R, R, R, R,
R, R, C, C, C, W, C, C, C, C, C, C, R, C, C, C, C

Counts and ML estimates:

c(·, ·) R W C sum
start 0 1 0 1

R 16 1 5 22
W 0 2 4 6
C 6 2 18 26

pMLE R W C
start 0.000 1.000 0.000

R 0.727 0.045 0.227
W 0.000 0.333 0.667
C 0.231 0.077 0.692

pMLE
xi−1,xi

=
c(xi−1, xi)∑
x c(xi−1, x)

pMLE
R,C =

5
16 + 1 + 5

= 0.227
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Example: Maximum Likelihood Estimation

22 6

261

W/1

R/0

C
/5

R/6

W
/2

C/4

C/0

R/0

C/18

W/2R/16

W/1

R W

Cstart

W/0.045

R/0.000

C
/0
.2
27

R/0.231

W
/0.077

C/0.667

C/0.000

R/0.000

C/0.692

W/0.333R/0.727

W/1.000
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Example: Orders

Some raw data:

W, W, C, C, W, W, C, R, C, R, W, C, C, C, R, R, R, R, C,
C, R, R, R, R, R, R, R, R, C, C, C, C, C, R, R, R, R, R,
R, R, C, C, C, W, C, C, C, C, C, C, R, C, C, C, C

Data sampled from MLE Markov model, order 1:

W, W, C, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R,
C, C, C, C, C, C, W, W, C, C, C, R, R, R, C, C, W, C, C,
C, C, C, R, R, R, R, R, C, R, R, C, R, R, R, R, R

Data sampled from MLE Markov model, order 0:

C, R, C, R, R, R, R, C, R, R, C, C, R, C, C, R, R, R, R, C,
C, C, R, C, R, W, R, C, C, C, W, C, R, C, C, W, C, C, C,
C, R, R, C, C, C, R, C, R, R, C, R, C, R, W, R
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Recap: Non-Hidden Markov Models

Use states to encode limited amount of information . . .
About the past.

Current state is known .
Log likelihood just depends on pair counts.

L(xN
1 ) =

∑
xi−1,xi

c(xi−1, xi) log pxi−1,xi

MLE: count and normalize.

pMLE
xi−1,xi

=
c(xi−1, xi)∑
x c(xi−1, x)

Easy beezy.

43 / 157



Part II

Discrete Hidden Markov Models
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Case Study: Austin Weather 2.0

Ignore rain; one sample every two weeks:

C, W, C, C, C, C, W, C, C, C, C, C, C, W, W, C, W, C, W,
W, C, W, C, W, C, C, C, C, C, C, C, C, C, C, C, C, C, C,
W, C, C, C, W, W, C, C, W, W, C, W, C, W, C, C, C, C, C,
C, C, C, C, C, C, C, C, W, C, W, C, C, W, W, C, W, W, W,
C, W, C, C, C, C, C, C, C, C, C, C, W, C, W, W, W, C, C,
C, C, C, W, C, C, W, C, C, C, C, C, C, C, C, C, C, C, W

Does system have state/memory?
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Another View

C W C C C C W C C C C C C W W C W C W W C W C W C C
C C C C C C C C C C C C W C C C W W C C W W C W C W
C C C C C C C C C C C C C W C W C C W W C W W W C W
C C C C C C C C C C W C W W W C C C C C W C C W C C
C C C C C C C C C W C C W W C W C C C W C W C W C C
C C C C C C W C C C C C W C C C W C W C W C C W C W
C C C C C C C C C C C C C W C C C W W C C C W C W C

Does system have memory?
How many states?
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A Hidden Markov Model

For simplicity, no separate start state.
Always start in calm state c.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

Why is state “hidden”?
What are conditions for state to be non-hidden?
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Contrast: Non-Hidden Markov Models

C/0.4W/0.6

R W

Cstart

W/0.045

R/0.000

C
/0
.2
27

R/0.231

W
/0.077

C/0.667

C/0.000

R/0.000

C/0.692

W/0.333R/0.727

W/1.000
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Back to Coins: Hidden Information

Memory-less example:
Coin 0: pH = 0.7,pT = 0.3
Coin 1: pH = 0.9,pT = 0.1
Coin 2: pH = 0.2,pT = 0.8
Experiment: Flip Coin 0. If outcome is H, flip Coin 1
and record ; else flip Coin 2 and record.
Coin 0 flips outcomes are hidden!

What is the probability of the sequence: H T T T ?
p(H) = 0.9x0.7 + 0.2x0.3; p(T ) = 0.1x0.7 + 0.8x0.3

An example with memory:
2 coins, flip each twice. Record first flip, use second to
determine which coin to flip.
No way to know the outcome of even flips.
Order matters now and . . .
Cannot uniquely determine which state sequence
produced the observed output sequence
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Why Hidden State?

No “simple” way to determine state given observed.
If see “W ”, doesn’t mean windy season started.

Speech recognition: one HMM per word.
Each state represents different sound in word.
How to tell from observed when state switches?

Hidden models can model same stuff as non-hidden . . .
Using much fewer states.

Pop quiz: name a hidden model with no memory.
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The Problem With Hidden State

For observed x = x1, . . . , xN , what is hidden state h?
Corresponding state sequence h = h1, . . . ,hN+1.

In non-hidden model, how many h possible given x?
In hidden model, what h are possible given x?

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

This makes everything difficult.
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Three Key Tasks for HMM’s

1 Find single best path in HMM given observed x.
e.g., when did windy season begin?
e.g., when did each sound in word begin?

2 Find total likelihood P(x) of observed.
e.g., to pick which word assigns highest likelihood.

3 Find ML estimates for parameters of HMM.
i.e., estimate arc probabilities to match training data.

These problems are easy to solve for a state-observable Markov
model. More complicated for a HMM as we have to consider all
possible state sequences.
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Where Are We?

