
Lecture 13

Deep Belief Networks

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen,
Markus Nussbaum-Thom

Watson Group
IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{picheny,bhuvana,stanchen,nussbaum}@us.ibm.com

20 April 2016

Administrivia

Lab 4 handed back today?
E-mail reading project selections to
stanchen@us.ibm.com by this Friday (4/22).
Still working on tooling for experimental projects; please get
started!

2 / 84

Outline for the next two lectures

Introduction to Neural Networks, Definitions
Training Neural Networks (Gradient Descent,
Backpropagation, Estimating parameters)
Neural networks in Speech Recognition (Acoustic modeling)
Objective Functions
Computational Issues
Neural networks in Speech Recognition (Language
modeling)
Neural Network Architectures (CNN, RNN, LSTM, etc.)
Regularization (Dropout, Maxnorm, etc.)
Advanced Optimization methods
Applications: Multilingual representations, autoencoders,
etc.
What’s next ?

3 / 84

A spectrum of Machine Learning Tasks

Typical Statistics

Low-dimensional data (e.g. less than 100 dimensions)
Lots of noise in the data
There is not much structure in the data, and what structure
there is, can be represented by a fairly simple model.
The main problem is distinguishing true structure from
noise.

4 / 84

A spectrum of Machine Learning Tasks
Cont’d

Machine Learning

High-dimensional data (e.g. more than 100 dimensions)
The noise is not sufficient to obscure the structure in the
data if we process it right.
There is a huge amount of structure in the data, but the
structure is too complicated to be represented by a simple
model.
The main problem is figuring out a way to represent the
complicated structure so that it can be learned.

5 / 84

Why are Neural Networks interesting?

GMMs and HMMs to model our data
Neural networks give a way of defining a complex,
non-linear model with parameters W (weights) and biases
(b) that we can fit to our data

In past 3 years, Neural Networks have shown large
improvements on small tasks in image recognition and
computer vision
Deep Belief Networks (DBNs) ??
Complex Neural Networks are slow to train, limiting
research for large tasks
More recently extensive use of various Neural Network
architectures for large vocabulary speech recognition tasks

6 / 84

Initial Neural Networks

Perceptrons (1̃960) used a layer of hand-coded features
and tried to recognize objects by learning how to weight
these features.
Simple learning algorithm for adjusting the weights.
Building Blocks of modern day networks

7 / 84

Perceptrons

The simplest classifiers from which neural networks are
built are perceptrons.
A perceptron is a linear classifier which takes a number of
inputs a1, ...,an, scales them using some weights w1, ...,wn,
adds them all up (together with some bias b) and feeds the
result through a linear activation function, σ (eg. sum)

8 / 84

Activation Function

Sigmoid f (z) = 1
1+exp(−z)

Hyperbolic tangent f (z) = tanh(z) = ez−e−z

ez+e−z

9 / 84

Derivatives of these activation functions

If f (z) is the sigmoid function, then its derivative is given by
f ′(z) = f (z)(1− f (z)).
If f (z) is the tanh function, then its derivative is given by
f ′(z) = 1− (f (z))2.
Remember this for later!

10 / 84

Neural Network

A neural network is put together by putting together many of our
simple building blocks.

11 / 84

Definitions

nl denotes the number of layers in the network;
L1 is the input layer, and layer Lnl the output layer.
Parameters (W ,b) = (W (1),b(1),W (2),b(2), where

W (l)
ij is the parameter (or weight) associated with the

connection between unit j in layer l , and unit i in layer l + 1.

b(l)
i is the bias associated with unit i in layer l + 1 Note that

bias units don’t have inputs or connections going into them,
since they always output

a(l)
i denotes the ”’activation”’ (meaning output value) of unit i

in layer l .

12 / 84

Definitions

This neural network defines hW ,b(x) that outputs a real
number. Specifically, the computation that this neural
network represents is given by:

a(2)
1 = f (W (1)

11 x1 + W (1)
12 x2 + W (1)

13 x3 + b(1)
1)

a(2)
2 = f (W (1)

21 x1 + W (1)
22 x2 + W (1)

23 x3 + b(1)
2)

a(2)
3 = f (W (1)

31 x1 + W (1)
32 x2 + W (1)

33 x3 + b(1)
3)

hW ,b(x) = a(3)
1 = f (W (2)

11 a(2)
1 + W (2)

12 a(2)
2 + W (2)

13 a(2)
3 + b(2)

1)

This is called forward propogation.
Use matrix vector notation and take advantage of linear
algebra for efficient computations.

