Lecture 14

Advanced Neural Networks

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen,
Markus Nussbaum-Thom

Watson Group
IBM T.J. Watson Research Center
Yorktown Heights, New York, USA
{picheny, bhuvana, stanchen, nussbaum}@us.ibm.com

27 th April 2016

Variants of Neural Network Architectures

@ Deep Neural Network (DNN),
@ Convolutional Neural Network (CNN),
@ Recurrent Neural Network (RNN),

e unidirectional, bidirectional, Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU),

@ Constraints and Regularization,

@ Attention model,

@ Observations and labels (x,,a,) € R x Aforn=1,... N.
@ Training criterion:

1 N
Fee(0) = =1 > _10g P(an|Xy, 6)

N n=1
1 N
Fr(6) = NZZ > P(al"x]",0) - L(@,wn) loss £
n=1 w 317—'765

@ Optimization:

0 = arg mgin {F(0)}

@ 0,0 : Free parameters of the model (NN, GMM).
@ w,w : Word sequences.

Recap: Gaussian Mixture Model

@ Recap Gaussian Mixture Model:

w|X)— Z HP Xt|at atlat 1)

al ew t=1
e w: word sequence
o x[:=xy,...,xr: feature sequence
o a := ay,...,ar: HVIM state sequence

@ Emission probability P(x|a) ~ N (ua, X2) Gaussian.
@ Replace with a neural network = hybrid model.

@ Use neural network for feature extraction = bottleneck
features.

Hybrid Model

@ Gaussian Mixture Model:

w|X1) = Z HP Xt|at a,lat 1)
W—H—/

a, Tew t=T emission transition

@ Training: A neural network usually models P(x|a).
@ Recognition: Use as a hybrid model for speech recognition:

Plalx) _ P(x,.a) _ P(x|a) _ P(x|a)
P(a P(x)P(a) P(x)

P(x|a)/P(x) and P(x|a) are proportional.

Hybrid Model and Bayes Decision Rule

& = arg max {P(w)P(x{ |w)}

;
= arg max {P(w) Z H PI(;F)l(;a)t)P(atam)}

)

=argmax{ P(w) > =

= argmax {) HP x;|a;)P(a:|a;— 1)}

al ew t=1

Where Are We?

0 Recap: Deep Neural Network

7172

Recap: Deep Neural Network (DNN)

@ First feed forward networks.
@ Consists of input, multiple hidden and output layer.
@ Each hidden and output layer consists of nodes.

.‘ output layer

hidden layer 1 hidden layer 2

57
¢
(OO

@
‘

input layer

:'c/‘:
R

i
/XU
&

8/72

Recap: Deep Neural Network (DNN)

@ Free parameters: weights W and bias b.

@ Output of a layer is input to the next layer.

@ Each node performs a linear followed by a non-linear
activiation on the input.

@ The output layer relates the output of the last hidden layer
with the target states.

0

/
XA

X
*
v

O
;

Va

£

tput layer

input layer
hidden layer 1 hidden layer 2

9/72

Neural Network Layer

@ Number of nodes: n; in layer /.

@ Input from previous layer: y(=") ¢ R~

@ Weight and bias : W) ¢ Rm-1xm pl) ¢ R™,
@ Activation: y = o(W" . yU= 4 p()

-~
linear

NS >
-~

non-linear

nodes y(—1 I (2 s? 9 | layer 1-1

weight W® and bias b®) E%i

nodes y(® | 6 | layer I) = g(W® . y(=1 4 pt)

!

next layer

10/72

Deep Neural Network (DNN)

input y(o) =Ti_5...Tt...Tits

o O O]
ST
weight W) and bias b1 <
layer 1: y(1) = g(WMy©) 4 p1)

nodes y)

weight W(2) and bias b

S
Dl

nodes y layer 2: y® = g(W®@yM) 4 p2))

weight W®) and bias b3

nodes y® layer 3: y® = o(W®y) 1)

weight W® and bias b*

layer 4: y®) = p(WHy®) 4 pA)
11/72

output nodes y®

Activation Function Zoo

@ Sigmoid:
1

Osigmoid(¥) = 1+ exp(—y)

@ Hyperbolic tangent:

Tann(Y) = 1aNN(Y) = 20emoia(2))

@ REctified Linear Unit (RELU):

., ¥y>0
nly) = {g Vo

12/72

Activation Function Zoo

@ Parametric RELU (PRELU):

Y, y>0
O'prelu(y): {ay y<0

@ Exponential Linear Unit (ELU):
_)y y>0
7euly) = {a- (exp(y) ~ 1), ¥ <0
@ Maxout:
Umaxout(y17 cee ,}’l) - miaX { VV1 : y(l71) + b1, e W/ . y(lin =+ b[}

@ Softmax:

_(eply) ep)\ _ .
asoﬁmax(y)_(Zo) Z(y)) with Z(y) zj:exp(y,)

13/72

Where Are We?

