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Administrivia

Lab 3 handed back today?
Lab 4 extension: due coming Monday, April 4, at 6pm.
No Lab 5.
Information on final projects to be announced imminently.
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IBM Watson Astor Place Field Trip!

In two days: Friday, April 1, 11am-1pm.
51 Astor Place; meet in entrance lobby. Free lunch!
(Going to Watson Client Experience Center on 5th floor.)
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Road Map
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Review: Language Modeling

(answer) = arg max
ω

(language model)× (acoustic model)

= arg max
ω

P(ω)P(x|ω)

Homophones.
THIS IS OUR ROOM FOR A FOUR HOUR PERIOD .
THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD

Confusable sequences in general.
IT IS EASY TO RECOGNIZE SPEECH .
IT IS EASY TO WRECK A NICE PEACH .
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Language Modeling: Goals

Assign high probabilities to the good stuff.
Assign low probabilities to the bad stuff.

Restrict choices given to AM.
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Review: N-Gram Models

Decompose probability of sequence . . .
Into product of conditional probabilities.

e.g., trigram model⇒ Markov order 2⇒ . . .
Remember last 2 words.

P(I LIKE TO BIKE) = P(I| . .)× P(LIKE| . I)× P(TO|I LIKE)×
P(BIKE|LIKE TO)× P(/|TO BIKE)
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Estimating N-Gram Models

Maximum likelihood estimation?

PMLE(TO|I LIKE) =
c(I LIKE TO)

c(I LIKE)

Smoothing!

Psmooth(wi |wi−1) =

{
Pprimary(wi |wi−1) if count(wi−1wi) > 0
αwi−1Psmooth(wi) otherwise
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N-Gram Models Are Great!

N-gram models are robust.
Assigns nonzero probs to all word sequences.

N-gram models are easy to build.
Can train on unannotated text; no iteration.

N-gram models are scalable.
Can build 1+ GW models, fast; can increase n.
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Or Are They?

In fact, n-gram models are deeply flawed.
Let us count the ways.

10 / 127



What About Short-Distance Dependencies?

BUT THERE’S MORE .PERIOD

IT’S NOT LIMITED TO PROCTER .PERIOD

MR. ANDERS WRITES ON HEALTH CARE FOR THE JOURNAL
.PERIOD

ALTHOUGH PEOPLE’S PURCHASING POWER HAS FALLEN AND
SOME HEAVIER INDUSTRIES ARE SUFFERING ,COMMA FOOD
SALES ARE GROWING .PERIOD

"DOUBLE-QUOTE THE FIGURES BASICALLY SHOW THAT
MANAGERS HAVE BECOME MORE NEGATIVE TOWARD U. S.
EQUITIES SINCE THE FIRST QUARTER ,COMMA "DOUBLE-QUOTE
SAID ANDREW MILLIGAN ,COMMA AN ECONOMIST AT SMITH NEW
COURT LIMITED .PERIOD

P. &AMPERSAND G. LIFTS PRICES AS OFTEN AS WEEKLY TO
COMPENSATE FOR THE DECLINE OF THE RUBLE ,COMMA WHICH
HAS FALLEN IN VALUE FROM THIRTY FIVE RUBLES TO THE
DOLLAR IN SUMMER NINETEEN NINETY ONE TO THE CURRENT
RATE OF SEVEN HUNDRED SIXTY SIX .PERIOD
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Poor Generalization

Lots of unseen n-grams.
e.g., 350MW training⇒ 15% trigrams unseen.

Seeing “nearby” n-grams doesn’t help.

LET’S EAT STEAK ON TUESDAY
LET’S EAT SIRLOIN ON THURSDAY
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Medium-Distance Dependencies?

“Medium-distance”⇔ within utterance.

FABIO WHO WAS NEXT ASKED IF THE TELLER . . .

Does a trigram model do the “right” thing?
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Generating Text From A Language Model

Reveals what word sequences model thinks is likely.
e.g., P(wi |IN THE)
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Trigram Model Trained On WSJ, 20MW
AND WITH WHOM IT MATTERS AND IN THE SHORT -HYPHEN TERM

AT THE UNIVERSITY OF MICHIGAN IN A GENERALLY QUIET SESSION

THE STUDIO EXECUTIVES LAW

REVIEW WILL FOCUS ON INTERNATIONAL UNION OF THE STOCK MARKET

HOW FEDERAL LEGISLATION

"DOUBLE-QUOTE SPENDING

THE LOS ANGELES

THE TRADE PUBLICATION

SOME FORTY %PERCENT OF CASES ALLEGING GREEN PREPARING FORMS

NORTH AMERICAN FREE TRADE AGREEMENT (LEFT-PAREN NAFTA
)RIGHT-PAREN ,COMMA WOULD MAKE STOCKS

A MORGAN STANLEY CAPITAL INTERNATIONAL PERSPECTIVE ,COMMA GENEVA

"DOUBLE-QUOTE THEY WILL STANDARD ENFORCEMENT

THE NEW YORK MISSILE FILINGS OF BUYERS

What’s wrong?
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What Are Real Utterances Like?

Don’t end/start abruptly.
Have matching quotes.
Are about single subject.
May even be grammatical.
And make sense.
Why can’t n-gram models model this stuff?
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Long-Distance Dependencies?

“Long-distance”⇔ between utterance.
P(ω = w1 · · ·wl) = frequency of utterance?
P(~ω = ω1 · · ·ωL) = frequency of utterance sequence!
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Trigram Model Trained On WSJ, 20MW
AND WITH WHOM IT MATTERS AND IN THE SHORT -HYPHEN TERM

AT THE UNIVERSITY OF MICHIGAN IN A GENERALLY QUIET SESSION

THE STUDIO EXECUTIVES LAW

REVIEW WILL FOCUS ON INTERNATIONAL UNION OF THE STOCK MARKET

HOW FEDERAL LEGISLATION

"DOUBLE-QUOTE SPENDING

THE LOS ANGELES

THE TRADE PUBLICATION

SOME FORTY %PERCENT OF CASES ALLEGING GREEN PREPARING FORMS

NORTH AMERICAN FREE TRADE AGREEMENT (LEFT-PAREN NAFTA
)RIGHT-PAREN ,COMMA WOULD MAKE STOCKS

A MORGAN STANLEY CAPITAL INTERNATIONAL PERSPECTIVE ,COMMA GENEVA

"DOUBLE-QUOTE THEY WILL STANDARD ENFORCEMENT

THE NEW YORK MISSILE FILINGS OF BUYERS

What’s wrong?
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What Is Real Text Like?

