
Lecture 14

Advanced Neural Networks

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen,
Markus Nussbaum-Thom

Watson Group
IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{picheny,bhuvana,stanchen,nussbaum}@us.ibm.com

27 th April 2016



Variants of Neural Network Architectures

Deep Neural Network (DNN),

Convolutional Neural Network (CNN),

Recurrent Neural Network (RNN),

unidirectional, bidirectional, Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU),

Constraints and Regularization,

Attention model,

2 / 72



Training

Observations and labels (xn,an) ∈ RD × A for n = 1, . . . ,N.
Training criterion:

FCE (θ) = − 1
N

N∑
n=1

log P(an|xn, θ)

FL(θ) =
1
N

N∑
n=1

∑
ω

∑
aTn

1 ∈ω

P(aTn
1 |x

Tn
1 , θ) · L(ω, ωn) loss L

Optimization:

θ = arg min
θ
{F(θ)}

θ, θ : Free parameters of the model (NN, GMM).
ω, ω : Word sequences.
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Recap: Gaussian Mixture Model

Recap Gaussian Mixture Model:

P(ω|xT
1 ) =

∑
aT

1∈ω

T∏
t=1

P(xt |at)P(at |at−1)

ω: word sequence
xT

1 := x1, . . . , xT : feature sequence
aT

1 := a1, . . . ,aT : HMM state sequence

Emission probability P(x |a) ∼ N (µa,Σa) Gaussian.

Replace with a neural network⇒ hybrid model.

Use neural network for feature extraction⇒ bottleneck
features.
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Hybrid Model

Gaussian Mixture Model:

P(ω|xT
1 ) =

∑
aT

1∈ω

T∏
t=1

P(xt |at)︸ ︷︷ ︸
emission

P(at |at−1)︸ ︷︷ ︸
transition

Training: A neural network usually models P(x |a).

Recognition: Use as a hybrid model for speech recognition:

P(a|x)

P(a)
=

P(x ,a)

P(x)P(a)
=

P(x |a)

P(x)
≈ P(x |a)

P(x |a)/P(x) and P(x |a) are proportional.
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Hybrid Model and Bayes Decision Rule

ω̂ = arg max
ω

{
P(ω)P(xT

1 |ω)
}

= arg max
ω

P(ω)
∑
aT

1∈ω

T∏
t=1

P(xt |at)

P(xt)
P(at |at−1)



= arg max
ω


P(ω)

∑
aT

1∈ω

T∏
t=1

P(xt |at)P(at |at−1)

T∏
t=1

P(xt)


= arg max

ω

P(ω)
∑
aT

1∈ω

T∏
t=1

P(xt |at)P(at |at−1)


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Where Are We?

1 Recap: Deep Neural Network

2 Multilingual Bottleneck Features

3 Convolutional Neural Networks

4 Recurrent Neural Networks

5 Unstable Gradient Problem

6 Attention-based End-to-End ASR
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Recap: Deep Neural Network (DNN)

First feed forward networks.
Consists of input, multiple hidden and output layer.
Each hidden and output layer consists of nodes.

8 / 72



Recap: Deep Neural Network (DNN)

Free parameters: weights W and bias b.
Output of a layer is input to the next layer.
Each node performs a linear followed by a non-linear
activiation on the input.
The output layer relates the output of the last hidden layer
with the target states.
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Neural Network Layer

Number of nodes: nl in layer l .
Input from previous layer: y (l−1) ∈ Rnl−1

Weight and bias : W (l) ∈ Rnl−1×nl , b(l) ∈ Rnl .
Activation: y (l) = σ(W (l) · y (l−1) + b(l)︸ ︷︷ ︸

linear

)

︸ ︷︷ ︸
non-linear
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Deep Neural Network (DNN)
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Activation Function Zoo

Sigmoid:

σsigmoid(y) =
1

1 + exp(−y)

Hyperbolic tangent:

σtanh(y) = tanh(y) = 2σsigmoid(2y)

REctified Linear Unit (RELU):