@ Multilingual Bottleneck Features

14/72

Multilingual Bottleneck

French
triphone
targets

English
triphone
targets

German

triphone

[—— targets
input

features
Polish

triphone

targets

multilingual
bottleneck

features

15/72

Multilingual Bottleneck

@ Encoder-Decoder architecture: DNN with a bottleneck.

@ Forces low-dimensional representation of speech across
mutliple languages.

@ Several languages are presented to the network randomly.
@ Training: Labels from different languages.

@ Recognition: Network is cut off after bottleneck.

16/72

Why are Multilingual Bottlenecks ?

@ Train Multilingual Bottleneck features with lots of data.

@ Future use: Bottleneck features on different tasks to train
GMM system.

@ No expensive DNN training, but WER gains similar to DNN.

17/72

Multilingual Bottleneck: Performance

WER [%]
Model FR | EN | DE | PL
MFCC 23.6 | 28.6 | 23.3 | 18.1
MLP BN targets 19.3 | 23.1 | 19.0 | 14.5
MLP BN multi 18.7 1 21.3 | 17.9 | 14.0
deep BN targets 174 |1 20.3 | 17.3 | 13.0
deep BN multi 171 119.7 | 16.4 | 12.6

| +lang.dep. hidden layer || 16.8 [19.7 [16.2 | 12.4 |

18/72

More Fancy Models

@ Convolutional Neural Networks.
@ Recurrent Neural Networks:

e Long Short-Term Memory (LSTM) RNNSs,

e Gated Recurrent Unit (GRU) RNNSs.

@ Unstable Gradient Problem.

19/72

Where Are We?

e Convolutional Neural Networks

20/72

Convolutional Neural Networks (CNNSs)

@ Convolution (remember signal analysis ?):

(X1 * Xo)[K] = Z X1 [k — i] - Xo]i]

DNN

[O O

fully connected

CNN
QO Q 0 Q O]

locally connected

21/72

Convolutional Neural Networks (CNNSs)

@ Convolution (remember signal analysis ?):

(X1 * Xo)[K] = Zx1[k—/] Xa]i]

DNN CNN

input

o Mo M o N o) ©_ ¢ © ©] [© o o o

fully connected locally connected

22/72

Convolutional Neural Networks (CNNSs)

Static, A, AA Convolution layer |
e feature maps max pooling
’ feature maps other fully
\, connected
\ —————) A hidden layers
N o
Frequency f‘ ‘ \ « Be.
bands ; ‘.
-.' N
\\ A
Frames

Share same weights

23/72

@ Consists of multiple local maps with channels and kernels.
@ Kernels are convolved across the input.
@ Multidimensional input:
e 1D (frequency),
e 2D (time-frequency),
e 3D (time-frequency-?).
@ Neurons are connected to a local receptive fields of input.

@ Weights are shared across multiple receptive fields.

24/72

Formal Definition: Convolutional Neural

Networks

@ Free parameters: Feature maps W, € R¢*¥ bias b, € R* for
n=1,....N

e c=1,...,C channels,
e k € N kernel size

@ Activation function:

Vni= O'(Wn’,' * Xj + b)

C i+k
=0 (Z Z Wn,c,ifjxc,j + bf)

c=1 j=i—k

25/72

@ Max-Pooling:

pOOl(ynch) = j:iT{aXi—i-k {yn,c,j}

.....

@ Average-Pooling:

average(Ynci) = 5 ki1 Z Ynej

26/72

CNN vs. DNN: Performance

@ GMM, DNN use fMLLR features.
@ CNN use log-Mel features which have local structure,
@ opposed to speaker normalized features.