Adjacent utterances tend to be on same topic.
And refer to same entities, e.g., Clinton.
In a similar style, e.g., formal vs. conversational.
Why can’t n-gram models model this stuff?
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Recap: Shortcomings of N-Gram Models

Not great at modeling short-distance dependencies.
Not great at modeling medium-distance dependencies.
Not great at modeling long-distance dependencies.
Basically, dumb idea.

Insult to language modeling researchers.
Great for me to poop on.
N-gram models, . . . you’re fired!
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Part I

Language Modeling, Pre-2005-ish
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Where Are We?

1 Short-Distance Dependencies: Word Classes

2 Medium-Distance Dependencies: Grammars

3 Long-Distance Dependencies: Adaptation

4 Decoding With Advanced Language Models

5 Discussion
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Improving Short-Distance Modeling

Word n-gram models do not generalize well.
LET’S EAT STEAK ON TUESDAY

LET’S EAT SIRLOIN ON THURSDAY

Idea: word n-gram⇒ class n-grams!?

PMLE([DAY] | [FOOD] [PREP]) =
c([FOOD] [PREP] [DAY])

c([FOOD] [PREP])

Any instance of class trigram increases . . .
Probs of all other instances of class trigram.
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Getting From Class to Word Probabilities

What we have:

P([DAY] | [FOOD] [PREP])⇔ P(ci |ci−2ci−1)

What we want:

P(THURSDAY | SIRLOIN ON)⇔ P(wi |wi−2wi−1)

Predict current word given (non-hidden) class.

P(THURSDAY | SIRLOIN ON) =

P([DAY] | [FOOD] [PREP])× P(THURSDAY | [DAY])
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How To Assign Words To Classes?

For generalization to work sensibly . . .
Group “related” words in same class.

ROSE FELL DROPPED GAINED JUMPED CLIMBED SLIPPED
HEYDAY MINE’S STILL MACHINE NEWEST HORRIFIC BEECH

With vocab sizes of 50,000+, can’t do this manually.
⇒ Unsupervised clustering!
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Word Clustering (Brown et al., 1992)

Class trigram model.

P(wi |wi−2wi−1) = P(ci |ci−2ci−1)× P(wi |ci)

Idea: choose classes to optimize training likelihood (MLE)!?
Simplification: use class bigram model.

P(wi |wi−1) = P(ci |ci−1)× P(wi |ci)

Fix number of classes, e.g., 1000; hill-climbing search.
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Example Classes, 900MW Training Data

OF

THE TONIGHT’S SARAJEVO’S JUPITER’S PLATO’S CHILDHOOD’S
GRAVITY’S EVOLUTION’S
AS BODES AUGURS BODED AUGURED

HAVE HAVEN’T WHO’VE

DOLLARS BARRELS BUSHELS DOLLARS’ KILOLITERS

MR. MS. MRS. MESSRS. MRS

HIS SADDAM’S MOZART’S CHRIST’S LENIN’S NAPOLEON’S JESUS’
ARISTOTLE’S DUMMY’S APARTHEID’S FEMINISM’S
ROSE FELL DROPPED GAINED JUMPED CLIMBED SLIPPED TOTALED

EASED PLUNGED SOARED SURGED TOTALING AVERAGED TUMBLED

SLID SANK SLUMPED REBOUNDED PLUMMETED DIPPED FIRMED

RETREATED TOTALLING LEAPED SHRANK SKIDDED ROCKETED SAGGED

LEAPT ZOOMED SPURTED RALLIED TOTALLED NOSEDIVED
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Class N-Gram Model Performance (WSJ)

20

24

28

32

36

20kw 200kw 2MW 20MW

W
E

R

training set size

word n-gram
class n-gram
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Combining Models: Linear Interpolation

A “hammer” for combining models.

Pcombine(·|·) = λ× P1(·|·) + (1− λ)× P2(·|·)

Combined model probabilities sum to 1 correctly.
Easy to train λ to maximize likelihood of data. (How?)

Pcombine(wi |wi−2wi−1) = λ× Pword(wi |wi−2wi−1)+

(1− λ)× Pclass(wi |wi−2wi−1)
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Combining Word and Class N-Gram Models

20

24

28

32

36

20kw 200kw 2MW 20MW

W
E

R

training set size

word n-gram
class n-gram
interpolated
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Discussion: Class N-Gram Models

Smaller than word n-gram models.
N-gram model over vocab of ∼1000, not ∼50000.
Interpolation⇒ overall model larger.

Easy to add new words to vocabulary.
Only need to initialize P(wnew | cnew).

P(wi |wi−2wi−1) = P(ci |ci−2ci−1)× P(wi |ci)
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Where Are We?

1 Short-Distance Dependencies: Word Classes

2 Medium-Distance Dependencies: Grammars

3 Long-Distance Dependencies: Adaptation

4 Decoding With Advanced Language Models

5 Discussion
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Modeling Medium-Distance Dependencies

N-gram models predict identity of next word . . .
Based on identities of words in fixed positions in past.

Important words for prediction may occur elsewhere.
Important word for predicting SAW is DOG.

S

��
��

HH
HH

NP
�� HH

DET
THE

N
DOG

VP
�� HH

V
SAW

PN
ROY
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Modeling Medium-Distance Dependencies

Important words for prediction may occur elsewhere.
Important word for predicting SAW is DOG.

Instead of condition on fixed number of words back . . .
Condition on words in fixed positions in parse tree!?

