
Lab 4 � Large Vocabulary Decoding: A Love

Story

EECS E6870: Speech Recognition

Due: Friday, April 1, 2016 at 6:00pm

Contents

1 Overview 1

2 Part 1: Play With FSM's and the IBM FSM Toolkit 1

3 Part 2: Investigate the Static Graph Expansion Process 3

3.1 The Model . 4

3.2 Graph Expansion Steps . 4

4 Part 3: Implement the Viterbi Algorithm, Handling Skip Arcs and Token Pass-

ing 7

4.1 Not Storing the Whole Chart . 7

4.2 Handling Skip Arcs . 9

4.3 Token Passing . 10

5 Part 4: Add Support for Beam Pruning and Optionally Rank Pruning 12

5.1 Beam Pruning . 12

5.2 Rank Pruning . 13

6 Part 5: Evaluate the Performance of Various Models on WSJ Test Data 14

7 What is to be handed in 15

1 Overview

By far the sexiest piece of software associated with ASR is the large-vocabulary decoder. Since
this course is nothing if not about being sexy, this assignment will deal with various aspects of
large-vocabulary decoding. In the �rst portions of this lab, we will investigate the various steps
involved in building static decoding graphs as will be needed by our decoder. In the second half of
the lab, you will implement most of the interesting parts of a real-time large-vocabulary decoder.

1

In particular, you will need to re-implement the Viterbi algorithm from Lab 2, except this time you
will need to worry about memory and speed considerations as well as skip arcs. This will involve
implementing token passing and beam pruning, and optionally rank pruning.

The goal of this assignment is for you, the student, to gain a better understanding of the various
steps involved in constructing a static decoding graph for LVCSR and of the various algorithms
used in large-vocabulary decoding. The lab consists of the following parts:

• Part 1: Play with FSM's and the IBM FSM toolkit

• Part 2: Investigate the static graph expansion process

• Part 3: Implement the Viterbi algorithm, handling skip arcs and token passing

• Part 4: Add support for beam pruning and optionally rank pruning

• Part 5: Evaluate the performance of various models on WSJ test data

All of the �les needed for the lab can be found in the directory /user1/faculty/stanchen/e6870/lab4/.
Before starting the lab, please read the �le lab4.txt; this includes all of the questions you will have
to answer while doing the lab. Questions about the lab can be posted on Piazza (accessible through
Courseworks).

2 Part 1: Play With FSM's and the IBM FSM Toolkit

In this part, we introduce the IBM FSM toolkit as a �rst step in learning more about the static
graph expansion process. In particular, you will be using the program FsmOp, which is a utility that
can perform a variety of �nite-state operations on weighted FSA's and FST's. The program FsmOp

is like a calculator that operates on FSM's rather than real values, where arguments are input using
reverse Polish notation as is used in some HP calculators. For example, to compute the composition
of an FSA held in the �le foo.fsm and an FST held in bar.fsm, you would use the command

FsmOp foo.fsm bar.fsm -compose > result.fsm

Operations begin with the �-� character, and include �-compose�, �-determinize�, and �-minimize�
among many others. By default, the resulting FSM is written to standard output, but if the last
argument supplied is a �lename (rather than an operation), the resulting FSM will be written to
that �le instead. Thus, the command

FsmOp foo.fsm bar.fsm -compose result.fsm

has the same e�ect as the last example.

We explain the default FSA format through an example:

1 2 foo

1 2 bar

2 3 moo

3

2

https://courseworks.columbia.edu/
http://www.calculator.org/rpn.html
http://www.hpmuseum.org/rpn.htm

Each line with three �elds describes an arc in the FSM; the format is: �<src-state> <dst-state>

<label>�. States need not be numbered starting from 1; and the label <epsilon> is used to represent
the empty label. Each line with a single �eld lists a �nal state. The �rst state mentioned in the �le
is the start state. Thus, the above FSA �le corresponds to:

1 2foo

bar
3moo

We drew the above Postscript diagram using the following command:

FsmOp foo.fsm -draw | dot -Tps > foo.ps

You can use similar commands to help you visualize FSM's.