Table: Broadcast News 50h. Table: Broadcast conversation

WER [%] 2k h.
Model CE| ST WER [%]
GMM 18.8 | n/a Model CE| ST
DNN 16.2 | 14.9 DNN 11.7 |1 10.3
CNN 15.8 | 13.9 CNN 12.6 | 10.4
CNN+DNN | 15.1 | 13.2 DNN+CNN | 11.3 | 9.6

27172

#Fmaps | Classic [16, 17, 18] | VB(X) VC(X) VD(X) WD(X)

64 conv(3,64) conv(3,64) conv(3,64) conv(3,64)
conv(64,64) conv(64,64) conv(64,64) conv(64,64)
pool 1x3 pool 1x2 pool 1x2 pool 1x2

128 conv(64, 128) conv(64, 128) conv(64, 128) conv(64, 128)
conv(128, 128) | conv(128, 128) | conv(128, 128) | conv(128, 128)
pool 2x2 pool 2x2 pool 1x2 pool 1x2

256 conv(128, 256) | conv(128, 256) | conv(128, 256)

conv(256, 256) | conv(256,256) | conv(256, 256)
conv(256, 256)

pool 1x2 pool 2x2 pool 2x2
512 conv9x9(3,512) conv(256, 512) | conv(256, 512)
pool 1x3 conv(512,512) | conv(512,512)
conv3x4(512,512) conv(512, 512)
pool 2x2 pool 2x2
FC 2048
FC 2048
(FC 2048)
FC output size
Softmax

28/72

KUR | TOK | CEB | KAZ | TEL LIT
[SoftmaxHSoftmaxHSoftmaxHSoftmaxHSoftmaxHSoftmax]
[FC][FC J[FC J[FC][FC][FC |
[FC J[_Fc J[Fc J[FCc J[FC][FC]
[FC I FC][Fc J[FC J[FC][FC]

pool

conv

conv Shared

pool

conv

conv

29/72

VGG Performance

WER | # params (M) | #M frames
Classic 512 [17] 132 | 41.2 1200
Classic 256 ReLU (A+S) | 13.8 58.7 290
VCX (6 conv) (A+S) 13.1 36.9 290
VDX (8 conv) (A+S) 12.3 38.4 170
WDX (10 conv) (A+S) 122 | 413 140
VDX (8 conv) (S) 11.9 38.4 340
WDX (10 conv) (S) 11.8 41.3 320

30/72

Where Are We?

e Recurrent Neural Networks

31/72

Recurrent Neural Networks (RNNSs)

@ DNNs are deep in layers.
@ RNNs are deep in time (in addition).

@ Shared weights and biases across time steps.

input ¢

hidden output h;_; hidden output h;

32/72

Unfolded RNN

input ;o input x;—1 input x;
\ \
hidden output h;_o hidden output h;_; > hidden output hy
hi—2 hi—1 hi

33/72

DNN

input ¢

\

RNN

hidden state h;

hidden state h;_1

N

input x;

hidden state hy

34/72

Formal Definition: RNN

@ Input vector sequence: x; c RP. t=1,..., T
@ Hidden outputs: hy, t=1,..., T
@ Free parameters:

e Input to hidden weight: W € R™-1*"
e Hidden to hidden weight: R € R™*™
e Bias: b e R"™

@ Output: lterate the equationfort=1,..., T

ht:O'(W'Xt—l—R'ht,1—|—b)

@ Compare with DNN:
ht:U(W'Xt+b)

35/72

BackPropagation Through Time (BPTT)

@ Chain rule through time:

dF(0) ’Z“: d F(0)d h,
dh, 4= dh. dh

' 3 Wy

W T-1dF(9) dh
D —— - —> 31 I, dhe

36/72

BackPropagation Through Time (BPTT)

@ Implementation:

e Unfold RNN over time through t =1,..., T.
e Forward propagate RNN.

e Backpropagate error through unfolded network.

@ Faster than other optimization methods
(e.g. evolutionary search).

@ Difficulty with local optima.

37/72

Bidirectional RNN (BRNN)

@ Forward RNN processes data forward left to right.
@ Backward RNN processes data backward right to left.

@ Output joins the output of forward and backward RNN.