S

��
��
�

HH
HH

H

NP

��
��

HH
HH

NP
�� HH

DET
THE

N
DOG

PP
�� HH

P
ON

A
TOP

VP
�� HH

V
SAW

PN
ROY
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Using Grammatical Structure

Each constituent has headword.
Condition on preceding exposed headwords?

S
SAW

��
�
��

HH
H
HH

NP
DOG

�
��
�

H
HH

H

NP
DOG
�� HH

DET
THE

N
DOG

PP
ON
�� HH

P
ON

A
TOP

VP
SAW
�� HH

V
SAW

PN
ROY

35 / 127



Using Grammatical Structure

Predict next word based on preceding exposed headwords.

P( THE | . . )
P( DOG | . THE )
P( ON | . DOG )
P( TOP | DOG ON )
P( SAW | . DOG )
P( ROY | DOG SAW )

Picks most relevant preceding words . . .
Regardless of position.

Structured language model (Chelba and Jelinek, 2000).
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Hey, Where Do Parse Trees Come From?

Come up with grammar rules . . .
S → NP VP

NP → DET N | PN | NP PP
N → dog | cat

Come up with probabilistic parametrization.

PMLE(S→ NP VP) =
c(S→ NP VP)

c(S)

Can extract rules and train probabilities using treebank.
e.g., Penn Treebank (Switchboard, WSJ text).
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So, Does It Work?

SLM trained on 20MW WSJ; trigram model: 40MW.

12

12.5

13

13.5

14

14.5

15

SLM 3g interp

W
E

R
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Recap: Structured Language Modeling

Grammatical language models not yet ready for prime time.
Need manually-parsed data to bootstrap parser.
Training/decoding is expensive, hard to implement.

If have exotic LM and need publishable results . . .
Interpolate with trigram model (“ROVER effect”).
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Where Are We?

1 Short-Distance Dependencies: Word Classes

2 Medium-Distance Dependencies: Grammars

3 Long-Distance Dependencies: Adaptation

4 Decoding With Advanced Language Models

5 Discussion
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Modeling Long-Distance Dependencies
A group including Phillip C. Friedman , a Gardena , California ,
investor , raised its stake in Genisco Technology Corporation to
seven . five % of the common shares outstanding .

Neither officials of Compton , California - based Genisco , an
electronics manufacturer , nor Mr. Friedman could be reached for
comment .

In a Securities and Exchange Commission filing , the group said it
bought thirty two thousand common shares between August
twenty fourth and last Tuesday at four dollars and twenty five cents
to five dollars each .

The group might buy more shares , its filing said .

According to the filing , a request by Mr. Friedman to be put on
Genisco’s board was rejected by directors .

Mr. Friedman has requested that the board delay Genisco’s
decision to sell its headquarters and consolidate several divisions
until the decision can be " much more thoroughly examined to
determine if it is in the company’s interests , " the filing said .
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Modeling Long-Distance Dependencies

Observation: words and phrases in previous sentences . . .
Are more likely to occur in future sentences.

Language model adaptation.
Adapt language model to current style or topic.

P(wi |wi−2wi−1)⇒ Padapt(wi |wi−2wi−1)

P(wi |wi−2wi−1)⇒ P(wi |wi−2wi−1,Hi)

Distribution over utterances P(ω = w1 · · ·wl) . . .
⇒ Utterance sequences P(~ω = ω1 · · ·ωL).
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Cache Language Models

How to boost probabilities of recently-occurring words?
Idea: build language model on last k = 500 words, say.
How to combine with primary language model?

Pcache(wi |wi−2wi−1,w i−1
i−500) =

λ× Pstatic(wi |wi−2wi−1) + (1− λ)× Pw i−1
i−500

(wi |wi−2wi−1)

Cache language models (Kuhn and De Mori, 1990).
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Beyond Cache Language Models

What’s the problem?
Does seeing THE boost the probability of THE?
Does seeing MATSUI boost the probability of YANKEES?

Can we induce which words trigger which other words?
How might one find trigger pairs?

HENSON MUPPETS
TELESCOPE ASTRONOMERS

CLOTS DISSOLVER
NODES LYMPH
SPINKS HEAVYWEIGHT

DYSTROPHY MUSCULAR
FEEDLOTS FEEDLOT

SCHWEPPES MOTT’S
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Trigger Language Models

How to combine with primary language model?
Linear interpolation with trigger unigram?

Ptrig(wi |wi−2wi−1,w i−1
i−500) =

λ× Pstatic(wi |wi−2wi−1) + (1− λ)× Pw i−1
i−500

(wi)

Another way: maximum entropy models (Lau et al., 1993).
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Beyond Trigger Language Models

Some groups of words are mutual triggers.
e.g., IMMUNE, LIVER, TISSUE, TRANSPLANTS, etc.
Difficult to discover all pairwise relations: sparse.

May not want to trigger words based on single event.
Some words are ambiguous.
e.g., LIVER ⇒ TRANSPLANTS or CHICKEN?

⇒ Topic language models.
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Example: Seymore and Rosenfeld (1997)

Assign topics to documents.
e.g., politics, medicine, Monica Lewinsky, cooking, etc.
Manual labels (e.g., BN) or unsupervised clustering.

For each topic, build topic-specific LM.
Decoding.

1st pass: use generic LM.
Select topic LM’s maximizing likelihood of 1st pass.
Re-decode using topic LM’s.
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Example: Seymore and Rosenfeld (1997)

Training (transcript); topics: conspiracy; JFK assassination.

THEY WERE RIDING THROUGH DALLAS WITH THE KENNEDYS
WHEN THE FAMOUS SHOTS WERE FIRED
HE WAS GRAVELY WOUNDED
HEAR WHAT GOVERNOR AND MRS. JOHN CONNALLY THINK OF
THE CONSPIRACY MOVIE J. F. K. . . .

Test (decoded); topics: ???