13 / 84

Another Example

Generally networks have multiple layers and predict more
than one output value.
Another example of a feed forward network

14 / 84

How do you specify output targets?

Output targets are specified with a 1 for the label
corresponding to each feature vector
What would these targets be for speech?
Number of targets is equal to the number of classes

15 / 84

How do you train these networks?

Use Gradient Descent (batch)
Given a training set (x (1), y (1)), . . . , (x (m), y (m))}
Define the cost function (error function) with respect to a
single example to be:

J(W ,b; x , y) =
1
2
‖hW ,b(x)− y‖2

16 / 84

Training (contd.)

For m samples, the overall cost function becomes

J(W ,b) =

[
1
m

m∑
i=1

J(W ,b; x (i), y (i))

]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W (l)

ji

)2

=

[
1
m

m∑
i=1

(
1
2
∥∥hW ,b(x (i))− y (i)

∥∥2
)]

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W (l)

ji

)2

The second term is a regularization term (”’weight decay”’)
that prevent overfitting.
Goal: minimize J(W ,b) as a function of W and b.

17 / 84

Gradient Descent

Cost function is J(θ)
minimize

θ
J(θ)

θ are the parameters we want to vary

18 / 84

Gradient Descent

Repeat until convergence
Update θ as

θj − α ∗
∂

∂θj
J(θ)∀j

α determines how big a step in the right direction and is
called the learning rate.
Why is taking the derivative the correct thing to do?
. . . direction of steepest descent

19 / 84

Gradient Descent

As you approach the minimum, you take smaller steps as
the gradient gets smaller

20 / 84

Returning to our network...

Goal: minimize J(W ,b) as a function of W and b.

Initialize each parameter W (l)
ij and each b(l)

i to a small
random value near zero (for example, according to a
Normal distribution)
Apply an optimization algorithm such as gradient descent.
J(W ,b) is a non-convex function, gradient descent is
susceptible to local optima; however, in practice gradient
descent usually works fairly well.

21 / 84

Estimating Parameters

It is important to initialize the parameters randomly, rather
than to all 0’s. If all the parameters start off at identical
values, then all the hidden layer units will end up learning
the same function of the input.
One iteration of Gradient Descent yields the following
parameter updates:

W (l)
ij = W (l)

ij − α
∂

∂W (l)
ij

J(W ,b)

b(l)
i = b(l)

i − α
∂

∂b(l)
i

J(W ,b)

The backpropogation algorithm is an efficient way to
computing these partial derivatives.

22 / 84

Backpropagation Algorithm

Let’s compute ∂

∂W (l)
ij

J(W ,b; x , y) and ∂

∂b(l)
i

J(W ,b; x , y), the

partial derivatives of the cost function J(W ,b; x , y) with
respect to a single example (x , y).
Given the training sample, run a forward pass through the
network and compute all teh activations

For each node i in layer l , compute an "error term" δ(l)
i . This

measures how much that node was "responsible" for any
errors in the output.

23 / 84

Backpropagation Algorithm

This error term will be different for the output units and the
hidden units.
Output node: Difference between the network’s activation
and the true target value defines delta(nl)

i

Hidden node: Use a weighted average of the error terms of
the nodes that uses delta(nl)

i as an input.

24 / 84

Backpropogation Algorithm

Let z(l)
i denote the total weighted sum of inputs to unit i in

layer l , including the bias term

z(2)
i =

∑n
j=1 W (1)

ij xj + b(1)
i

Perform a feedforward pass, computing the activations for
layers L2, L3, and so on up to the output layer Lnl .
For each output unit i in layer nl (the output layer), define

δ
(nl)
i =

∂

∂z(nl)
i

1
2
‖y − hW ,b(x)‖2 = −(yi − a(nl)

i) · f ′(z(nl)
i)

25 / 84

Backpropogation Algorithm Cont’d

For l = nl − 1,nl − 2,nl − 3, . . . ,2, define
For each node i in layer l , define

δ
(l)
i =

 sl+1∑
j=1

W (l)
ji δ

(l+1)
j

 f ′(z(l)
i)

We can now compute the desired partial derivatives as:

∂

∂W (l)
ij

J(W ,b; x , y) = a(l)
j δ

(l+1)
i

∂

∂b(l)
i

J(W ,b; x , y) = δ
(l+1)
i

Note If f (z) is the sigmoid function, then its derivative is
given by f ′(z) = f (z)(1− f (z)) which was computed in the
forward pass.