Output

Forward Layer

Input

Fig.2. Bidirectional RNN

38/72

Formal Definition: BRNN

@ Input vector sequence: x; e RP. t=1,..., T

—

@ Forward and backward hidden outputs: b, by, t =1,..., T
@ Forward and backward free parameters:

e Input to hidden weight: I7V |7V c RM-1xm
° Hldden to hidden weight: F? R € RM*N

e Bias: b b e R™
@ Output: Iterate the equationfort=1,..., T

ht:U(W‘Xt+R'ht,1+b)

@ Output: lterate the equationfort=T,...,1

ht:O'(W'Xt—l—R'ht+1+b)

— 39/72

RNN using Memory Cells

@ Equip an RNN with a memory cell.
@ Can store information for a long time.
@ Introduce gating units to:

e activations going in,

e activations going out,

e saving activations,

e forgetting activations.

40/72

Long Short-Te

output
recurrent

block output "’ﬁ “f_mm
R
output gate g #
LSTM block y

peepholes

input

recurrent

forget gate

input

input

input recurrent

m Memory RNN

OIOLLI N

Legend
unweighted connection
weighted connection
connection with time-lag
branching point
mutliplication
sum over all inputs

gate activation function
(always sigmoid)

input activation function
(usually tanh)

output activation function
(usually tanh)

41/72

Formal Definition: LSTM

@ Input vector sequence: x; e RP,t=1,.... T
@ Hidden outputs: by, t=1,..., T
o lterate the equationfort=1,..., T:

zr=0(W;-x;+ R, h_1+ b,) (block input
ii=c(Wi-x;+ Ri-hi_1+ P ®cq1+b) (input gate
fr=0(Ws-xt+ Rr-hi—1+ Pr® ci_1 + br) (forget gate
Ct=iOzZ+ O Cr_q (cell state
or=c(Wo-xs+ Ro-h_1+ Py ®ci+ b)) (output gate
hy = o; ® tanh(c;) (block output

~_— ~— ' ' ~—

42/72

LSTM: Too many connections ?

@ Some of the connections in the LSTM are not necessary [1].

@ Peepholes do not seem to be necessary.

@ Coupled input and forget gates.

@ Simplified LSTM = Gated Recurrent Unit (GRU).

43/72

Gated Recurrent Unit (GRU)

-

[E
E 1
oy 1
h, ' h, e ol h,) .
! [N @ Element wise addition
i : T 12 iz
1
i . ! L=l Element wise multiplication
Lo ! z |-
! I i T Routes information can propagate along
: hs - : f.w’]
S - I .
: ~. : - 1 ‘I' Involved in modifying information flow and
i Skt - I values
I 1
]]
I 1
1 1
1

References: [2, 3, 4]

44/72

Formal Definition: GRU

@ Input vector sequence: x; e R?,t=1,.... T

@ Hidden outputs: h;, t=1,..., T

@ lterate the equationfort=1,..., T:
rr=oc(W,-xt+ R - hi_1 + by) (reset gate
zz=o(W,-x;+ R;-h_1+ b;) (update gate

hi=0o(Wh-x+ Rp-(r® h_1)+bp) (candidate gate

)
)
)
h=z0h_ 1+ —2z)0h (output gate)

45/72

CNN vs. DNN vs. RNN: Performance

@ GMM, DNN use fMLLR features.
@ CNN use log-Mel features which have local structure,
@ opposed to speaker normalized features.

Table: Broadcast News 50 h.

WER [%)]
Model CE | ST
GMM 18.8 | n/a
DNN 16.2 | 14.9
CNN 15.8 | 13.9

BGRU (fMLLR) 149 | n/a
BLSTM (fMLLR) | 14.8 | n/a
BGRU (Log-Mel) | 14.1 | n/a

46/72

DNN vs. CNN vs. RNN: Performance

@ GMM, DNN use fMLLR features.
@ CNN use log-Mel features which have local structure,
@ opposed to speaker normalized features.

Table: Broadcast Conversation 2000 h.

WER [%)]
Model CE| ST
DNN 11.7 | 10.3
CNN 12.6 | 10.4
RNN 11.5| 9.9
DNN+CNN 11.3| 9.6
RNN+CNN 11.2| 94
DNN+RNN+CNN || 11.1 | 9.4

47172

RNN Black Magic

@ Unrolling the RNN in training:

e whole utterance [5],
e vs. truncated BPTT with carryover [6]:

@ Split utterance into subsequences of e.g. 21 frames.

@ Carry over last cell from previous subsequence to new
subsequence.