σrelu(y) =

{
y , y > 0
0, y ≤ 0
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Activation Function Zoo

Parametric RELU (PRELU):

σprelu(y) =

{
y , y > 0
a · y , y ≤ 0

Exponential Linear Unit (ELU):

σelu(y) =

{
y , y > 0
a · (exp(y)− 1), y ≤ 0

Maxout:

σmaxout(y1, . . . , yI) = max
i

{
W1 · y (l−1) + b1, . . . ,WI · y (l−1) + bI

}
Softmax:

σsoftmax(y) =

(
exp(y1)

Z (y)
, . . . ,

exp(yI)

Z (y)

)T

with Z (y) =
∑

j

exp(yj)
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Where Are We?

1 Recap: Deep Neural Network

2 Multilingual Bottleneck Features

3 Convolutional Neural Networks

4 Recurrent Neural Networks

5 Unstable Gradient Problem

6 Attention-based End-to-End ASR
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Multilingual Bottleneck
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Multilingual Bottleneck

Encoder-Decoder architecture: DNN with a bottleneck.

Forces low-dimensional representation of speech across
mutliple languages.

Several languages are presented to the network randomly.

Training: Labels from different languages.

Recognition: Network is cut off after bottleneck.
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Why are Multilingual Bottlenecks ?

Train Multilingual Bottleneck features with lots of data.

Future use: Bottleneck features on different tasks to train
GMM system.

No expensive DNN training, but WER gains similar to DNN.
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Multilingual Bottleneck: Performance

WER [%]
Model FR EN DE PL
MFCC 23.6 28.6 23.3 18.1
MLP BN targets 19.3 23.1 19.0 14.5
MLP BN multi 18.7 21.3 17.9 14.0
deep BN targets 17.4 20.3 17.3 13.0
deep BN multi 17.1 19.7 16.4 12.6
+lang.dep. hidden layer 16.8 19.7 16.2 12.4
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More Fancy Models

Convolutional Neural Networks.

Recurrent Neural Networks:

Long Short-Term Memory (LSTM) RNNs,

Gated Recurrent Unit (GRU) RNNs.

Unstable Gradient Problem.
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Convolutional Neural Networks (CNNs)

Convolution (remember signal analysis ?):

(x1 ∗ x2)[k ] =
∑

i

x1[k − i ] · x2[i ]
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Convolutional Neural Networks (CNNs)

Convolution (remember signal analysis ?):

(x1 ∗ x2)[k ] =
∑

i

x1[k − i ] · x2[i ]
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Convolutional Neural Networks (CNNs)
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CNNs

Consists of multiple local maps with channels and kernels.

Kernels are convolved across the input.

Multidimensional input:

1D (frequency),

2D (time-frequency),

3D (time-frequency-?).

Neurons are connected to a local receptive fields of input.

Weights are shared across multiple receptive fields.
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Formal Definition: Convolutional Neural
Networks

Free parameters: Feature maps Wn ∈ RC×k bias bn ∈ Rk for
n = 1, . . . ,N

c = 1, . . . ,C channels,

k ∈ N kernel size

Activation function:

yn,i = σ(Wn,i ∗ xi + b)

= σ

 C∑
c=1

i+k∑
j=i−k

Wn,c,i−jxc,j + bf


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Pooling

Max-Pooling:

pool(yn,c,i) = max
j=i−k ,...,i+k

{yn,c,j}

Average-Pooling:

average(yn,c,i) =
1

2 · k + 1

i+k∑
j=i−k

yn,c,j
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CNN vs. DNN: Performance

GMM, DNN use fMLLR features.
CNN use log-Mel features which have local structure,
opposed to speaker normalized features.

Table: Broadcast News 50 h.

WER [%]
Model CE ST
GMM 18.8 n/a
DNN 16.2 14.9
CNN 15.8 13.9
CNN+DNN 15.1 13.2

Table: Broadcast conversation
2k h.