1 Computing the Best Path

2 Computing the Likelihood of Observations

3 Estimating Model Parameters

4 Discussion
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What We Want to Compute

Given observed, e.g., x = C, W, C, C, W, . . .
Find state sequence h∗ with highest likelihood.

h∗ = arg max
h

P(h,x)

Why is this easy for non-hidden model?
Given state sequence h, how to compute P(h,x)?

Same as for non-hidden model.
Multiply all arc probabilities along path.
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Likelihood of Single State Sequence

Some data: x = W, C, C.
A state sequence: h = c, c, c,w .

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

Likelihood of path:

P(h,x) = 0.2× 0.6× 0.1 = 0.012
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What We Want to Compute

Given observed, e.g., x = C, W, C, C, W, . . .
Find state sequence h∗ with highest likelihood.

h∗ = arg max
h

P(h,x)

Let’s start with simpler problem:
Find likelihood of best state sequence Pbest(x).
Worry about identity of best sequence later.

Pbest(x) = max
h

P(h,x)
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What’s the Problem?

Pbest(x) = max
h

P(h,x)

For observation sequence of length N . . .
How many different possible state sequences h?

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

How in blazes can we do max . . .
Over exponential number of state sequences?
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Dynamic Programming

Let S0 be start state; e.g., the calm season c.
Let P(S, t) be set of paths of length t . . .

Starting at start state S0 and ending at S . . .
Consistent with observed x1, . . . , xt .

Any path p ∈ P(S, t) must be composed of . . .
Path of length t − 1 to predecessor state S′ → S . . .
Followed by arc from S′ to S labeled with xt .
This decomposition is unique.

P(S, t) =
⋃

S′
xt→S

P(S′, t − 1) · (S′ xt→ S)
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Dynamic Programming

P(S, t) =
⋃

S′
xt→S

P(S′, t − 1) · (S′ xt→ S)

Let α̂(S, t) = likelihood of best path of length t . . .
Starting at start state S0 and ending at S.
P(p) = prob of path p = product of arc probs.

α̂(S, t) = max
p∈P(S,t)

P(p)

= max
p′∈P(S′,t−1),S′

xt→S
P(p′ · (S′ xt→ S))

= max
S′

xt→S
P(S′ xt→ S) max

p′∈P(S′,t−1)
P(p′)

= max
S′

xt→S
P(S′ xt→ S)× α̂(S′, t − 1)
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What Were We Computing Again?

Assume observed x of length T .
Want likelihood of best path of length T . . .
Starting at start state S0 and ending anywhere.

Pbest(x) = max
h

P(h,x) = max
S

α̂(S,T )

If can compute α̂(S,T ), we are done.
If know α̂(S, t − 1) for all S, easy to compute α̂(S, t):

α̂(S, t) = max
S′

xt→S
P(S′ xt→ S)× α̂(S′, t − 1)

This looks promising . . .
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The Viterbi Algorithm

α̂(S,0) = 1 for S = S0, 0 otherwise.
For t = 1, . . . ,T :

For each state S:

α̂(S, t) = max
S′

xt→S
P(S′ xt→ S)× α̂(S′, t − 1)

The end.

Pbest(x) = max
h

P(h,x) = max
S

α̂(S,T )
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Viterbi and Shortest Path

Equivalent to shortest path problem.

1 2
3

4

19

1

3

3

10

1
1

One “state” for each state/time pair (S, t).
Iterate through “states” in topological order:

All arcs go forward in time.
If order “states” by time, valid ordering.

d(S) = min
S′→S
{d(S′) + distance(S′,S)}

α̂(S, t) = max
S′

xt→S
P(S′ xt→ S)× α̂(S′, t − 1)
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Identifying the Best Path

Wait! We can calc likelihood of best path:

Pbest(x) = max
h

P(h,x)

What we really wanted: identity of best path.
i.e., the best state sequence h.

Basic idea: for each S, t . . .
Record identity Sprev(S, t) of previous state S′ . . .
In best path of length t ending at state S.

Find best final state.
Backtrace best previous states until reach start state.
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The Viterbi Algorithm With Backtrace

α̂(S,0) = 1 for S = S0, 0 otherwise.
For t = 1, . . . ,T :

For each state S:

α̂(S, t) = max
S′

xt→S
P(S′ xt→ S)× α̂(S′, t − 1)

Sprev(S, t) = arg max
S′

xt→S

P(S′ xt→ S)× α̂(S′, t − 1)

The end.

Pbest(x) = max
S

α̂(S,T )

Sfinal(x) = arg max
S

α̂(S,T )
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The Backtrace

Scur ← Sfinal(x)

for t in T , . . . ,1:
Scur ← Sprev(Scur, t)

The best state sequence is . . .
List of states traversed in reverse order.
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Illustration with a trellis

State transition diagram in time

28 

Time:  0                       1                        2                       3                    4 
     Obs:    f                         a                       aa                     aab                aabb 

S
tate:  1                 2                3 

.5x.8 .5x.8 .5x.2 .5x.2 

.2 .2 .2 .2 .2 

.1 .1 .1 .1 .1 

.3x.7 
.3x.7 

.3x.3 
.3x.3 

.4x.5 .4x.5 .4x.5 .4x.5 

.5x.3 
.5x.3 

.5x.7 
.5x.7 
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Illustration with a trellis (contd.)