@ Compose minibatch from subsequences.

e vs. truncated BPTT with overlap:
@ Split utterance in subsequences of e.g. 21 frames.
@ Overlap subsequences by 10.

@ Compose minibatch of subsequences from different
utterances.

@ Gradient clipping of the LSTM cell.

48/72

RNN Black Magic

@ Recognition: Unrolling RNN
e whole utterance,
e vs. unrolling subsequences

@ Split utterance in subsequences of e.g. 21 frames.

@ Carry over last cell from previous subsequence to new
subsequence.

e vs. unrolling on spectral window [7]

@ For each frame unroll on the spectral window

@ Last RNN layer only returns center/last frame.

49/72

Highway Network

-

[E
E 1
hy —<— & —o—! h
! [N @ Element wise addition
i : T 12 iz
1
i . ! L=l Element wise multiplication
: L r 1 7 |-
! ; T Routes information can propagate along
i T : I
-~ rd

: kL : L ‘I' Involved in modifying information flow and
i o I values
I
I
I
1

References: [2, 3, 4]

50/72

Formal Definition: Highway Network

@ Input vector sequence: x; c RP,t=1,.... T

@ Hidden outputs: by, t=1,..., T

@ lterate the equationfort=1,..., T:
zz=o0(W;-x+ b,) (highway gate)
hy = o(Wh - X + bp) (candidate gate)

h=z0x+1—-2z)0h (output gate)

51/72

Formal Definition: Highway GRU

@ Input vector sequence: x; c R?,t=1,.... T

@ Hidden outputs: by, t=1,..., T

@ lterate the equationfort=1,..., T:
=o(W,-x;+ R - h_1 + by) (reset gate)
=o(W; -x;+ R, hi_1+ b;) (update gate)
=o(Wy- X+ Ry h_1+ by) (highway gate)
)

ht = a(W,, -Xt+ Rp-(rn®h_1)+ by) (candidate gate

h=dox+(1-d)o(zoh1+(1-2)0h)
(output gate)

52/72

Where Are We?

e Unstable Gradient Problem

53/72

Unstable Gradient Problem

@ Happens in deep as well in recurrent neural networks.
@ If gradient becomes very small = vanishing gradient.
@ If gradient becomes very large = exploding gradient.

@ Simplified Neural Network (w; are just scalars):

L(o(yn)
E(O'(WN . o—(qu)
L(o(Wy-o(Wn_q-...0(w - X)...)))

f(W1,...,WN)

54/72

Unstable Gradient Problem, Constraints and

Regularization

@ Gradient:
dF(wi,...,wn)
d wy
_dL do(Wy-o(Wn_1-...0(ws-X;)...))
do d wy
(1‘[: / / /
:d—~0(yN)-WN-0(yN_1)-WN_1 ool (wy) - X
Wi

o If \wio'(y)| <1,i=2,...,N = gradient vanishes.

o If |wio'(y;)| >>1,i=2,...,N = gradient explodes.

55/72

Solution: Unstable Gradient Problem

@ Gradient Clipping.
@ Weight constraints.
@ Let the network save activations over layers/time steps:

Voew = ayprevious + (1 - a)ycommon

e Long Short-Term Memory RNN

e Highway Neural Network (>100 layers)

56/72

Gradient Clipping

@ Keeps gradient weights in range.
@ One approach to deal with the exploding gradient problem.

@ Ensure gradient is in the range [—c, c] for a constant c:

li d]: = min | ¢, max —cﬂ:
Plae©) T ’ Y

57/72

Constraints (I)

@ Keeps weights in range (for e.g. Relu, Maxout).

@ Ignored for gradient backpropagation.

@ Constraints are forced after gradient update.

58/72

Constraints (lI)

@ Max-Norm: force || W] < c for constant ¢

~max(min(||W|2,0), c)

Wllmax = W
e W,
@ Unity-Norm: force |W||> < 1
w
w unity —
|| || ty ||W||2

@ Positivity-Norm: force W > 0

W]l = W - max(0, W)

59/72

Regularization: Dropout

@ Dropout:

@ Prevents getting stuck in local optimum =- avoids overfitting.

60/72

e
>
o
Q
o
S

QO
c

9

i
©

N
S

©
-
(@)
o

oC

@ Dropout:

(b) After applying dropout.