For weighted FSA's, each line can optionally be followed with a cost, or negative log probability
base 10. If a cost is omitted on a line, it is taken to be zero. For example, here is a weighted FSA:

1 2 foo

1 2 bar 2.4

2 3 <epsilon>

2 1.2

3

corresponding to

1 2/1.2foo/0

bar/2.4
3/0<epsilon>/0

Finite-state transducers have a similar format, except lines representing arcs have an extra �eld:

<src-state> <dst-state> <in-label> <out-label> [<optional-cost>]

In addition, to signal that a �le holds an FST rather than an FSA, the following line should be
included at the start of the �le:

transducer: true

Here is an example FST:

transducer: true

1 2 ax AX

1 2 bar BAR 1.0

2 3 moo <epsilon>

2 1.2

3

3

For this part of the lab, you will have to create various FSM's and perform operations on them,
as described in lab4.txt. Here are some hints:

• Don't forget to add �nal states to your FSM's! Without these, your FSM's will be equivalent
to empty FSM's.

• For transducers, don't forget the line �# transducer: true�!

• For a list of all of the operations that FsmOp can perform, run FsmOp with no arguments.

To prepare for this part, create the relevant subdirectory and copy over the needed �les:

mkdir -p ~/e6870/lab4/

chmod 0700 ~/e6870/

cd ~/e6870/lab4/

cp -d /user1/faculty/stanchen/e6870/lab4/* .

Be sure to use the �-d� �ag with cp (so the symbolic links are copied over correctly).

3 Part 2: Investigate the Static Graph Expansion Process

In this part of the lab, we will look at the static graph expansion process used to create the decoding
graphs that we will need for our decoder. First, we introduce the models that we are using in this
lab, and then we go step-by-step through the graph expansion process.

3.1 The Model

For this lab, we will be working with the Wall Street Journal corpus. This corpus was created many
years ago for a program sponsored by DARPA to spur development of basic LVCSR technology,
and this corpus was designed to be about as easy as an LVCSR corpus could be for ASR. The
data consists of people reading Wall Street Journal articles into a close-talking microphone in clean
conditions; i.e., there is little noise. Since the data is read text, there are few conversational artifacts
(such as �lled pauses like UH) and it is easy to �nd relevant language model training data.

We trained an acoustic model on about nine hours of Wall Street Journal audio data and a
smoothed trigram language model on 23M words of WSJ text. The acoustic model is context-
dependent; phonetic decision trees were built for each state position (i.e., start, middle, and end)
for each of the ∼ 50 phones, yielding about 3×50=150 trees. The trees have a total of about 400
leaves; i.e., the model contains 400 GMM's, one for each context-dependent variant of each state
for each phone. There are a total of about 28000 Gaussians in the model, so each GMM has about
70 components on average. The model was trained using the Attila speech recognition toolkit at
IBM by �rst training a (1 Gaussian per GMM) context-independent phonetic model; doing several
rounds of mixture splitting; growing a decision tree; seeding the CD model from the CI model;
and doing a few more rounds of mixture splitting (with lots of iterations of Forward-Backward or
Viterbi EM training interspersed). The vocabulary contains about 21000 words and includes all of
the words in our test data (so we don't have to worry about errors caused by out-of-vocabulary
words). Since our vocabulary size is about three orders of magnitude larger than in our previous

4

decoding experiments, we use a �better� front end than the one from Lab 1 to try to get reasonable
performance. In particular, the front end is a PLP front end with cepstral mean subtraction and
linear discriminant analysis (to be described in later lectures). If this paragraph meant nothing to
you, you should probably cut down on the brewski's.

3.2 Graph Expansion Steps

We explain the steps in graph expansion by going through an example. For full-scale decoding, we
would start with a word FSM representing a pruned trigram LM; in this example, we start with a
word graph wd.fsm containing just a single word sequence:

1 2I 3LIKE 4BEARS

All example �les in this section should be among the �les you copied over to your directory.