Accumulating scores

29 

Time:  0                       1                        2                       3                    4 
     Obs:    f                         a                       aa                     aab                aabb 

S
tate:  1                 2                3 

.5x.8 .5x.8 .5x.2 .5x.2 

.2 .2 .2 .2 .2 

.1 .1 .1 .1 .1 

.3x.7 
.3x.7 

.3x.3 
.3x.3 

.4x.5 .4x.5 .4x.5 .4x.5 

.5x.3 
.5x.3 

.5x.7 
.5x.7 

1 

.2 

.02 

0.4 

.21+.04+.08=.33 

.033+.03=.063 

.16 

.084+.066+.32=.182 

.0495+.0182=.0677 
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Viterbi algorithm

Accumulating scores

33 

S
tate:  1                 2                3 

.5x.8 .5x.8 .5x.2 .5x.2 

.2 .2 .2 .2 .2 

.1 .1 .1 .1 .1 

.3x.7 
.3x.7 

.3x.3 
.3x.3 

.4x.5 .4x.5 .4x.5 .4x.5 

.5x.3 
.5x.3 

.5x.7 
.5x.7 

1 0.4 

max(.03 .021) Max(.0084 .0315)  

max(.08 .21 .04) 

.16 .016 

.0294 

max(.084 .042 .032) 

.0016 

.00336 

.00588 

.0168 

Time:  0                       1                        2                       3                    4 
     Obs:    f                         a                       aa                     aab                aabb 
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Best path through the trellis

Accumulating scores

34 

Time:  0                       1                        2                       3                    4 
     Obs:    f                         a                       aa                     aab                aabb 

S
tate:  1                 2                3 

.5x.8 .5x.8 .5x.2 .5x.2 

.2 .2 .2 .2 .2 

.1 .1 .1 .1 .1 

.3x.7 
.3x.7 

.3x.3 
.3x.3 

.4x.5 .4x.5 .4x.5 .4x.5 

.5x.3 
.5x.3 

.5x.7 
.5x.7 

.03   .0315 

 .21 

.16 .016 

.0294 

.0016 

.00336 .0168 
0.2 

0.02 

1 0.4 

.084  

.00588 
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Example

Some data: C, C, W, W.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

α̂ 0 1 2 3 4
c 1.000 0.600 0.360 0.072 0.014
w 0.000 0.100 0.060 0.036 0.022

α̂(c,2) = max{P(c C→ c)× α̂(c,1),P(w C→ c)× α̂(w ,1)}
= max{0.6× 0.6,0.1× 0.1} = 0.36
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Example: The Backtrace

Sprev 0 1 2 3 4
c c c c c
w c c c w

h∗ = arg max
h

P(h,x) = (c, c, c,w ,w)

The data: C, C, W, W.
Calm season switching to windy season.
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Recap: The Viterbi Algorithm

Given observed x, . . .
Exponential number of hidden sequences h.

Can find likelihood and identity of best path . . .
Efficiently using dynamic programming.

What is time complexity?
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Where Are We?

1 Computing the Best Path

2 Computing the Likelihood of Observations

3 Estimating Model Parameters

4 Discussion
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What We Want to Compute

Given observed, e.g., x = C, W, C, C, W, . . .
Find total likelihood P(x).

Need to sum likelihood over all hidden sequences:

P(x) =
∑

h

P(h,x)

Given state sequence h, how to compute P(h,x)?
Multiply all arc probabilities along path.

Why is this sum easy for non-hidden model?
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What’s the Problem?

P(x) =
∑

h

P(h,x)

For observation sequence of length N . . .
How many different possible state sequences h?

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

How in blazes can we do sum . . .
Over exponential number of state sequences?
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Dynamic Programming

Let P(S, t) be set of paths of length t . . .
Starting at start state S0 and ending at S . . .
Consistent with observed x1, . . . , xt .

Any path p ∈ P(S, t) must be composed of . . .
Path of length t − 1 to predecessor state S′ → S . . .
Followed by arc from S′ to S labeled with xt .

P(S, t) =
⋃

S′
xt→S

P(S′, t − 1) · (S′ xt→ S)
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Dynamic Programming

P(S, t) =
⋃

S′
xt→S

P(S′, t − 1) · (S′ xt→ S)

Let α(S, t) = sum of likelihoods of paths of length t . . .
Starting at start state S0 and ending at S.

α(S, t) =
∑

p∈P(S,t)

P(p)

=
∑

p′∈P(S′,t−1),S′
xt→S

P(p′ · (S′ xt→ S))

=
∑

S′
xt→S

P(S′ xt→ S)
∑

p′∈P(S′,t−1)

P(p′)

=
∑

S′
xt→S

P(S′ xt→ S)× α(S′, t − 1)
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What Were We Computing Again?

Assume observed x of length T .
Want sum of likelihoods of paths of length T . . .
Starting at start state S0 and ending anywhere.

P(x) =
∑

h

P(h,x) =
∑

S

α(S,T )

If can compute α(S,T ), we are done.
If know α(S, t − 1) for all S, easy to compute α(S, t):

α(S, t) =
∑

S′
xt→S

P(S′ xt→ S)× α(S′, t − 1)

This looks promising . . .
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The Forward Algorithm

α(S,0) = 1 for S = S0, 0 otherwise.
For t = 1, . . . ,T :

For each state S:

α(S, t) =
∑

S′
xt→S

P(S′ xt→ S)× α(S′, t − 1)

The end.
P(x) =

∑
h

P(h,x) =
∑

S

α(S,T )
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Viterbi vs. Forward

The goal:

Pbest(x) = max
h

P(h,x) = max
S

α̂(S,T )

P(x) =
∑

h

P(h,x) =
∑

S

α(S,T )

The invariant.

α̂(S, t) = max
S′

xt→S
P(S′ xt→ S)× α̂(S′, t − 1)

α(S, t) =
∑

S′
xt→S

P(S′ xt→ S)× α(S′, t − 1)

Just replace all max’s with sums (any semiring will do).
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Example

Some data: C, C, W, W.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

α 0 1 2 3 4
c 1.000 0.600 0.370 0.082 0.025
w 0.000 0.100 0.080 0.085 0.059

α(c,2) = P(c C→ c)× α(c,1) + P(w C→ c)× α(w ,1)

= 0.6× 0.6 + 0.1× 0.1 = 0.37
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Recap: The Forward Algorithm

Can find total likelihood P(x) of observed . . .
Using very similar algorithm to Viterbi algorithm.