WER [%]
Model CE ST
DNN 11.7 10.3
CNN 12.6 10.4
DNN+CNN 11.3 9.6
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VGG

# Fmaps Classic [16, 17, 18] VB(X) VC(X) VD(X) WD(X)
64 conv(3,64) conv(3,64) conv(3,64) conv(3,64)

conv(64,64) conv(64,64) conv(64,64) conv(64,64)
pool 1x3 pool 1x2 pool 1x2 pool 1x2

128 conv(64, 128) conv(64, 128) conv(64, 128) conv(64, 128)
conv(128, 128) conv(128, 128) conv(128, 128) conv(128, 128)
pool 2x2 pool 2x2 pool 1x2 pool 1x2

256 conv(128, 256) conv(128, 256) conv(128, 256)
conv(256, 256) conv(256, 256) conv(256, 256)

conv(256, 256)
pool 1x2 pool 2x2 pool 2x2

512 conv9x9(3,512) conv(256, 512) conv(256, 512)
pool 1x3 conv(512, 512) conv(512, 512)
conv3x4(512,512) conv(512, 512)

pool 2x2 pool 2x2
FC 2048
FC 2048

(FC 2048)
FC output size

Softmax

Table 1. The configurations of our very deep CNNs for LVCSR. In all but the classic convnet, convolutional layers have 3⇥3 kernels, thus
kernel size is omitted. The depth of the networks increases from left to right. The deepest configuration, WDX, has 10 convolutional and 4
fully connected layers. The leftmost column indicates the number of output feature maps in each layer. The optional X means there are four
fully connected layers instead of three (output layer included).

2. ARCHITECTURAL AND TRAINING NOVELTIES

2.1. Very Deep Convolutional Networks

The very deep convolutional networks we describe here are adapta-
tions of the VGG Net architecture [3] to the LVCSR domain, where
until now networks with two convolutional layers dominated [16,
17, 18]. Table 1 shows the configurations of the deep CNNs. The
deepest configuration, WDX, has 14 weight layers: 10 convolutional
and 4 fully connected. As in [3], we omit the Rectified Linear Unit
(ReLU) layers following every convolutional and fully connected
layer. The convolutional layers are written as conv({input feature
maps}–{output feature maps}) where each kernel is understood to
be size 3⇥3. The pooling layers are written as (time x frequency)
with stride equal to the pool size.

For architectures VDX and WDX, we apply zero padding of
size 1 at every side before every convolution, while for architecture
VC(X) and VB(X) we use the convolutions to reduce the size of the
feature maps, hence only in the higher layers of VC(X) padding is
applied.

In contrast to [3], we do not reinitialize the deeper models
with the shallower models. Each model is trained from scratch
with random initialization from a uniform distribution in the range
[�a, a] where a = (kW ⇥ kH ⇥ numInputFeatureMaps)�

1
2 . This

follows the argument of [31] to initialize the weights such that the
variance of the activations on each layer does not explode or vanish
during the forward pass.

2.2. Multilingual Convolutional Networks

Figure 1 shows a multilingual VBX network, which we used for
most of our Babel experiments. It is similar to previous multilingual
deep neural networks [20], with the main difference that the shared
lower layers of the network are convolutional.

A second difference is that we untie more than only the last layer,

pool
conv
conv
pool
conv
conv

Shared

KUR

FC

Softmax

FC
FC

Softmax

FC
FC

Softmax

FC
FC

Softmax

FC
FC

Softmax

FC
FC

Softmax

FC
FC

TOK CEB KAZ TEL LIT

FCFC FC FCFC FC

Fig. 1. Multilingual VBX network with the last three layers untied.
FC stands for Fully Connected layers.