THE MURDER OF J. F. K. WAS IT A CONSPIRACY
SHOULD SECRET GOVERNMENT FILES BE OPENED TO THE
PUBLIC
CAN THE TRAGIC MYSTERY EVER BE SATISFACTORILY
RESOLVED . . .
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Example: Seymore and Rosenfeld (1997)

Topic LM’s may be sparse.
Combine with general LM.

How to combine selected topic LM’s and general LM?
Linear interpolation!

Ptopic(wi |wi−2wi−1) =

λ0Pgeneral(wi |wi−2wi−1) +
T∑

t=1

λtPt(wi |wi−2wi−1)
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So, Do Cache Models Work?

Um, -cough-, kind of.
Good PP gains (up to ∼20%).
WER gains: little to none.

e.g., (Iyer and Ostendorf, 1999; Goodman, 2001).
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What About Trigger and Topic Models?

Triggers.
Good PP gains (up to ∼30%)
WER gains: unclear; e.g., (Rosenfeld, 1996).

Topic models.
Good PP gains (up to ∼30%)
WER gains: up to 1% absolute.
e.g., (Iyer and Ostendorf, 1999; Goodman, 2001).
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Recap: Adaptive Language Modeling

ASR errors can cause adaptation errors.
In lower WER domains, LM adaptation may help more.

Large PP gains, but small WER gains.
What’s the dillio?

Increases system complexity for ASR.
e.g., how to adapt LM scores with static decoding?

Unclear whether worth the effort.
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Where Are We?

1 Short-Distance Dependencies: Word Classes

2 Medium-Distance Dependencies: Grammars

3 Long-Distance Dependencies: Adaptation

4 Decoding With Advanced Language Models

5 Discussion
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Decoding, Class N-Gram Models

Can we build the one big HMM?
Start with class n-gram model as FSA.
Expand each class to all members.
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Handling Complex Language Models

One big HMM: static graph expansion.
Heavily-pruned n-gram language model.

Another approach: dynamic graph expansion.
Don’t store whole graph in memory.
Build parts of graph with active states on the fly.

one

two

three

four

�ve

six

seven
eight

nine

zero

one

two

three

. . . . . .

�

�:AH

�:IY

THE:DH

DOG:D

�:G

�:AO
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Dynamic Graph Expansion: The Basic Idea

Express graph as composition of two smaller graphs.
Composition is associative.

Gdecode = L ◦ TLM→CI ◦ TCI→CD ◦ TCD→GMM

= L ◦ (TLM→CI ◦ TCI→CD ◦ TCD→GMM)

Can do on-the-fly composition.
States in result correspond to state pairs (s1, s2).
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Another Way: Two-Pass Decoding

First-pass decoding: use simpler model . . .
To find “likeliest” word sequences . . .
As lattice (WFSA) or flat list of hypotheses (N-best list).

Rescoring: use complex model . . .
To find best word sequence in lattice/list.
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Lattice Generation and Rescoring

THE

THIS

THUD

DIG

DOG

DOG

DOGGY

ATE

EIGHT

MAY

MY

MAY

In Viterbi, store k -best tracebacks at each word-end cell.
To add in new LM scores to lattice . . .

What operation can we use?
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N-Best List Rescoring

For exotic models, even lattice rescoring may be too slow.
Easy to generate N-best lists from lattices (A∗ algorithm).

THE DOG ATE MY
THE DIG ATE MY
THE DOG EIGHT MAY
THE DOGGY MAY
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Discussion: A Tale of Two Decoding Styles

Approach 1: Dynamic graph expansion (since late 1980’s).
Can handle more complex language models.
Decoders are incredibly complex beasts.
e.g., cross-word CD expansion without FST’s.
Graph optimization difficult.

Approach 2: Static graph expansion (AT&T, late 1990’s).
Enabled by optimization algorithms for WFSM’s.
Much cleaner way of looking at everything!
FSM toolkits/libraries can do a lot of work for you.
Static graph expansion is complex, but offline!
Decoding is relatively simple.
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Static or Dynamic? Two-Pass?

If speed is priority?
If flexibility is priority?

e.g., update LM vocabulary every night.
If need gigantic language model?
If latency is priority?

What can’t we use?
If accuracy is priority (all the time in the world)?
If doing cutting-edge research?
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Where Are We?

1 Short-Distance Dependencies: Word Classes

2 Medium-Distance Dependencies: Grammars

3 Long-Distance Dependencies: Adaptation

4 Decoding With Advanced Language Models

5 Discussion
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Recap

Short-distance dependencies.
Interpolate class n-gram with word n-gram.
<1% absolute WER gain; pain to implement?

Medium-distance dependencies.
Interpolate grammatical LM with word n-gram.
<1% absolute WER gain; pain to implement.

Long-distance dependencies.
Interpolate adaptive LM with static n-gram.
<1% absolute WER gain; pain to implement.

PP 6= WER.

63 / 127



Turning It Up To Eleven (Goodman, 2001)

If short, medium, and long-distance modeling . . .
All achieve ∼1% WER gain . . .
What if combine them all with linear interpolation?

“A Bit of Progress in Language Modeling”.
Combined higher order n-grams, skip n-grams, . . .
Class n-grams, cache models, sentence mixtures.
Achieved 50% reduction in PP over word trigram.
⇒ ∼1% WER gain (WSJ N-best list rescoring).
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State of the Art Circa 2005

Commercial systems.
Word n-gram models.

Research systems, e.g., government evaluations.
No time limits; tiny differences in WER matter.
Interpolation of word 4-gram models.

Why aren’t people using ideas from LM research?
Too slow (1st pass decoding; rescoring?)
Gains not reproducible with largest data sets.
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Time To Give Up?

. . . we argue that meaningful, practical reductions in
word error rate are hopeless. We point out that trigrams
remain the de facto standard not because we don’t
know how to beat them, but because no improvements
justify the cost.

— Joshua Goodman (2001)
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Part II

Language Modeling, Post-2005-ish
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What Up?

Humans use short, medium, and long-distance info.
Sources of info seem complementary.
Yet, linear interpolation fails to yield cumulative gains.
View: interpolation⇔ averaging; dilutes each model.
Maybe instead of hammer, need screwdriver?
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Is There Another Way?