Just replace max’s with sums.
Same time complexity.
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Where Are We?

1 Computing the Best Path

2 Computing the Likelihood of Observations

3 Estimating Model Parameters

4 Discussion
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Training the Parameters of an HMM

Given training data x . . .
Estimate parameters of model . . .

To maximize likelihood of training data.

P(x) =
∑

h

P(h,x)
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What Are The Parameters?

One parameter for each arc:

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

Identify arc by source S, destination S′, and label x : pS x→S′.
Probs of arcs leaving same state must sum to 1:∑

x ,S′
pS x→S′ = 1 for all S
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What Did We Do For Non-Hidden Again?

Likelihood of single path: product of arc probabilities.
Log likelihood can be written as:

L(xN
1 ) =

∑
S x→S′

c(S x→ S′) log pS x→S′

Just depends on counts c(S x→ S′) of each arc.
Each source state corresponds to multinomial . . .

With nonoverlapping parameters.
ML estimation for multinomials: count and normalize!

pMLE
S x→S′

=
c(S x→ S′)∑

x ,S′ c(S x→ S′)
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Example: Non-Hidden Estimation

22 6

261

W/1

R/0

C
/5

R/6

W
/2

C/4

C/0

R/0

C/18

W/2R/16

W/1

R W

Cstart

W/0.045

R/0.000

C
/0
.2
27

R/0.231

W
/0.077

C/0.667

C/0.000

R/0.000

C/0.692

W/0.333R/0.727

W/1.000
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How Do We Train Hidden Models?

Hmmm, I know this one . . .
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Review: The EM Algorithm

General way to train parameters in hidden models . . .
To optimize likelihood.

Guaranteed to improve likelihood in each iteration.
Only finds local optimum.
Seeding matters.
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The EM Algorithm

Initialize parameter values somehow.
For each iteration . . .
Expectation step: compute posterior (count) of each h.

P̃(h|x) =
P(h,x)∑
h P(h,x)

Maximization step: update parameters.
Instead of data x with unknown h, pretend . . .
Non-hidden data where . . .
(Fractional) count of each (h,x) is P̃(h|x).
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Applying EM to HMM’s: The E Step

Compute posterior (count) of each h.

P̃(h|x) =
P(h,x)∑
h P(h,x)

How to compute prob of single path P(h,x)?
Multiply arc probabilities along path.

How to compute denominator?
This is just total likelihood of observed P(x).

P(x) =
∑

h

P(h,x)

This looks vaguely familiar.
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Applying EM to HMM’s: The M Step

Non-hidden case: single path h with count 1.
Total count of arc is count of arc in h:

c(S x→ S′) = ch(S x→ S′)

Normalize.

pMLE
S x→S′

=
c(S x→ S′)∑

x ,S′ c(S x→ S′)

Hidden case: every path h has count P̃(h|x).
Total count of arc is weighted sum . . .
Of count of arc in each h.

c(S x→ S′) =
∑

h

P̃(h|x)ch(S x→ S′)

Normalize as before.
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What’s the Problem?

Need to sum over exponential number of h:

c(S x→ S′) =
∑

h

P̃(h|x)ch(S x→ S′)

If only we had an algorithm for doing this type of thing.
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The Game Plan

Decompose sum by time (i.e., position in x).
Find count of each arc at each “time” t .

c(S x→ S′) =
T∑

t=1

c(S x→ S′, t) =
T∑

t=1

∑
h∈P(S x→S′,t)

P̃(h|x)

P(S x→ S′, t) are paths where arc at time t is S x→ S′.

P(S x→ S′, t) is empty if x 6= xt .
Otherwise, use dynamic programming to compute

c(S xt→ S′, t) ≡
∑

h∈P(S
xt→S′,t)

P̃(h|x)
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Let’s Rearrange Some

Recall we can compute P(x) using Forward algorithm:

P̃(h|x) =
P(h,x)

P(x)

Some paraphrasing:

c(S xt→ S′, t) =
∑

h∈P(S
xt→S′,t)

P̃(h|x)

=
1

P(x)

∑
h∈P(S

xt→S′,t)

P(h,x)

=
1

P(x)

∑
p∈P(S

xt→S′,t)

P(p)
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What We Need

Goal: sum over all paths p ∈ P(S xt→ S′, t).

Arc at time t is S xt→ S′.
Let Pi(S, t) be set of (initial) paths of length t . . .

Starting at start state S0 and ending at S . . .
Consistent with observed x1, . . . , xt .

Let Pf (S, t) be set of (final) paths of length T − t . . .
Starting at state S and ending at any state . . .
Consistent with observed xt+1, . . . , xT .

Then:

P(S xt→ S′, t) = Pi(S, t − 1) · (S xt→ S′) · Pf (S′, t)
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Translating Path Sets to Probabilities

P(S xt→ S′, t) = Pi(S, t − 1) · (S xt→ S′) · Pf (S′, t)

Let α(S, t) = sum of likelihoods of paths of length t . . .
Starting at start state S0 and ending at S.

Let β(S, t) = sum of likelihoods of paths of length T − t . . .
Starting at state S and ending at any state.

c(S xt→ S′, t) =
1

P(x)

∑
p∈P(S

xt→S′,t)

P(p)

=
1

P(x)

∑
pi∈Pi (S,t−1),pf∈Pf (S′,t)

P(pi · (S
xt→ S′) · pf )

=
1

P(x)
× p

S
xt→S′

∑
pi∈Pi (S,t−1)

P(pi)
∑

pf∈Pf (S′,t)

P(pf )

=
1

P(x)
× p

S
xt→S′
× α(S, t − 1)× β(S′, t)
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Mini-Recap

To do ML estimation in M step . . .
Need count of each arc: c(S x→ S′).