26 / 84

Backpropogation Algorithm Cont’d

Derivative of the overall cost function J(W,b) over all training
samples can be computed as:

∂

∂W (l)
ij

J(W ,b) =

[
1
m

m∑
i=1

∂

∂W (l)
ij

J(W ,b; x (i), y (i))

]
+ λW (l)

ij

∂

∂b(l)
i

J(W ,b) =
1
m

m∑
i=1

∂

∂b(l)
i

J(W ,b; x (i), y (i))

Once we have the derivatives, we can now perform gradient
descent to update our parameters.

27 / 84

What was the Intuition Behind
Backpropagation

Logistic regression: Cost(i) = (hθx (i) − y (i))2

28 / 84

Updating Parameters via Gradient Descent

Using matrix notation

W (l) = W (l) − α
[(

1
m

∆W (l)
)

+ λW (l)
]

b(l) = b(l) − α
[

1
m

∆b(l)
]

Now we can repeatedly take steps of gradient descent to reduce
the cost function J(W ,b) till convergence.

29 / 84

Optimization Algorithm

We used Gradient Descent. But that is not the only algoritm.
More sophisticated algorithms to minimize J(θ) exist.
An algorithm that uses gradient descent, but automatically
tunes the learning rate α so that the step-size used will
approach a local optimum as quickly as possible.
Other algorithms try to find an approximation to the Hessian
matrix, so that we can take more rapid steps towards a local
optimum (similar to Newton’s method).

30 / 84

Optimization Algorithm

Examples include the ”’L-BFGS”’ algorithm, ”’conjugate
gradient”’ algorithm, etc.
These algorithms need for any θ, J(θ) and ∇θJ(θ). These
optimization algorithms will then do their own internal tuning
of the learning rate/step-size and compute its own
approximation to the Hessian, etc., to automatically search
for a value of θ that minimizes J(θ).
Algorithms such as L-BFGS and conjugate gradient can
often be much faster than gradient descent.

31 / 84

Optimization Algorithm Cont’d

In practice, on-line or Stochastic Gradient Descent is used
The true gradient is approximated by the gradient from a
single or a small number of training samples (mini-batches)
Typical implementations may also randomly shuffle training
examples at each pass and use an adaptive learning rate.

32 / 84

Recap of Neural Networks

A neural network has multiple hidden layers, where each
layer consists of a linear weight matrix a non-linear function
(sigmoid)
Outputs targets: Number of classes (sub-word units)
Output probabilities used as acoustic model scores (HMM
scores)
Objective function that minimizes loss between target and
hypothesized classes
Benefits: No assumption about a specific data distribution
and parameters are shared across all data
Training is extremely challenging with the objective function
being non-convex.
Recall the weights randomly initialized and can get stuck in
local optima.

33 / 84

Neural Networks and Speech Recognition

Introduced in the 80s and 90s to speech recognition, but
extremely slow and poor in performance compared to the
state-of-the-art GMMs/HMMs
Several papers published by ICSI, CMU, IDIAP several
decades ago!
Over the last couple of years, renewed interest with what is
known as Deep Belief Networks, or renamed as Deep
Neural Networks.

34 / 84

History: Deep Belief Networks (DBNs)

Deep Belief Networks [Hinton, 2006] Capture higher-level
representations of input features Pre-train ANN weights in
an unsupervised fashion, followed by fine-tuning
(backpropagation)
Address issues with MLPs getting stuck at local optima.
DBN Advantages first applied to image recognition tasks,
showing gains between 10-30% relative successful
application on small vocabulary phonetic recognition task
Around 2012, DBNs get renamed as Deep Neural Networks
(DNNs)

35 / 84

What does a Deep Network learn?

36 / 84

Neural Networks and Speech Recognition

Networks for Individual
Components of a speech
recognition system

Used in both, acoustic and language modeling!
37 / 84

Good improvement in speech recognition

On a conversational telephone-bandwidth task in English:

38 / 84

Acoustic Modeling

What makes speech so unique?