Can we combine multiple information sources . . .
Such that resulting language model . . .
Enforces each information source fully!?
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Where Are We?

1 Introduction to Maximum Entropy Modeling

2 N-Gram Models and Smoothing, Revisited

3 Maximum Entropy Models, Part III

4 Neural Net Language Models

5 Discussion
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Many Models Or One?

Old view.
Build one model for each information source.
Interpolate.

New view.
Build one model.
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Types of Information To Combine

Word n-gram.
Class n-gram.
Grammatical information.
Cache, triggers.
Topic information.
Is there a common way to express all this?
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The Basic Intuition

Say we have 1M utterances of training data D.

FEDERAL HOME LOAN MORTGAGE CORPORATION –DASH ONE
.POINT FIVE BILLION DOLLARS OF REALESTATE MORTGAGE
-HYPHEN INVESTMENT CONDUIT SECURITIES OFFERED BY
MERRILL LYNCH &AMPERSAND COMPANY .PERIOD

NONCOMPETITIVE TENDERS MUST BE RECEIVED BY NOON
EASTERN TIME THURSDAY AT THE TREASURY OR AT FEDERAL
RESERVE BANKS OR BRANCHES .PERIOD . . .

Train LM P(ω) on D; generate 1M utterances D′.
If THE occurs 1.062× 106 times in D . . .
How many times should occur in D′?
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Marginals

Frequency of THE in D and D′ should match:

cD(THE) = cD′(THE)

= N
∑

h,w :hw=...THE

P(h,w)

= N
∑

h,w :hw=...THE

cD(h)P(w |h)

Bigram: hw = . . . OF THE.
Class bigram: hw ends in classes [FOOD] [PREP].
Grammar: hw is prefix of grammatical sentence.
Trigger: HENSON in last 500 words of h and w = MUPPETS.
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Marginal Constraints

Binary feature functions, e.g., hw = . . . THE

fTHE(h,w) =

{
1 if hw = . . . THE
0 otherwise

cD(THE) = N
∑

h,w :hw=...THE

cD(h)P(w |h)

= N
∑
h,w

cD(h)P(w |h)fTHE(h,w)

Select model P(w |h) satisfying all marginals.
Which one!?
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Maximum Entropy Principle (Jaynes, 1957)

The entropy H(P) of P(w |h) is

H(P) = −
∑
ω

P(h,w) log P(w |h)

Entropy⇔ uniformness⇔ least assumptions.
Of models satisfying constraints . . .

Pick one with highest entropy!
Capture constraints; assume nothing more!
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Can We Find the Maximum Entropy Model?

Features f1(x , y), . . . , fF (x , y); parameters Λ = {λi , . . . , λF}.
ME model satisfying associated constraints has form:

PΛ(w |h) =
1

ZΛ(h)

∏
i:fi (h,w)=1

eλi

log PΛ(w |h) =
F∑

i=1

λi fi(h,w)− log ZΛ(h)

ZΛ(h) = normalizer =
∑

w exp(
∑F

i=1 λi fi(h,w)).
a.k.a. exponential model, log-linear model.
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How to Find the λi ’s?

PΛ(w |h) =
1

ZΛ(h)

∏
i:fi (h,w)=1

eλi

{λi}’s satisfying constraints are MLE’s!
Training set likelihood is convex function of {λi}!
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Recap: Maximum Entropy Modeling

Elegant as all hell.
Principled way to combine lots of information sources.

Design choice: which constraints to enforce?
Single global optimum when training parameters.
Interpolation: addition; ME: multiplication.
But does it blend?
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Where Are We?

1 Introduction to Maximum Entropy Modeling

2 N-Gram Models and Smoothing, Revisited

3 Maximum Entropy Models, Part III

4 Neural Net Language Models

5 Discussion
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Maximum Entropy N-gram Models?

Can ME help build a better word n-gram model?
One constraint per seen n-gram.

fI LIKE BIG(h,w) =

{
1 if hw = . . . I LIKE BIG
0 otherwise

Problem: MLE model is same as before!!!
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Smoothing for Exponential Models

Point: don’t want to match training counts exactly!
e.g., `2

2 regularization (e.g., Chen and Rosenfeld, 2000).

obj fn = LLtrain +
1

(# train wds)

F∑
i=1

λ2
i

2σ2

The smaller |λi | is, the smaller its effect . . .
And the smoother the model.
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Smoothing for Exponential Models (WSJ 4g)
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Yay!?

Smoothed exponential n-gram models perform well.
Why don’t people use them?

Conventional n-gram: count and normalize.
Exponential n-gram: 50 rounds of iterative scaling.

Is there way to do constraint-based modeling . . .
Within conventional n-gram framework?
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Kneser-Ney Smoothing (1995)

Back-off smoothing.

PKN(wi |wi−1) =

{
Pprimary(wi |wi−1) if c(wi−1wi) > 0
αwi−1PKN(wi) otherwise

PKN(wi) chosen such that . . .
Unigram constraints met exactly.
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Kneser-Ney Smoothing

Unigram probabilities PKN(wi) . . .
Not proportional to how often unigram occurs.

PKN(wi) 6= c(wi)∑
wi

c(wi)

Proportional to how many word types unigram follows!

N1+(•wi) ≡ |{wi−1 : c(wi−1wi) > 0}|

PKN(wi) =
N1+(•wi)∑
wi

N1+(•wi)

† Check out “A Hierarchical Bayesian Language Model based on
Pitman-Yor Processes”, Teh, 2006, for a cool Bayesian interpretation and
learn about Chinese restaurant processes.
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Kneser-Ney Smoothing
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Recap: N-Gram Models and Smoothing

Best n-gram smoothing methods are all constraint-based.
Can express smoothed n-gram models as . . .

Exponential models with simple `2
2 smoothing.

“Modified” interpolated Kneser-Ney smoothing† . . .
Yields similar model, but much faster training.
Standard in literature for last 15+ years.