Context +/-5

Context +/-10, stride 2

Context +/- 20, stride 4

Fig. 2. Multi-scale feature maps with context ±5 and strides {1,2,4}
(3S/5). The final size of each feature map along the time dimension
is 11. The three 11⇥40 input feature maps are stacked as input to
the CNN, similar to how RGB channels form 3 input feature maps
in an image.
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VGG
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64 conv(3,64) conv(3,64) conv(3,64) conv(3,64)
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Table 1. The configurations of our very deep CNNs for LVCSR. In all but the classic convnet, convolutional layers have 3⇥3 kernels, thus
kernel size is omitted. The depth of the networks increases from left to right. The deepest configuration, WDX, has 10 convolutional and 4
fully connected layers. The leftmost column indicates the number of output feature maps in each layer. The optional X means there are four
fully connected layers instead of three (output layer included).

2. ARCHITECTURAL AND TRAINING NOVELTIES

2.1. Very Deep Convolutional Networks

The very deep convolutional networks we describe here are adapta-
tions of the VGG Net architecture [3] to the LVCSR domain, where
until now networks with two convolutional layers dominated [16,
17, 18]. Table 1 shows the configurations of the deep CNNs. The
deepest configuration, WDX, has 14 weight layers: 10 convolutional
and 4 fully connected. As in [3], we omit the Rectified Linear Unit
(ReLU) layers following every convolutional and fully connected
layer. The convolutional layers are written as conv({input feature
maps}–{output feature maps}) where each kernel is understood to
be size 3⇥3. The pooling layers are written as (time x frequency)
with stride equal to the pool size.

For architectures VDX and WDX, we apply zero padding of
size 1 at every side before every convolution, while for architecture
VC(X) and VB(X) we use the convolutions to reduce the size of the
feature maps, hence only in the higher layers of VC(X) padding is
applied.

In contrast to [3], we do not reinitialize the deeper models
with the shallower models. Each model is trained from scratch
with random initialization from a uniform distribution in the range
[�a, a] where a = (kW ⇥ kH ⇥ numInputFeatureMaps)�

1
2 . This

follows the argument of [31] to initialize the weights such that the
variance of the activations on each layer does not explode or vanish
during the forward pass.

2.2. Multilingual Convolutional Networks

Figure 1 shows a multilingual VBX network, which we used for
most of our Babel experiments. It is similar to previous multilingual
deep neural networks [20], with the main difference that the shared
lower layers of the network are convolutional.

A second difference is that we untie more than only the last layer,

pool
conv
conv
pool
conv
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KUR
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Softmax

FC
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Softmax
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FC

Softmax

FC
FC

TOK CEB KAZ TEL LIT

FCFC FC FCFC FC

Fig. 1. Multilingual VBX network with the last three layers untied.
FC stands for Fully Connected layers.

Context +/-5

Context +/-10, stride 2

Context +/- 20, stride 4

Fig. 2. Multi-scale feature maps with context ±5 and strides {1,2,4}
(3S/5). The final size of each feature map along the time dimension
is 11. The three 11⇥40 input feature maps are stacked as input to
the CNN, similar to how RGB channels form 3 input feature maps
in an image.
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VGG Performance

DNN 3S/20 1S/20 3S/8 1S/8
KUR 82.7 78.1 78.4 78.4 79.2
TOK 62.6 54.2 54.7 55.8 56.7
CEB 76.3 70.3 70.4 71.6 71.8
KAZ 77.3 71.1 71.8 72.5 72.8
TEL 87.0 82.5 83.1 83.5 83.6
LIT 71.0 66.2 67.3 66.9 67.5
IMPR 0.00 5.75 5.20 4.70 4.22

Table 4. WER for VC multi-scale training with different context
windows. 3S/20 stands for three scales with a context of ±20. For
3S we use strides of 1, 2, and 4, while 1S just has stride 1, i.e. regular
input features. Multi-scale features provide a modest gain. Using
larger context size gives a better improvement, however this comes
at the cost of extra computation proportional to the context size in
the convolutional layers.

compared to the baseline DNN, and summarize this in the average
absolute WER improvement over the baseline DNN, which gives
one number to compare different models. The WER improvements
over the baseline DNN are fairly consistent across languages.