Non-linear temporal sequence
Speaking styles (conversational, paralinguistic information)
Speaker variations (accents, dialects)
Noise conditions (speech, noise, music, etc.)
Multiple concurrent speakers
Enormous variability in the spectral space with temporal
and frequency correlations

39 / 84

Why Deepness in Speech?

Want to analyze activations by different speakers to see
what DBN is capturing
t-SNE [van der Maaten, JMLR 2008] (Stochastic neighbor
Embedding)Nplots produce 2-D embeddings in which
points that are close together in the high-dimensional vector
space remain close in the 2-D space
Similar phones from different-speakers are grouped
together better at higher layers
Better discrimination between classes is performed at
higher layers

40 / 84

What does each layer capture?

41 / 84

Second layer

42 / 84

Experimental Observation for impact of many
layers

On TIMIT phone recognition task:

43 / 84

Initialization of Neural networks

The training of NNs is a non-convex optimization problem.
Training can get stuck in local optima.
DNNs can also overfit strongly due to the large number of
parameters.
Random initialization works well for shallow networks.
Deep NNs can be initialized with pre-training algorithms -
either unsupervised or supervised.

44 / 84

Initialization of Neural networks

What is unsupervised pretraining?

Learning of multi-layer generative models of unlabelled
data by learning one layer of features at a time.

Keep the efficiency and simplicity of using a gradient
method for adjusting the weights, but use it for modeling the
structure of the input.
Adjust the weights to maximize the probability that a
generative model would have produced the input.
But this is hard to do.

45 / 84

Pretraining

Learning is easy if we can get an unbiased sample from the
posterior distribution over hidden states given the observed
data.
Monte Carlo methods can be used to sample from the
posterior. But its painfully slow for large, deep models.
In the 1990s people developed variational methods for
learning deep belief nets These only get approximate
samples from the posterior. Nevetheless, the learning is still
guaranteed to improve a variational bound on the log
probability of generating the observed data.
If we connect the stochastic units using symmetric
connections we get a Boltzmann Machine (Hinton and
Sejnowski, 1983). If we restrict the connectivity in a special
way, it is easy to learn a Restricted Boltzmann machine.

46 / 84

Restricted Boltzmann Machines

In an RBM, the hidden units are conditionally independent given
the visible states. This enables us to get an unbiased sample
from the posterior distribution when given a data-vector.

47 / 84

A Maxmimum Likelihood Learning Algorithm
for an RBM

48 / 84

Training a deep network

First train a layer of features that receive input directly from
the audio.
Then treat the activations of the trained features as if they
were input features and learn features of features in a
second hidden layer.
It can be proved that each time we add another layer of
features we improve a variational lower bound on the log
probability of the training data.
The proof is complicated. But it is based on a neat
equivalence between an RBM and a deep directed
graphical model

49 / 84

Initialzing a deep network in a supervised
fashion

First learn one layer at a time greedily. Then treat this as
pre-training that finds a good initial set of weights which can
be fine-tuned by a local search procedure.
Start with training a NN with a single hidden layer, discard
output layer, add a second hidden layer and a new output
layer to the NN, . . .
Backpropagation can be used to fine-tune the model for
better discrimination.

50 / 84

Why does it work?

Greedily learning one layer at a time scales well to really big
networks, especially if we have locality in each layer.
We do not start backpropagation until we already have
sensible feature detectors that should already be very
helpful for the discrimination task. So the initial gradients
are sensible and backprop only needs to perform a local
search from a sensible starting point.

51 / 84

Another view

Most of the information in the final weights comes from
modeling the distribution of input vectors.
The input vectors generally contain a lot more information
than the labels.
The precious information in the labels is only used for the
final fine-tuning.
The fine-tuning only modifies the features slightly to get the
category boundaries right. It does not need to discover
features.
This type of backpropagation works well even if most of the
training data is unlabeled. The unlabeled data is still very
useful for discovering good features.

52 / 84

In speech recognition...

We know with GMM/HMMs, increasing the number of
context-dependent states (i.e., classes) improves
performance
MLPs typically trained with small number of output targets
increasing output targets becomes a harder optimization
problem and does not always improve WER
It increases parameters and increases training time
With Deep networks, pre-training putting weights in better
space, and thus we can increase output targets effectively

53 / 84

Decoding: Hybrid Systems

How can NNs be used for acoustic modeling?