Available in SRI LM toolkit.
http://www.speech.sri.com/projects/srilm/

†(Chen and Goodman, 1998).
90 / 127

http://www.speech.sri.com/projects/srilm/


Where Are We?

1 Introduction to Maximum Entropy Modeling

2 N-Gram Models and Smoothing, Revisited

3 Maximum Entropy Models, Part III

4 Neural Net Language Models

5 Discussion

91 / 127



What About Other Features?

Exponential models make slightly better n-gram models.
Snore.

Can we just toss in tons of cool features . . .
And get fabulous results?
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Maybe!? (Rosenfeld, 1996)

38M words of WSJ training data.
Trained maximum entropy model with . . .

Word n-gram; skip n-gram; trigger features.
Interpolated with regular word n-gram and cache.

39% reduction in PP, 2% absolute reduction in WER.
Baseline: (pruned) Katz-smoothed(?) trigram model.

Contrast: Goodman (2001), -50% PP, -0.9% WER.
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What’s the Catch?

200 computer-days to train.
Really slow training.

For each word, update O(|V |) counts.
Tens of passes through training data.

Really slow evaluation: evaluating ZΛ(h).

PΛ(w |h) =
1

ZΛ(h)

∏
i:fi (h,w)=1

eλi

ZΛ(h) =
∑
w ′

exp(
F∑

i=1

λi fi(h,w ′))
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Newer Developments

Fast training: optimizations for simple feature sets.
e.g., train word n-gram model on 1GW in few hours.

Fast evaluation: unnormalized models.
Not much slower than regular word n-gram.

PΛ(w |h) =
∏

i:fi (h,w)=1

eλi

Performance prediction.
How to intelligently select feature types.
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Performance Prediction (Chen, 2008)

Given training set and test set from same distribution.
Desire: want to optimize performance on test set.
Reality: only have access to training set.

(test perf) = (training perf) + (overfitting penalty)

Can we estimate overfitting penalty?
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Yes

log PPtest − log PPtrain ≈ 0.938
(# train wds)

F∑
i=1

|λi |

0

1

2

3

4

5

6

0 1 2 3 4 5 6

pr
ed

ic
te

d

actual
97 / 127



A Tool for Good

Holds for many different types of data.
Different domains; languages; token types; . . .
Vocab sizes; training set sizes; n-gram orders.

Holds for many different types of exponential models.
Explains lots of diverse aspects of language modeling.
Can choose features types . . .

To intentionally shrink
∑F

i=1 |λi |.
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Model M (Chen, 2008; Chen and Chu, 2010)

Old-timey class-based model (Brown, 1992).
Class prediction features: ci−2ci−1ci .
Word prediction features: ciwi .

P(wi |wi−2wi−1) = P(ci |ci−2ci−1)× P(wi |ci)

Start from word n-gram model; convert to class model . . .
And choose feature types to reduce overfitting.
Class prediction features: ci−2ci−1ci , wi−2wi−1ci .
Word prediction features: wi−2wi−1ciwi .

Without interpolation with word n-gram model.
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Model M (WSJ)
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Recap: Maximum Entropy

Some of best WER results in LM literature.
Gain of up to 3% absolute WER over trigram (not <1%).
Short-range dependencies only.

Can surpass linear interpolation in WER in many contexts.
Log-linear interpolation.
Each is appropriate in different situations. (When?)
Together, powerful tool set for model combination.

Performance prediction explains existing models . . .
And helps design new ones!

Training can be painful depending on features.

101 / 127



Where Are We?

1 Introduction to Maximum Entropy Modeling

2 N-Gram Models and Smoothing, Revisited

3 Maximum Entropy Models, Part III

4 Neural Net Language Models

5 Discussion
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Introduction

Ways to combine information sources.
Linear interpolation.
Exponential/log-linear models.
Anything else?

Recently, good results with neural networks.
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What is the Brain Like?

Layered; mostly “forward” connections.
Each neuron has firing rate.
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What is a Basic Neural Network Like?

Layered; only “forward” connections and full.
Each neuron has activation.
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How Are Activations Computed?

Linear function of previous layer . . .
Then, non-linearity⇒ [0,1] (maybe).

e.g., sigmoid: g(x) = 1
1+e−x .

Saturation; universal function approximator.

x l+1
i = g(

Nl∑
j=1

w l
ijx

l
j )
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Encoding Inputs and Outputs

e.g., how to model P(wi |wi−1)?
1 of V coding: V nodes, one on and the rest off.

107 / 127



Probability Estimation

How to make final layer activations act like probs?
Use softmax function.

pi =
exL

i∑NL
j=1 exL

j

Use log likelihood as training objective function.
a.k.a. cross-entropy.
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What’s the Big Deal?

Multi-layer models are better than single-layer models.
Can actually train them scalably!

Backpropogation⇒ gradient-descent.
Unlike graphical models.

Computers are fast enough now, e.g., GPU’s.
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Perspective: Exponential Models

Last layer: log-linear + softmax⇒ maxent!
Like exponential/ME model, but learn features!

110 / 127



NNLM’s 1.0 (Schwenk and Gauvain, 2005)

time consuming and the algorithms used with sev-
eral tens of millions examples may be impracticable
for larger amounts. Training back-off LMs on large
amounts of data is not a problem, as long as power-
ful machines with enough memory are available in
order to calculate the word statistics. Practice has
also shown that back-off LMs seem to perform very
well when large amounts of training data are avail-
able and it is not clear that the above mentioned new
approaches are still of benefit in this situation.

In this paper we compare the neural network
language model ton-gram model with modified
Kneser-Ney smoothing using LM training corpora
of up to 600M words. New algorithms are pre-
sented to effectively train the neural network on such
amounts of data and the necessary capacity is ana-
lyzed. The LMs are evaluated in a real-time state-
of-the-art speech recognizer for French Broadcast
News. Word error reductions of up to 0.5% abso-
lute are reported.