Tables 2 through 4 show the results outlining the performance
gains from the different architectural improvements discussed in
Section 2.1, 2.2, and 2.1 respectively. From table 3 note that even in
the monolingual case (3 hours of data) the VBX CNN architecture
outperforms both the classical CNN and the baseline DNN.

3.2. Switchboard 300

WER # params (M) #M frames
Classic 512 [17] 13.2 41.2 1200
Classic 256 ReLU (A+S) 13.8 58.7 290
VCX (6 conv) (A+S) 13.1 36.9 290
VDX (8 conv) (A+S) 12.3 38.4 170
WDX (10 conv) (A+S) 12.2 41.3 140
VDX (8 conv) (S) 11.9 38.4 340
WDX (10 conv) (S) 11.8 41.3 320

Table 5. Results on Hub5’00 SWB after training on the 262-hour
SWB-1 dataset. We obtain 14.5% relative improvement over our
baseline adaptation of the classical CNN and 10.6% relative im-
provement over [17]. (A+S) means Adadelta + SGD finetuning. (S)
means the model was trained from random initialization using SGD.
The last column gives the number of frames til convergence.

We evaluate our deep CNN architecture by training on the 262-
hour SWB-1 training data, and report the Word Error Rates on
Hub5’00 SWB (table 5). The Switchboard experiments focus on the
very deep aspect of our work. Apart from not involving multilingual
training, we did not use multi-scale features in the Switchboard
experiments, but did use speaker-dependent VTLN and deltas and
double deltas as this is shown to help performance for classical
CNNs [16].

In the switchboard experiments, using a large context only gave
marginal gains which were not worth the computational cost, so we
worked with context windows of ±8. We use a data balancing value
of � = 0.8, chosen from [0.4, 0.6, 0.8, 1.0].

After training with multiple combinations of Adam, Adadelta
and SGD, we settled on two possible strategies for optimization: the
first strategy is to use Adadelta or Adam for initial training, followed

by SGD finetuning. This way one can typically achieve good perfor-
mance in minimal time. The second strategy, training from scratch
using only SGD, requires more training, however the performance is
slightly superior. Classical momentum yielded no gains and some-
times slight degradation over plain SGD. We provide the results and
total number of frames until convergence. Note that with the first
strategy, we achieve 12.2% WER after 140M frames, i.e. only 1.5
passes through the dataset (which has 92.1M frames). Using just
SGD we achieve 11.8% WER in 3.5 passes through the data.

We only present results after cross-entropy training, so we com-
pare against the best published cross-entropy trained CNNs. The
baseline is the work of Soltau et al. [17] using classical CNNs with
512 feature maps on both convolutional layers. A second baseline is
the work of Saon et al. [18] which introduces annealed dropout max-
out CNN’s with a large number of HMM states, achieving 12.6%
WER after cross-entropy training (not in the paper, from personal
communication). Note that these improvements could readily be in-
tegrated with our very deep CNN architectures.

4. DISCUSSION

In this paper we proposed a number of architectural advances in
CNNs for LVCSR. We introduced a very deep convolutional net-
work architecture with small 3⇥3 kernels and multiple convolutional
layers before each pooling layer, inspired by the VGG Imagenet
2014 architecture. Our best performing model has 14 weight lay-
ers. We also introduced multilingual CNNs which proved valuable
in the context of low resource speech recognition. We introduced
multi-scale input features aimed at exploiting more acoustic context
with minimal computational increase. We showed an improvement
of 2.50% WER over a standard DNN PLP baseline using 3 hours
of data, and an improvement of 5.77% WER by combining six lan-
guages to train on 18 hours of data. We then showed results on
Hub5’00 after training on 262 hours of SWB-1 data where we get
11.8% WER, which is an improvement of 2.0% WER (14.5% rela-
tive) over our own baseline, and a 1.4% WER (10.6% relative) im-
provement over the best result published on classical CNNs after
cross-entropy training [17].

We expect additional gains from sequence training, joint train-
ing with DNNs [17], and integrating improvements like annealed
dropout and maxout nonlinearities [18].
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Recurrent Neural Networks (RNNs)

DNNs are deep in layers.