In most approaches, NNs model the posterior probability
p(s|x) of an HMM state s given an acoustic observation x.
Advantage: existing HMM speech recognizers can be used.
In recognition, the class-conditional probability p(x|s) is
required, which can be calculated using Bayes rule:
p(x |s) = p(s|x)p(x)/p(s).
p(s) can be estimated as the relative frequency of s (priors).
p(x) is a constant in the maximization problem and can be
discarded.
This model is known as hybrid NN-HMM and was
introduced by [Bourlard, 1993].

54 / 84

Performance of Deep Neural Networks

Impact of output targets on TIMIT phone recognition: Should the
targets be Context-independent or context-dependent?

55 / 84

Training Criteria

The MSE criterion (ore robust to outliers) has been used in
earlier work on NNs [Rumelhart, Hinton, et al. 1986].
Better results are achieved with the Cross Entropy (CE)
criterion. The MSE criterion has many plateaus which make
it hard to optimize, see for example [Glorot, Bengio et
al.2010].
The CE criterion for NNs without hidden layers is a convex
optimization problem (softmax activation function leads to
log-linear model in this case).
The CE criterion is very popular for speech recognition.

56 / 84

Cross Entropy Criterion

LXENT(θ) =
R∑

r=1

Tr∑
t=1

I∑
i=1

ŷrt(i) log
ŷrt(i)
yrt(i)

Backpropagation adjusts θ to minimize the above loss function

Typically this criterion is used in conjunction with soft-max
non-linearity in the output layer.

Then, the derivative of the loss function with respect to the
activations reduces to a simple expression:

yrt(i)− ŷrt(i)

57 / 84

Cross Entropy Criterion

How to set learning rates properly?

Newbob is an effective heuristic that prevents overfitting by
early stopping.
Use a fixed learning rate per epoch, start with a large
learning rate.
After every epoch, check the error rate on a held-out set. If
it does not decrease sufficiently, halve the learning rate.
Terminate when there is no further improvement on the
validation set.

58 / 84

Cross Entropy: Results

59 / 84

Sequence Training

Criteria based on sequence classification are more closely
related to word error rate than criteria based on frame
classification.
Intuitively, it performs discriminative training: maximize the
probability of the correct sequence while minimizing the
probability of competing sequences
Use of word lattices to compactly represent the reference
and the competing hypotheses, makes it possible to train on
large-vocabulary tasks with large number of training
samples.
Use of a scalable Minimum Bayes-Risk criterion (sMBR) for
sequence discrimination, wherein the gradient is now
computed with respect to the sequence-classification
criterion and Hessian-free optimization.

60 / 84

Sequence Training

LsMBR(θ) =
R∑

r=1

∑
W∈Wr

P(Xr |Wr , θ)κP(Wr)d(Y ,Yr)∑
W∈W

P(Xr |W , θ)κP(W)

Variants of MMI, MPE that you saw in last week’s lecture.

61 / 84

Sequence Training: Results

10-15% relative improvement on speech recognition tasks:

62 / 84

LVCSR Performance across
well-benchmarked tasks

63 / 84

Issues with Neural Networks

Training time!!

Architecture: Context of 11 Frames, 2,048 Hidden
Units, 5 layers, 9,300 output targets implies 43 million
parameters !!
Training time on 300 hours (100 M frames) of data
takes 30 days on one 12 core CPU)!
Compare to a GMM/HMM system with 16 M
parameters that takes roughly 2 days to train!!
GPUs to the rescue!

Size, connectivity, feature representations . . .

64 / 84

One way to speed up..

Matrix computations on the GPUs (4x to 6x speed ups)
Distributed training on GPUs: Synchronous SGD.
Asynchronous algorithms, such as ASGD (and its variants,
e.g., elastic averaging) on CPUs or GPUs. These can
operate on data or on layers (less trivial)
Hessian-free training on multiple-GPUs
Massively parallel hardware (Blue Gene)

65 / 84

Another way to speed up..

One reason NN training is slow is because we use a large
number of output targets (context dependent targets) - as
high as 10000.
Bottleneck NNs

Generally have few output targets - these are features
we extract to train GMMs on them.
Traditional bottleck configurations, introduce a bottlneck
layer just prior to the output targets that can have fewer
units and no non-linearity (low rank methods).

Once, bottleneck features are extracted, we can use
standard GMM processing techniques on these features.