2 Architecture of the neural network LM

The basic idea of the neural network LM is to project
the word indices onto a continuous space and to use
a probability estimator operating on this space (Ben-
gio and Ducharme, 2001; Bengio et al., 2003). Since
the resulting probability functions are smooth func-
tions of the word representation, better generaliza-
tion to unknownn-grams can be expected. A neural
network can be used to simultaneously learn the pro-
jection of the words onto the continuous space and
to estimate then-gram probabilities. This is still a
n-gram approach, but the LM posterior probabilities
are ”interpolated” for any possible context of length
n-1 instead of backing-off to shorter contexts.

The architecture of the neural networkn-gram
LM is shown in Figure 1. A standard fully-
connected multi-layer perceptron is used. The
inputs to the neural network are the indices of
the n−1 previous words in the vocabularyhj =
wj−n+1, ..., wj−2, wj−1 and the outputs are the pos-
terior probabilities ofall words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N ] (1)

whereN is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., thei-th word
of the vocabulary is coded by setting thei-th ele-
ment of the vector to 1 and all the other elements to

projection
layer hidden

layer

output
layerinput

projections
shared

continuous
representation: representation:

indices in wordlist

LM probabilitiesdiscrete
for all words

probability estimation

Neural Network

N

wj−1 P

H

N

P (wj=1|hj)
wj−n+1

wj−n+2

P (wj=i|hj)

P (wj=N|hj)

P dimensional vectors

ck

oiM

Vdj

p1 =

pN =

pi =

Figure 1: Architecture of the neural network
language model. hj denotes the context
wj−n+1, ..., wj−1. P is the size of one projec-
tion and H and N is the size of the hidden and
output layer respectively. When shortlists are used
the size of the output layer is much smaller then the
size of the vocabulary.

0. Thei-th line of theN ×P dimensional projection
matrix corresponds to the continuous representation
of thei-th word. Let us denoteck these projections,
dj the hidden layer activities,oi the outputs,pi their
softmax normalization, andmjl, bj , vij andki the
hidden and output layer weights and the correspond-
ing biases. Using these notations the neural network
performs the following operations:

dj = tanh

(∑
l

mjl cl + bj

)
(2)

oi =
∑
j

vij dj + ki (3)

pi = eoi /
N∑

k=1

eok (4)

The value of the output neuronpi corresponds di-
rectly to the probabilityP (wj = i|hj). Training is
performed with the standard back-propagation algo-
rithm minimizing the following error function:

E =
N∑

i=1

ti log pi + β(
∑
jl

m2
jl +

∑
ij

v2
ij) (5)

whereti denotes the desired output, i.e., the proba-
bility should be 1.0 for the next word in the training
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Recurrent NN LM’s (Mikolov et al., 2010)

EXTENSIONS OF RECURRENT NEURAL NETWORK LANGUAGEMODEL

Tomáš Mikolov1,2, Stefan Kombrink1, Lukáš Burget1, Jan “Honza” Černocký1, Sanjeev Khudanpur2

1Brno University of Technology, Speech@FIT, Czech Republic
2 Department of Electrical and Computer Engineering, Johns Hopkins University, USA

{imikolov,kombrink,burget,cernocky}@fit.vutbr.cz, khudanpur@jhu.edu

ABSTRACT
We present several modifications of the original recurrent neural net-
work language model (RNN LM). While this model has been shown
to significantly outperform many competitive language modeling
techniques in terms of accuracy, the remaining problem is the com-
putational complexity. In this work, we show approaches that lead
to more than 15 times speedup for both training and testing phases.
Next, we show importance of using a backpropagation through time
algorithm. An empirical comparison with feedforward networks is
also provided. In the end, we discuss possibilities how to reduce the
amount of parameters in the model. The resulting RNN model can
thus be smaller, faster both during training and testing, and more
accurate than the basic one.

Index Terms— language modeling, recurrent neural networks,
speech recognition

1. INTRODUCTION

Statistical models of natural language are a key part of many systems
today. The most widely known applications are automatic speech
recognition (ASR), machine translation (MT) and optical charac-
ter recognition (OCR). In the past, there was always a struggle be-
tween those who follow the statistical way, and those who claim that
we need to adopt linguistics and expert knowledge to build mod-
els of natural language. The most serious criticism of statistical ap-
proaches is that there is no true understanding occurring in these
models, which are typically limited by the Markov assumption and
are represented by n-gram models. Prediction of the next word is
often conditioned just on two preceding words, which is clearly in-
sufficient to capture semantics. On the other hand, the criticism of
linguistic approaches was even more straightforward: despite all the
efforts of linguists, statistical approaches were dominating when per-
formance in real world applications was a measure.

Thus, there has been a lot of research effort in the field of statis-
tical language modeling. Among models of natural language, neural
network based models seemed to outperform most of the competi-
tion [1] [2], and were also showing steady improvements in state of
the art speech recognition systems [3]. The main power of neural
network based language models seems to be in their simplicity: al-
most the same model can be used for prediction of many types of
signals, not just language. These models perform implicitly cluster-
ing of words in low-dimensional space. Prediction based on this
compact representation of words is then more robust. No additional
smoothing of probabilities is required.

This work was partly supported by European project DIRAC (FP6-
027787), Grant Agency of Czech Republic project No. 102/08/0707, Czech
Ministry of Education project No. MSM0021630528 and by BUT FIT grant
No. FIT-10-S-2.

Fig. 1. Simple recurrent neural network.

Among many following modifications of the original model, the
recurrent neural network based language model [4] provides further
generalization: instead of considering just several preceding words,
neurons with input from recurrent connections are assumed to repre-
sent short term memory. The model learns itself from the data how
to represent memory. While shallow feedforward neural networks
(those with just one hidden layer) can only cluster similar words,
recurrent neural network (which can be considered as a deep archi-
tecture [5]) can perform clustering of similar histories. This allows
for instance efficient representation of patterns with variable length.

In this work, we show the importance of the Backpropagation
through time algorithm for learning appropriate short term memory.
Then we show how to further improve the original RNN LM by de-
creasing its computational complexity. In the end, we briefly discuss
possibilities of reducing the size of the resulting model.