(a) Standard Neural Net

@ Prevents getting stuck in local optimum =- avoids overfitting.

61/72

Regularization: Dropout

@ Input vector sequence: x; € RP
@ Choose z; € {0,1}Pfort=1,..., T

@ According to Bernoulli distribution P(z;4 = i) = p'~'(1 — p)’
with dropout probability with p € [0, 1]:

° Training:xt::x,QfT'pfort:1,...,T.

@ Recognition: x; .= x;fort=1,... T.

62/72

Regularization (II)

@ L, Norm:

10| :
61, = | D161
j=0

@ Training criterion regularization:

Fp(0) = F(0) + A0 with scalar A

@ Smoothes the training criterion.

@ Pushes the free parameter weights closer to zero.

63/72

Where Are We?

G Attention-based End-to-End ASR

64/72

Attention-based End-to-End Architecture

input xq,...,z7

Y

encoder

Y
:I BRNN*attenti(ImS

’z, BRNN*decodeT:\

output wy ... wy

65/72

Attention model

66/72

Formal Definition: Content Focus

@ Input vector sequence: x; c RP. t=1,..., T
@ Hidden outputs: hy, t=1,..., T
@ Scorer:

emt =tanh(Vyc - x;+ b)) fort=1,.... T, m=1,....M

@ Generator:

Omit = o (Wo - €m) fort=1,.... T, m=1,.... M

S o(Wa - em,)
@ Glimpse:

.
gm:Zozm,txt form=1,....M
t=1

@ Output:
hm = oc(Wh - gm + bp) form=1,....M

67/72

Formal Definition: Recurrent Attention

@ Scorer:
Emt = ta.nh(VV6 - Xi + Re - Sm—1+ Ue : (F6 * Oém_1) + be)
@ Generator:

amit = f(Wa'Em’t) fort=1,....,T,m=1,.... M
> ore1 0o(We - emy)
@ Glimpse:
;
On=) amxiform=1,..M
t=1
@ GRU state:

sm = GRU(gm, bm, Sm—1) form=1,.... M
@ Output:
hpn=0c(Wh-gm+ Ry -Sm1+bp)form=1,.... M

68/72

End-to-End Performance

Table: TIMIT
WER [%]
Model dev | eval
HMM 13.9 | 16.7
End-to-end 15.8 | 17.6
RNN Transducer | n/a | 17.7

69/72

@ K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: A search space odyssey,” CoRR,
vol. abs/1503.04069, 2015. [Online]. Available:
http://arxiv.org/abs/1503.04069

[K. Cho, B. Van Merriénboer, G. Gtilgehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase
representations using rnn encoder—decoder for statistical
machine translation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 1724—1734. [Online]. Available:
http://www.aclweb.org/anthology/D14-1179

[J. Chung, C. Gllgehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling,” CoRR, vol. abs/1412.3555, 2014. [Online].
Available: http://arxiv.org/abs/1412.3555

70/72

http://arxiv.org/abs/1503.04069
http://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1412.3555

[R. Jozefowicz, W. Zaremba, and |. Sutskever, “An empirical
exploration of recurrent network architectures,” in ICML, ser.
JMLR Proceedings, vol. 37. JMLR.org, 2015, pp.
2342-2350.

8 A. Graves, N. Jaitly, and A. Mohamed, “Hybrid speech
recognition with deep bidirectional LSTM,” in ASRU. |EEE,
2013, pp. 273-278.

[H.Sak, A. W. Senior, and F. Beaufays, “Long short-term
memory recurrent neural network architectures for large
scale acoustic modeling,” in INTERSPEECH. ISCA, 2014,
pp. 338—342.

[§ A.-R. Mohamed, F. Seide, D. Yu, J. Droppo, A. Stolcke,
G. Zweig, and G. Penn, “Deep bi-directional recurrent
networks over spectral windows,” in Proc. IEEE Automatic
Speech Recognition and Understanding Workshop. |EEE
Institute of Electrical and Electronics Engineers, December

71/72

2015, pp. 78-83. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx ?1d=259236

7272

http://research.microsoft.com/apps/pubs/default.aspx?id=259236

	Recap: Deep Neural Network
	Multilingual Bottleneck Features
	Convolutional Neural Networks
	Recurrent Neural Networks
	Unstable Gradient Problem
	Attention-based End-to-End ASR