RNNs are deep in time (in addition).

Shared weights and biases across time steps.
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Unfolded RNN
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DNN vs. RNN

34 / 72



Formal Definition: RNN

Input vector sequence: xt ∈ RD, t = 1, . . . ,T
Hidden outputs: ht , t = 1, . . . ,T
Free parameters:

Input to hidden weight: W ∈ Rnl−1×nl

Hidden to hidden weight: R ∈ Rnl×nl

Bias: b ∈ Rnl

Output: Iterate the equation for t = 1, . . . ,T

ht = σ(W · xt + R · ht−1 + b)

Compare with DNN:

ht = σ(W · xt + b)
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BackPropagation Through Time (BPTT)

Chain rule through time:

d F(θ)

d ht
=

t−1∑
τ=1

d F(θ)

d hτ
d hτ
d ht
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BackPropagation Through Time (BPTT)

Implementation:

Unfold RNN over time through t = 1, . . . ,T .

Forward propagate RNN.

Backpropagate error through unfolded network.

Faster than other optimization methods
(e.g. evolutionary search).

Difficulty with local optima.
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Bidirectional RNN (BRNN)

Forward RNN processes data forward left to right.

Backward RNN processes data backward right to left.

Output joins the output of forward and backward RNN.
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Formal Definition: BRNN

Input vector sequence: xt ∈ RD, t = 1, . . . ,T

Forward and backward hidden outputs:
→
ht ,
←
ht , t = 1, . . . ,T

Forward and backward free parameters:

Input to hidden weight:
→
W ,

←
W ∈ Rnl−1×nl

Hidden to hidden weight:
→
R,
←
R ∈ Rnl×nl

Bias:
→
b ,
←
b ∈ Rnl

Output: Iterate the equation for t = 1, . . . ,T
→
h t = σ(

→
W · xt +

→
R ·

→
h t−1 +

→
b)

Output: Iterate the equation for t = T , . . . ,1
←
h t = σ(

←
W · xt +

←
R ·

←
h t+1 +

←
b)

Hidden outputs: ht := (
→
h t ,
←
h t), t = 1, . . . ,T

39 / 72



RNN using Memory Cells

Equip an RNN with a memory cell.

Can store information for a long time.

Introduce gating units to:

activations going in,

activations going out,

saving activations,

forgetting activations.
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Long Short-Term Memory RNN
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Formal Definition: LSTM

Input vector sequence: xt ∈ RD, t = 1, . . . ,T

Hidden outputs: ht , t = 1, . . . ,T

Iterate the equation for t = 1, . . . ,T :

zt = σ(Wz · xt + Rz · ht−1 + bz) (block input)
it = σ(Wi · xt + Ri · ht−1 + Pi � ct−1 + bi) (input gate)
ft = σ(Wf · xt + Rf · ht−1 + Pf � ct−1 + bf ) (forget gate)
ct = it � zt + ft � ct−1 (cell state)
ot = σ(Wo · xt + Ro · ht−1 + Po � ct + bi) (output gate)
ht = ot � tanh(ct) (block output)
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LSTM: Too many connections ?

Some of the connections in the LSTM are not necessary [1].

Peepholes do not seem to be necessary.

Coupled input and forget gates.

Simplified LSTM⇒ Gated Recurrent Unit (GRU).
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Gated Recurrent Unit (GRU)

References: [2, 3, 4]
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Formal Definition: GRU

Input vector sequence: xt ∈ RD, t = 1, . . . ,T

Hidden outputs: ht , t = 1, . . . ,T

Iterate the equation for t = 1, . . . ,T :

rt = σ(Wr · xt + Rr · ht−1 + br ) (reset gate)
zt = σ(Wz · xt + Rz · ht−1 + bz) (update gate)

ht = σ(Wh · xt + Rh · (rt � ht−1) + bh) (candidate gate)

ht = zt � ht−1 + (1− zt)� ht (output gate)
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CNN vs. DNN vs. RNN: Performance

GMM, DNN use fMLLR features.
CNN use log-Mel features which have local structure,
opposed to speaker normalized features.