2. MODEL DESCRIPTION

The recurrent neural network described in [4] is also called Elman
network [6]. Its architecture is shown in Figure 1. The vector x(t) is
formed by concatenating the vector w(t) that represents the current
word while using 1 of N coding (thus its size is equal to the size of
the vocabulary) and vector s(t − 1) that represents output values in
the hidden layer from the previous time step. The network is trained
by using the standard backpropagation and contains input, hidden
and output layers. Values in these layers are computed as follows:

x(t) = [w(t)T
s(t − 1)T ]T (1)

sj(t) = f

 X
i

xi(t)uji

!
(2)

yk(t) = g

 X
j

sj(t)vkj

!
(3)

5528978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011
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Results (Mikolov et al., 2011)Table 6: Comparison of advanced language modeling tech-
niques on the WSJ task with all training data.

Model Dev WER[%] Eval WER[%]
Baseline - KN5 12.2 17.2
Discriminative LM [14] 11.5 16.9
Joint LM [7] - 16.7
Static RNN 10.5 14.9
Static RNN + KN 10.2 14.6
Adapted RNN 9.8 14.5
Adapted RNN + KN 9.8 14.5
All RNN 9.7 14.4

5. Conclusion and future work
On the Penn Treebank, we achieved a new state of the art result
by using a combination of many advanced language modeling
techniques, surpassing previous state of the art by a large margin
- the obtained perplexity 79.4 is significantly better than 96 re-
ported in our previous work [5]. Compared to the perplexity of
Good-Turing smoothed trigram that is 165.2 on this setup, we
have achieved 52% reduction of perplexity, and 14.3% reduc-
tion of entropy. Compared to the 5-gram with modified Kneser-
Ney smoothing that has perplexity 141.2, we obtained 44% re-
duction of perplexity and 11.6% reduction of entropy.

On the WSJ task, we have shown that the possible improve-
ments actually increase with more training data. Although we
have used just two RNNLMs that were trained on all data, we
observed similar gains as on the previous setup. Against Good-
Turing smoothed trigram that has perplexity 246, our final result
108 is by more than 56% lower (entropy reduction 15.0%). The
5-gram with modified Kneser-Ney smoothing has on this task
perplexity 212, thus our combined result is by 49% lower (en-
tropy reduction 12.6%).

As far as we know, our work is the first attempt to com-
bine many advanced language modeling techniques after the
work done by Goodman [1], as usually combination of only
two or three techniques is reported. We have found that many
techniques are actually redundant and do not contribute signif-
icantly to the final combination - it seems that by using Re-
current neural network based language models and a standard
n-gram model, we can obtain near-optimal results. However,
this should not be interpreted as that further work on other tech-
niques is useless. We are aware of several possibilities how to
make better use of individual models - it was reported that log-
linear interpolation of models [15] outperforms in some cases
significantly the basic linear interpolation. While we have not
seen any significant gains when we combined log-linearly indi-
vidual RNNLMs, for combination of different techniques, this
might be an interesting extension of our work in the future.
However, it should be noted that log-linear interpolation is com-
putationally very expensive.

As the final combination is dominated by the RNNLM, we
believe that future work should focus on its further extension.
We observed that combination of different RNNLMs works bet-
ter than any individual RNNLM. Even if we combine models
that are individually suboptimal, as was the case when we used
large learning rate during adaptation, we observe further im-
provements. This points us towards investigating Bayesian neu-
ral networks, that consider all possible parameters and hyper-
parameters. We actually assume that combination of RNNLMs
behaves as a crude approximation of a Bayesian neural network.
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Discussion

Some of best WER results in LM literature.
Gain of up to 3% absolute WER over trigram (not <1%).

Interpolation with word n-gram optional.
Can integrate arbitrary features, e.g., syntactic features.

Easy to condition on longer histories.
Training and evaluation is slow.

Optimizations: class-based modeling; reduced vocab.
Publicly-available toolkit: http://rnnlm.org
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Other Directions in Language Modeling

Discriminative training for LM’s.
Super ARV LM.
LSA-based LM’s.
Variable-length n-grams; skip n-grams.
Concatenating words to use in classing.
Context-dependent word classing.
Word classing at multiple granularities.
Alternate parametrizations of class n-grams.
Using part-of-speech tags.
Semantic structured LM.
Sentence-level mixtures.
Soft classing.
Hierarchical topic models.
Combining data/models from multiple domains.
Whole-sentence maximum entropy models.
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State of the Art, Production Systems

Word n-gram models (1st pass static).
Modified Kneser-Ney smoothing?

Mostly word n-gram models (dynamic/rescoring).
Gain not worth the cost/complexity.

The more data, the less gain!

train FLOPS/ev eval FLOPS/ev
n-gram 5 1–3
model M 20× 100 5–10
NNLM 106 × 20 106
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State of the Art, Research Systems

e.g., government evals.
Small differences in WER matter; may not have much
data.
Interpolation of word n-gram models.
Rescoring w/ neural net LM’s; Model M (-0.5% WER?)

Modeling medium-to-long-distance dependencies.
Almost no gain in combination with other techniques?
Not worth extra effort and complexity.
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An Apology to N-Gram Models

I didn’t mean what I said about you.
You know I was kidding when I said . . .

You are great to poop on.
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Lessons: Perplexity 6= WER

e.g., One Billion Word Benchmark.
Vast perplexity improvements⇒ small WER gains.
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What’s Important: Data!
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What’s Not As Important: Algorithms!
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Where Do We Go From Here?

N-gram models are just really easy to build.
Smarter LM’s tend to be orders of magnitude slower.
Faster computers? Data sets also growing.

Need to effectively combine many sources of information.
Short, medium, and long distance.
Log-linear models, NN’s promising, but slow to train.

Evidence that LM’s will help more when WER’s are lower.
Human rescoring of N-best lists (Brill et al., 1998).
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Road Map

126 / 127



Course Feedback

1 Was this lecture mostly clear or unclear? What was the
muddiest topic?

2 Other feedback (pace, content, atmosphere)?
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