66 / 84

Example bottleneck feature extraction

67 / 84

Example bottleneck feature extraction

In this configuration, the bottleneck features are extracted at the
output layer, just before the non-linearity.

68 / 84

Neural networks in Speech Recognition:
Language modeling

Conventional n-gram LM
Words are treated as discrete entities
Data sparseness issues mitigated by smoothness
techniques

Neural Network LM [Bengio et al., 2003, Schwenk, 2007]
Words are embedded in a continuous space

Semantically or grammatically related words can be mapped
to similar locations

Probability estimation is done in this continuous space
NNLMs can achieve better generalization for unseen
n-grams

69 / 84

Neural networks in Speech Recognition:
Language modeling

70 / 84

Neural networks in Speech Recognition:
Language modeling

Introduced by [Bengio et al., 2003].
Extended to large vocabulary speech recognition [Schwenk,
2007].
Used for syntactic-based language modeling [Emami,
2006], [Kuo et al., 2009].
Reducing computational complexity:

Using shortlist at output layer [Schwenk, 2007].
Hierarchical decomposition of output probabilities
[Morin and Bengio, 2005], [Mnih and Hinton, 2008],
[Son Le et al., 2011].

Recurrent neural networks were used in LM training
[Mikolov et al., 2010], [Mikolov et al., 2011].
Deep Neural Network Models [Arisoy et al., 2012]

71 / 84

Neural networks in Speech Recognition:
Language modeling

How do you use a NN LM in speech recognition?

Rescoring a lattice (most commonly used approach)
During decoding (represent the NN LM as a comventional
n-gram model) [Arisoy et al, 2014]

72 / 84

Do NN LMs help?

Results on WSJ (23.5M words)

73 / 84

Semantic word embeddings

Semantic word embedding algorithms such as, word2vec and
GloVe (Global Vectors for Word Representations) aim to capture
semantic information from text.

74 / 84

Semantic word embeddings

GloVe is bi-linear approximation of the word co-occurence
matrix computed on the training data

75 / 84

The embedding matrix

Embedding matrix is estimated as:

76 / 84

Recall ...

The feed forward NNLM predicts the next word by passing the
continuous embeddings of the history words through a feed
forward NN LM

77 / 84

Now ...

Now, to use the semantic word embeddings, input feature
concatenation fuses two diverse embeddings, semantic and
previous word embedding

78 / 84

Results on a LVCSR task

Results on a broadcast news transcription task:

79 / 84

References

80 / 84

References

81 / 84

References

82 / 84

Language Modeling References

Holger Schwenk, Jean-Luc Gauvain, Continuous space language
models, Comput. Speech Lang., 21(3):492-518, July 2007.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian
Jauvin, A neural probabilistic language model, Journal of Machine
Learning Research,3:1137-1155, 2003.

Ahmad Emami, A neural syntactic language model, Ph.D. thesis, Johns
Hopkins University, Baltimore, MD, USA, 2006.

H-K. J. Kuo, L. Mangu, A. Emami, I. Zitouni, and Y-S. Lee, Syntactic
features for Arabic speech recognition, In proc. ASRU, pp.327-332,
Merano, Italy, 2009.

Andriy Mnih and Geoffrey Hinton, A scalable hierarchical distributed
language model, In Proc. NIPS, 2008.

Frederic Morin and Yoshua Bengio, Hierarchical probabilistic neural
network language model, In Proc. AISTATS, pp. 246-252, 2005.

Hai Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc Gauvain, and
Francois Yvon, Structured output layer neural network language model,
In. Proc. ICASSP, pp. 5524-5527, Prague, 2011.

83 / 84

Language Modeling References

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and
Sanjeev Khudanpur, Recurrent neural network based language model,
In Proc. Interspeech, pp. 1045-1048, 2010.

Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukas Burget, and Jan
Cernocky, Strategies for training large scale neural network language
models, In Proc. ASRU, pp. 196-201, 2011.

E. Arisoy, T. N. Sainath, B. Kingsbury, B. Ramabhadran, Deep Neural
Network Language Models, In Proc. of NAACL-HLT, 2012.

K. Audhkhasi, A. Sethy, and B. Ramabhadran, Semantic Word
Embedding Neural Network Language Models for Automatic Speech
Recognition, In Proc. ICASSP, 2016.

84 / 84