Decompose count of arc by time:

c(S x→ S′) =
T∑

t=1

c(S x→ S′, t)

Can compute count at time efficiently . . .
If have forward probabilities α(S, t) . . .
And backward probabilities β(S,T ).

c(S xt→ S′, t) =
1

P(x)
× p

S
xt→S′
× α(S, t − 1)× β(S′, t)
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The Forward-Backward Algorithm (1 iter)

Apply Forward algorithm to compute α(S, t), P(x).
Apply Backward algorithm to compute β(S, t).
For each arc S xt→ S′ and time t . . .

Compute posterior count of arc at time t if x = xt .

c(S xt→ S′, t) =
1

P(x)
× p

S
xt→S′
× α(S, t − 1)× β(S′, t)

Sum to get total counts for each arc.

c(S x→ S′) =
T∑

t=1

c(S x→ S′, t)

For each arc, find ML estimate of parameter:

pMLE
S x→S′

=
c(S x→ S′)∑

x ,S′ c(S x→ S′)
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The Forward Algorithm

α(S,0) = 1 for S = S0, 0 otherwise.
For t = 1, . . . ,T :

For each state S:

α(S, t) =
∑

S′
xt→S

p
S′

xt→S
× α(S′, t − 1)

The end.
P(x) =

∑
h

P(h,x) =
∑

S

α(S,T )
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The Backward Algorithm

β(S,T ) = 1 for all S.
For t = T − 1, . . . ,0:

For each state S:

β(S, t) =
∑

S
xt+1→ S′

p
S

xt+1→ S′
× β(S′, t + 1)

Pop quiz: how to compute P(x) from β’s?
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Example: The Forward Pass

Some data: C, C, W, W.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

α 0 1 2 3 4
c 1.000 0.600 0.370 0.082 0.025
w 0.000 0.100 0.080 0.085 0.059

α(c,2) = p
c C→c
× α(c,1) + p

w C→c
× α(w ,1)

= 0.6× 0.6 + 0.1× 0.1 = 0.37
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The Backward Pass

The data: C, C, W, W.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

β 0 1 2 3 4
c 0.084 0.123 0.130 0.300 1.000
w 0.033 0.103 0.450 0.700 1.000

β(c,2) = p
c W→c
× β(c,3) + p

c W→w
× β(w ,3)

= 0.2× 0.3 + 0.1× 0.7 = 0.13
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Computing Arc Posteriors

α, β 0 1 2 3 4
c 1.000 0.600 0.370 0.082 0.025
w 0.000 0.100 0.080 0.085 0.059
c 0.084 0.123 0.130 0.300 1.000
w 0.033 0.103 0.450 0.700 1.000

c(S x→ S′, t) p
S x→S′

1 2 3 4

c C→ c 0.6 0.878 0.556 0.000 0.000

c W→ c 0.2 0.000 0.000 0.264 0.195

c C→ w 0.1 0.122 0.321 0.000 0.000

c W→ w 0.1 0.000 0.000 0.308 0.098

w C→ w 0.2 0.000 0.107 0.000 0.000

w W→ w 0.6 0.000 0.000 0.400 0.606

w C→ c 0.1 0.000 0.015 0.000 0.000

w W→ c 0.1 0.000 0.000 0.029 0.101
104 / 157



Computing Arc Posteriors

α, β 0 1 2 3 4
c 1.000 0.600 0.370 0.082 0.025
w 0.000 0.100 0.080 0.085 0.059
c 0.084 0.123 0.130 0.300 1.000
w 0.033 0.103 0.450 0.700 1.000

c(S x→ S′, t) p
S x→S′

1 2 3 4

c C→ c 0.6 0.878 0.556 0.000 0.000

c W→ c 0.2 0.000 0.000 0.264 0.195
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

c(c C→ c,2) =
1

P(x)
× p

c C→c
× α(c,1)× β(c,2)

=
1

0.084
× 0.6× 0.600× 0.130 = 0.0556
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Summing Arc Counts and Reestimation

1 2 3 4 c(S x→ S′) pMLE
S x→S′

c C→ c 0.878 0.556 0.000 0.000 1.434 0.523

c W→ c 0.000 0.000 0.264 0.195 0.459 0.167

c C→ w 0.122 0.321 0.000 0.000 0.444 0.162

c W→ w 0.000 0.000 0.308 0.098 0.405 0.148

w C→ w 0.000 0.107 0.000 0.000 0.107 0.085

w W→ w 0.000 0.000 0.400 0.606 1.006 0.800

w C→ c 0.000 0.015 0.000 0.000 0.015 0.012

w W→ c 0.000 0.000 0.029 0.101 0.130 0.103

∑
x ,S′

c(c x→ S′) = 2.742
∑
x ,S′

c(w x→ S′) = 1.258
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Summing Arc Counts and Reestimation
1 2 3 4 c(S x→ S′) pMLE

S x→S′

c C→ c 0.878 0.556 0.000 0.000 1.434 0.523

c W→ c 0.000 0.000 0.264 0.195 0.459 0.167
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·∑
x ,S′

c(c x→ S′) = 2.742
∑
x ,S′

c(w x→ S′) = 1.258

c(c C→ c) =
T∑

t=1

c(c C→ c, t)

= 0.878 + 0.556 + 0.000 + 0.000 = 1.434

pMLE
c C→c

=
c(c C→ c)∑

x ,S′ c(c x→ S′)
=

1.434
2.742

= 0.523
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Slide for Quiet Contemplation
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Another Example

Same initial HMM.
Training data: instead of one sequence, many.

Each sequence is 26 samples⇔ 1 year.