Table: Broadcast News 50 h.

WER [%]
Model CE ST
GMM 18.8 n/a
DNN 16.2 14.9
CNN 15.8 13.9
BGRU (fMLLR) 14.9 n/a
BLSTM (fMLLR) 14.8 n/a
BGRU (Log-Mel) 14.1 n/a
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DNN vs. CNN vs. RNN: Performance

GMM, DNN use fMLLR features.
CNN use log-Mel features which have local structure,
opposed to speaker normalized features.

Table: Broadcast Conversation 2000 h.

WER [%]
Model CE ST
DNN 11.7 10.3
CNN 12.6 10.4
RNN 11.5 9.9
DNN+CNN 11.3 9.6
RNN+CNN 11.2 9.4
DNN+RNN+CNN 11.1 9.4

47 / 72



RNN Black Magic

Unrolling the RNN in training:

whole utterance [5],
vs. truncated BPTT with carryover [6]:

Split utterance into subsequences of e.g. 21 frames.
Carry over last cell from previous subsequence to new
subsequence.
Compose minibatch from subsequences.

vs. truncated BPTT with overlap:
Split utterance in subsequences of e.g. 21 frames.
Overlap subsequences by 10.
Compose minibatch of subsequences from different
utterances.

Gradient clipping of the LSTM cell.
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RNN Black Magic

Recognition: Unrolling RNN

whole utterance,

vs. unrolling subsequences

Split utterance in subsequences of e.g. 21 frames.

Carry over last cell from previous subsequence to new
subsequence.

vs. unrolling on spectral window [7]

For each frame unroll on the spectral window

Last RNN layer only returns center/last frame.
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Highway Network

References: [2, 3, 4]
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Formal Definition: Highway Network

Input vector sequence: xt ∈ RD, t = 1, . . . ,T

Hidden outputs: ht , t = 1, . . . ,T

Iterate the equation for t = 1, . . . ,T :

zt = σ(Wz · xt + bz) (highway gate)

ht = σ(Wh · xt + bh) (candidate gate)

ht = zt � xt + (1− zt)� ht (output gate)
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Formal Definition: Highway GRU

Input vector sequence: xt ∈ RD, t = 1, . . . ,T

Hidden outputs: ht , t = 1, . . . ,T

Iterate the equation for t = 1, . . . ,T :

rt = σ(Wr · xt + Rr · ht−1 + br ) (reset gate)
zt = σ(Wz · xt + Rz · ht−1 + bz) (update gate)
dt = σ(Wd · xt + Rd · ht−1 + bd ) (highway gate)

ht = σ(Wh · xt + Rh · (rt � ht−1) + bh) (candidate gate)

ht = dt � xt + (1− dt)� (zt � ht−1 + (1− zt)� ht)
(output gate)
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Where Are We?

1 Recap: Deep Neural Network

2 Multilingual Bottleneck Features

3 Convolutional Neural Networks

4 Recurrent Neural Networks

5 Unstable Gradient Problem

6 Attention-based End-to-End ASR
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Unstable Gradient Problem

Happens in deep as well in recurrent neural networks.

If gradient becomes very small⇒ vanishing gradient.

If gradient becomes very large⇒ exploding gradient.

Simplified Neural Network (wi are just scalars):

F(w1, . . . ,wN) = L(σ(yN)

= L(σ(wN · σ(yN−1)

= L(σ(wN · σ(wN−1 · . . . σ(w1 · xt) . . .)))
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Unstable Gradient Problem, Constraints and
Regularization

Gradient:

dF(w1, . . . ,wN)

d w1

=
dL
d θ
· dσ(wN · σ(wN−1 · . . . σ(w1 · xt) . . .))

d w1

=
dL
d w1

· σ′(yN) · wN · σ′(yN−1) · wN−1 · . . . σ′(w1) · xt

If |wiσ
′(yi)| < 1, i = 2, . . . ,N ⇒ gradient vanishes.