C W C C C C W C C C C C C W W C W C W W C W C W C C
C C C C C C C C C C C C W C C C W W C C W W C W C W
C C C C C C C C C C C C C W C W C C W W C W W W C W
C C C C C C C C C C W C W W W C C C C C W C C W C C
C C C C C C C C C W C C W W C W C C C W C W C W C C
C C C C C C W C C C C C W C C C W C W C W C C W C W
C C C C C C C C C C C C C W C C C W W C C C W C W C
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Before and After

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

c w

C/0.13

W/0.00

C/0.00

W/0.00

C/0.86

W/0.01

C/0.62

W/0.38
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Another Starting Point

c w

C/0.44

W/0.46

C/0.42

W/0.48

C/0.03

W/0.07

C/0.04

W/0.06

c w

C/0.91

W/0.00

C/0.44

W/0.30

C/0.09

W/0.00

C/0.07

W/0.20
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Recap: The Forward-Backward Algorithm

Also called Baum-Welch algorithm.
Instance of EM algorithm.

Uses dynamic programming to efficiently sum over . . .
Exponential number of hidden state sequences.
Don’t explicitly compute posterior of every h.
Compute posteriors of counts needed in M step.

What is time complexity?
Finds local optimum for parameters in likelihood.

Ending point depends on starting point.
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Recap

Given observed, e.g., x = a,a,b,b . . .
Find total likelihood P(x).

Need to sum likelihood over all hidden sequences:

P(x) =
∑

h

P(h,x)

The obvious way is to enumerate all state sequences that
produce x
Computation is exponential in the length of the sequence

113 / 157



Examples

Enumerate all possible ways of producing observation a starting
from state 1

25 

1 
 

1 
0.4 
 0.5 x 0.8 

0.5 x 0.3 3 
0.03 

 

2 
0.08 

 

0.2  
1 
 
 

0.5 x 0.8 

 
2 
 

 

0.4 x 0.5 

2 
 

0.2 

2 
 

0.2 
2 
 

0.2 

0.4 x 0.5 2 
0.04 

 
0.1 

3 
0.004 

 

2 
0.21 

 

0.3 x 0.7 

2 
 

 

0.3 x 0.7 

0.1 
3 
0.021 

 

0.1 

 
1 
 
 

2 
 

 
3 
0.008 

 

0.2 0.5 x 0.8 

0.7  
0.3  
 

0.8  
0.2  
 

1 
 

2 
 

3 
 

0.5 

0.3 

0.2 

0.4 

0.5 

0.1 

0.3  
0.7  
 

0.5  
0.5  
 

a

b
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Examples (contd.)

Enumerate ways of producing observation aa for all paths from
state 2 after seeing the first observation a

2 
0.21 

 

2 
 

2 
0.04 

 

 
1 
 
 

2 
0.08 

 1 
 

2 

  
2 
 

 

3 

 
3 

 
2 
 
2 

 
3 

 
3 
 
2 
 
2 

 
3 
 

3 
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Examples (contd.)

Save some computation using the Markov property by
combining paths

27 

1 
 

2 
0.33 

 

2 
 

2 

 

3 

 
0.5 x 0.3 

0.4 x 0.5 1 
 2 

 0.4 x 0.5 3 

 

0.1 
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Examples (contd.)

State transition diagram where each state transition is
represented exactly once

28 

Time:  0                       1                        2                       3                    4 
     Obs:    f                         a                       aa                     aab                aabb 

S
tate:  1                 2                3 

.5x.8 .5x.8 .5x.2 .5x.2 

.2 .2 .2 .2 .2 

.1 .1 .1 .1 .1 

.3x.7 
.3x.7 

.3x.3 
.3x.3 

.4x.5 .4x.5 .4x.5 .4x.5 

.5x.3 
.5x.3 

.5x.7 
.5x.7 

117 / 157



Examples (contd.)

Now let’s accumulate the scores ( α)

29 

S
tate:  1                 2                3 

.5x.8 .5x.8 .5x.2 .5x.2 

.2 .2 .2 .2 .2 

.1 .1 .1 .1 .1 

.3x.7 
.3x.7 

.3x.3 
.3x.3 

.4x.5 .4x.5 .4x.5 .4x.5 

.5x.3 
.5x.3 

.5x.7 
.5x.7 

1 

.2 

.02 

0.4 

.21+.04+.08=.33 

.033+.03=.063 

.16 

.084+.066+.32=.182 

.0495+.0182=.0677 

Time:  0                       1                        2                       3                    4 
     Obs:    f                         a                       aa                     aab                aabb 
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Parameter Estimation: Examples (contd.)

Estimate the parameters (transition and output probabilities)
such that the probability of the output sequence is maximized.

Start with some initial values for the parameters
Compute the probability of each path
Assign fractional path counts to each transition along the
paths proportional to these probabilities
Reestimate parameter values
Iterate till convergence
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Examples (contd.)

Consider this model, estimate the transition and output
probabilities for the sequence: a, b, a, a

a1 

a2 

a3 

a4 

a5 
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Examples (contd.)

42 

1/3 

1/3 

1/3 

1/2 

1/2 

½ 
½ ½ 

½ 

½ 
½ 

½ 
½ 7 paths corresponding to an output X of abaa 

1.                        p(X,path1)=1/3x1/2x1/3x1/2x1/3x1/2x1/3x1/2x1/2=.000385 

2.                        p(X,path2)=1/3x1/2x1/3x1/2x1/3x1/2x1/2x1/2x1/2=.000578 

3.                        p(X,path3)=1/3x1/2x1/3x1/2x1/3x1/2x1/2x1/2=.001157 

4.                        p(X,path4)=1/3x1/2x1/3x1/2x1/2x1/2x1/2x1/2x1/2=.000868 
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Examples (contd.)

43 

7 paths: 

5.                        pr(X,path5)=1/3x1/2x1/3x1/2x1/2x1/2x1/2x1/2=.001736 

6.                        pr(X,path6)=1/3x1/2x1/2x1/2x1/2x1/2x1/2x1/2x1/2=.001302 

7.                        pr(X,path7)=1/3x1/2x1/2x1/2x1/2x1/2x1/2x1/2=.002604 

P(X) = Σi p(X,pathi) = .008632 

 

 

1/3 

1/3 

1/3 

1/2 

1/2 

½ 
½ ½ 

½ 

½ 
½ 

½ 
½ 
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Examples (contd.)