If |wiσ
′(yi)| >> 1, i = 2, . . . ,N ⇒ gradient explodes.
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Solution: Unstable Gradient Problem

Gradient Clipping.

Weight constraints.

Let the network save activations over layers/time steps:

ynew = αyprevious + (1− α)ycommon

Long Short-Term Memory RNN

Highway Neural Network (>100 layers)
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Gradient Clipping

Keeps gradient weights in range.

One approach to deal with the exploding gradient problem.

Ensure gradient is in the range [−c, c] for a constant c:

clip
(

dF
d θ

, c
)

= min
(

c,max
(
−c,

dF
d θ

))
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Constraints (I)

Keeps weights in range (for e.g. Relu, Maxout).

Ignored for gradient backpropagation.

Constraints are forced after gradient update.
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Constraints (II)

Max-Norm: force ‖W‖2 ≤ c for constant c

‖W‖max = W · max(min(‖W‖2,0), c)

‖W‖2

Unity-Norm: force ‖W‖2 ≤ 1

‖W‖unity =
W
‖W‖2

Positivity-Norm: force W > 0

‖W‖+ = W ·max(0,W )
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Regularization: Dropout

Dropout:

Prevents getting stuck in local optimum⇒ avoids overfitting.
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Regularization: Dropout

Dropout:

Prevents getting stuck in local optimum⇒ avoids overfitting.
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Regularization: Dropout

Input vector sequence: xt ∈ RD

Choose zt ∈ {0,1}D for t = 1, . . . ,T

According to Bernoulli distribution P(zt ,d = i) = p1−i(1− p)i

with dropout probability with p ∈ [0,1]:

Training: xt := xt � zt
1−p for t = 1, . . . ,T .

Recognition: xt := xt for t = 1, . . . ,T .
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Regularization (II)

Lp Norm:

‖θ‖p =

 |θ|∑
j=0

|θ|p
 1

p

Training criterion regularization:

Fp(θ) = F(θ) + λ‖θ‖p with scalar λ

Smoothes the training criterion.

Pushes the free parameter weights closer to zero.
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Where Are We?

1 Recap: Deep Neural Network

2 Multilingual Bottleneck Features

3 Convolutional Neural Networks

4 Recurrent Neural Networks

5 Unstable Gradient Problem

6 Attention-based End-to-End ASR
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Attention-based End-to-End Architecture
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Attention model
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Formal Definition: Content Focus

Input vector sequence: xt ∈ RD, t = 1, . . . ,T
Hidden outputs: ht , t = 1, . . . ,T
Scorer:

εm,t = tanh(Vm,ε · xt + bε) for t = 1, . . . ,T ,m = 1, . . . ,M

Generator:

αm,t =
σ(Wα · εm,t)∑T
τ=1 σ(Wα · εm,τ )

for t = 1, . . . ,T ,m = 1, . . . ,M

Glimpse:

gm =
T∑

t=1

αm,txt for m = 1, . . . ,M

Output:

hm = σ(Wh · gm + bh) for m = 1, . . . ,M
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Formal Definition: Recurrent Attention

Scorer:

εm,t = tanh(Wε · xt + Rε · sm−1 + Uε · (Fε ∗ αm−1) + bε)

Generator:

αm,t =
σ(Wα · εm,t)∑T
τ=1 σ(Wε · εm,τ )

for t = 1, . . . ,T ,m = 1, . . . ,M

Glimpse:

gm =
T∑

t=1

αm,txt for m = 1, . . . ,M

GRU state:

sm = GRU(gm,hm, sm−1) for m = 1, . . . ,M

Output:

hm = σ(Wh · gm + Rh · sm−1 + bh) for m = 1, . . . ,M
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End-to-End Performance

Table: TIMIT

WER [%]
Model dev eval
HMM 13.9 16.7
End-to-end 15.8 17.6
RNN Transducer n/a 17.7
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