Fractional counts

Posterior probability of each path:
Ci = p(X ,pathi)/P(X )
C1 = 0.045, C2 = 0.067,C3 = 0.134,
C4 = 0.100,C5 = 0.201,C6 = 0.150,C7 = 0.301

Ca1 = 3C1+2C2+2C3+C4+C5 = 0.838
Ca2 = C3+C5+C7 = 0.637
Ca3 = C1+C2+C4+C6 = 0.363
Normalize to get new estimates:
a1 = 0.46, a2 = 0.34, a3 = 0.20

Ca1,‘a′ =2C1+C2+C3+C4+C5 = 0.592
Ca1,‘b′ =C1+C2+C3 = 0.246

pa1,‘a′ = 0.71, pa1,‘b′ = 0.29
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Examples (contd.)

New Parameters

46 

.46 

.34 

.20 

.60 

.40 

.71 

.29 .68 
.32 

.64 

.36 

1 
0 
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Examples (contd.)

Iterate till convergence

Step                                        P(X) 
 1                                        0.008632 
 2                                        0.02438 
 3                                        0.02508 
100                                     0.03125004 
600                                     0.037037037  converged 
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Examples (contd.)

Forward-Backward algorithm improves on this enumerative
algorithm
Instead of computing path counts, we compute counts for
each transition in the trellis
Computations are now reduced to linear!

52 

Si 
Sj 

at-1(i) bt(j) 

xt 
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Examples (contd.)

α computation

57 

.083 

Time:  0                       1                        2                       3                    4 
     Obs:    f                         a                       ab                     aba                abaa 

S
tate:  1                 2                3 

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2 

1/3 1/3 1/3 1/3 1/3 

1/3x1/2 

1/3x1/2 

1/3x1/2 

1/3x1/2 
1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2 

1/2x1/2 

1/2x1/2 

1/2x1/2 

1/2x1/2 

1 

.33 

0 

.167 

.306 

.027 

.076 

.113 

.0046 

.035 

.028 

.00077 

.0097 

.008632 
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Examples (contd.)

β computation

58 

0 

Time:  0                       1                        2                       3                    4 
     Obs:    f                         a                       ab                     aba                abaa 

S
tate:  1                 2                3 

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2 

1/3 1/3 1/3 1/3 1/3 

1/3x1/2 

1/3x1/2 

1/3x1/2 

1/3x1/2 
1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2 

1/2x1/2 

1/2x1/2 

1/2x1/2 

1/2x1/2 

.0086 

.0039 

0 

.028 

.016 

.076 

0 

.0625 

.083 

.25 

0 

0 

0 

1 
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Examples (contd.)

How do we use α and beta in computation of fractional counts?
αt−1(i) * aij * bij(xt) * βj / ppath(X )

59 

Time:  0                       1                        2                       3                    4 
     Obs:    f                         a                       ab                     aba                abaa 

S
tate:  1                 2                3 

.547 .246 .045 0 

.151 .101 .067 .045 0 
.302 

.201 
.134 

0 

.151 .553 .821 0 

0 0 0 0 

.167x.0625x.333x.5/.008632 

Ca1 = 0.547 + 0.246 + 0.045; Ca2 = 0.302 +0.201 + 0.134;
Ca3 = 0.151 + 0.101 + 0.067 + 0.045
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Points to remember

Re-estimation converges to a local maximum
Final solution depends on your starting point
Speed of convergence depends on the starting point
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Where Are We?

1 Computing the Best Path

2 Computing the Likelihood of Observations

3 Estimating Model Parameters

4 Discussion
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HMM’s and ASR

Old paradigm: DTW.

w∗ = arg min
w∈vocab

distance(A′test,A
′
w )

New paradigm: Probabilities.

w∗ = arg max
w∈vocab

P(A′test|w)

Vector quantization: A′test ⇒ xtest.
Convert from sequence of 40d feature vectors . . .
To sequence of values from discrete alphabet.
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The Basic Idea

For each word w , build HMM modeling P(x|w) = Pw (x).
Training phase.

For each w , pick HMM topology, initial parameters.
Take all instances of w in training data.
Run Forward-Backward on data to update parameters.

Testing: the Forward algorithm.

w∗ = arg max
w∈vocab

Pw (xtest)

Alignment: the Viterbi algorithm.
When each sound begins and ends.
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Recap: Discrete HMM’s

HMM’s are powerful tool for making probabilistic models . . .
Of discrete sequences.

Three key algorithms for HMM’s:
The Viterbi algorithm.
The Forward algorithm.
The Forward-Backward algorithm.

Each algorithm has important role in ASR.
Can do ASR within probabilistic paradigm . . .

Using just discrete HMM’s and vector quantization.
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Part III

Continuous Hidden Markov Models
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Going from Discrete to Continuous Outputs

What we have: a way to assign likelihoods . . .
To discrete sequences, e.g., C, W, R, C, . . .

What we want: a way to assign likelihoods . . .
To sequences of 40d (or so) feature vectors.

136 / 157



Variants of Discrete HMM’s

Our convention: single output on each arc.

W/0.3

C/0.7 W/1.0

Another convention: output distribution on each arc.

 0:2

0:8

/0.3

 0:7

0:3

/0.7
 0:4

0:6

/1.0

(Another convention: output distribution on each state.)

 0:2

0:8

  0:7

0:3

0.3

0.7 1.0
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Moving to Continuous Outputs

Idea: replace discrete output distribution . . .
With continuous output distribution.

What’s our favorite continuous distribution?
Gaussian mixture models.
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Where Are We?

1 The Basics

2 Discussion
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Moving to Continuous Outputs

Discrete HMM’s.
Finite vocabulary of outputs.
Each arc labeled with single output x .

W/0.3

C/0.7 W/1.0

Continuous HMM’s.
Finite number of GMM’s: g = 1, . . . ,G.
Each arc labeled with single GMM identity g.

2/0.3

1/0.7 3/1.0
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What Are The Parameters?

Assume single start state as before.
Old: one parameter for each arc: p

S
g→S′

.
Identify arc by source S, destination S′, and GMM g.
Probs of arcs leaving same state must sum to 1:∑

g,S′
p

S
g→S′

= 1 for all S

New: GMM parameters for g = 1, . . . ,G:
pg,j , µg,j , Σg,j .

Pg(x) =
∑

j

pg,j
1

(2π)d/2|Σg,j |1/2 e−
1
2 (x−µg,j )

T Σ−1
g,j (x−µg,j )
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Computing the Likelihood of a Path

Multiply arc and output probabilities along path.
Discrete HMM:

Arc probabilities: pS x→S′.
Output probability 1 if output of arc matches . . .
And 0 otherwise (i.e., path is disallowed).

e.g., consider x = C, C, W, W.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6
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Computing the Likelihood of a Path

Multiply arc and output probabilities along path.
Continuous HMM:

Arc probabilities: p
S

g→S′
.

Every arc matches any output.
Output probability is GMM probability.

Pg(x) =
∑

j

pg,j
1

(2π)d/2|Σg,j |1/2 e−
1
2 (x−µg,j )

T Σ−1
g,j (x−µg,j )
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Example: Computing Path Likelihood

Single 1d GMM w/ single component: µ1,1 = 0, σ2
1,1 = 1.

1 2
1/0.3

1/0.7 1/1.0

Observed: x = 0.3,−0.1; state sequence: h = 1,1,2.

P(x) = p
1 1→1
× 1√

2πσ1,1
e
−

(0.3−µ1,1)2

2σ2
1,1 ×

p
1 1→2
× 1√

2πσ1,1
e
−

(−0.1−µ1,1)2

2σ2
1,1

= 0.7× 0.381× 0.3× 0.397 = 0.0318

144 / 157



The Three Key Algorithms

The main change:
Whenever see arc probability pS x→S′ . . .
Replace with arc probability times output probability:

p
S

g→S′
× Pg(x)

The other change: Forward-Backward.
Need to also reestimate GMM parameters.
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Example: The Forward Algorithm

α(S,0) = 1 for S = S0, 0 otherwise.
For t = 1, . . . ,T :

For each state S:

α(S, t) =
∑

S′
g→S

p
S′

g→S
× Pg(xt)× α(S′, t − 1)

The end.
P(x) =

∑
h

P(h,x) =
∑

S

α(S,T )
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The Forward-Backward Algorithm

Compute posterior count of each arc at time t as before.

c(S
g→ S′, t) =

1
P(x)

× p
S

g→S′
×Pg(xt)× α(S, t − 1)× β(S′, t)

Use to get total counts of each arc as before . . .

c(S x→ S′) =
T∑

t=1

c(S x→ S′, t) pMLE
S x→S′

=
c(S x→ S′)∑

x ,S′ c(S x→ S′)

But also use to estimate GMM parameters.
Send c(S

g→ S′, t) counts for point xt . . .
To estimate GMM g.
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Where Are We?

1 The Basics

2 Discussion
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An HMM/GMM Recognizer

For each word w , build HMM modeling P(x|w) = Pw (x).
Training phase.

For each w , pick HMM topology, initial parameters, . . .
Number of components in each GMM.
Take all instances of w in training data.
Run Forward-Backward on data to update parameters.

Testing: the Forward algorithm.

w∗ = arg max
w∈vocab

Pw (xtest)
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What HMM Topology, Initial Parameters?

A standard topology (three states per phoneme):

1/0.5 2/0.5 3/0.5 4/0.5 5/0.5 6/0.5

1/0.5 2/0.5 3/0.5 4/0.5 5/0.5 6/0.5

How many Gaussians per mixture?
Set all means to 0; variances to 1 (flat start).
That’s everything!
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HMM/GMM vs. DTW

Old paradigm: DTW.

w∗ = arg min
w∈vocab

distance(A′test,A
′
w )

New paradigm: Probabilities.

w∗ = arg max
w∈vocab

P(A′test|w)

In fact, can design HMM such that

distance(A′test,A
′
w ) ≈ − log P(A′test|w)

See Holmes, Sec. 9.13, p. 155.
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The More Things Change . . .

DTW HMM
template HMM

frame in template state in HMM
DTW alignment HMM path
local path cost transition (log)prob
frame distance output (log)prob
DTW search Viterbi algorithm
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What Have We Gained?

Principles!
Probability theory; maximum likelihood estimation.
Can choose path scores and parameter values . . .
In non-arbitrary manner.
Less ways to screw up!

Scalability.
Can extend HMM/GMM framework to . . .
Lots of data; continuous speech; large vocab; etc.

Generalization.
HMM can assign high prob to sample . . .
Even if sample not close to any one training example.
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The Markov Assumption

Everything need to know about past . . .
Is encoded in identity of state.
i.e., conditional independence of future and past.

What information do we encode in state?
What information don’t we encode in state?
Issue: the more states, the more parameters.
e.g., the weather.

Solutions.
More states.
Condition on more stuff, e.g., graphical models.
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Recap: HMM’s

Together with GMM’s, good way to model likelihood . . .
Of sequences of 40d acoustic feature vectors.

Use state to capture information about past.
Lets you model how data evolves over time.

Not nearly as ad hoc as dynamic time warping.
Need three basic algorithms for ASR.

Viterbi, Forward, Forward-Backward.
All three are efficient: dynamic programming.

Know enough to build basic GMM/HMM recognizer.
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Part IV

Epilogue
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What’s Next

Lab 2: Build simple HMM/GMM system.
Training and decoding.

Lecture 5: Language modeling.
Moving from isolated to continuous word ASR.

Lecture 6: Pronunciation modeling.
Moving from small to large vocabulary ASR.
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