The �rst thing we do is convert the FSA into an FST:

FsmOp wd.fsm -make-transducer wd2.fsm

resulting in

1 2I:I 3LIKE:LIKE 4BEARS:BEARS

The reason why we do this is left as an exercise.

Then, we compose the FST wd2lx.fsm to convert from words to pronunciation variants, or
lexemes in IBM terminology:

FsmOp wd2.fsm wd2lx.fsm -compose lx.fsm

In this case, each word has only a single pronunciation variant (i.e., LIKE(01) denotes the �rst
pronunciation variant of the word LIKE), but in general there may be words with multiple pronun-
ciations. This yields

1 2I:I(01) 3LIKE:LIKE(01) 4BEARS:BEARS(01)

Notice that wd2lx.fsm only contains entries for the words in wd.fsm; in general, this FST would
contain entries for all words in some large vocabulary.

Next, we convert from lexemes to phones:

5

FsmOp lx.fsm lx2pn.fsm -compose pn.fsm

yielding

1 2I:| 3<epsilon>:AY 4LIKE:| 5<epsilon>:L 6<epsilon>:AY 7<epsilon>:KD 8BEARS:| 9<epsilon>:B 10<epsilon>:EH 11<epsilon>:R 12<epsilon>:Z

(For this and following FSM's, we do not display the whole machine due to space constraints.)
Notice that each pronunciation begins with the marker �|�; this is used to encode the location of
word boundaries. This marker is ignored during phonetic decision tree expansion here, and does
not expand to an HMM itself.

Next, we compose with the transducer pn2md.fsm to convert from phones to what we'll call the
model level (held in the �le md.fsm).

FsmOp pn.fsm pn2md.fsm -compose md.fsm

The transducer pn2md.fsm e�ectively expands each phone to its corresponding triphone(s) and then
maps each triphone to the corresponding sequence of decision-tree leaves. For an outline of a method
for creating pn2md.fsm, see the slides for the lecture on LVCSR search. Here is the resulting FSM:

1 2I:<epsilon> 3<epsilon>:<epsilon> 4LIKE:<epsilon> 5<epsilon>:AY:67_70_71 6<epsilon>:<epsilon> 7<epsilon>:L:203_207_213 8<epsilon>:AY:67_68_72 9<epsilon>:KD:197_198_199 10BEARS:<epsilon> 11<epsilon>:B:75_76_78 12<epsilon>:EH:106_110_116 13<epsilon>:R:277_282_292 14<epsilon>:Z:368_372_375

To explain the notation, this model has a total of 386 decision-tree leaves or GMM's, which we
number from 0 to 385. The notation AY:67_70_71 denotes that the three states for the phone AY

in this context expand to the leaves numbered 67, 70, and 71, respectively. (This di�ers from how
leaves are numbered in the slides in that we use a single global numbering here, while in the slides
we number leaves separately for each tree.) Notice that the word labels are no longer necessarily
aligned with the models they expand to. This is because the identity of the leaves in a model may
not be known until phones to the right (since the decision tree may ask about phones to the right),
so the model tokens are shifted later relative to the word tokens.

The contents of each decision tree can be found in the �le tree.txt. Here is the tree for the
last state of the phone AY:

node 0: quest-P 40[+1] --> true: node 3, false: node 1

quest: AO AXR ER IY L M N NG OW OY R UH UW W Y

node 1: quest-P 16[+1] --> true: node 4, false: node 2

quest: B BD CH D DD DH F G GD HH JH K KD M N NG P PD S SH TS Y

node 2: quest-P 12[+1] --> true: node 5, false: node 6

quest: AO AW AX AY B BD D DD DH EH EY IH K KD M N S TS UH V W Z

node 3: leaf 71

node 4: leaf 72

node 5: leaf 73

node 6: leaf 74

6

Node 0 is the root of the tree. At node 0, question 40 is asked of the phone in position +1 (i.e., the
phone to the right); if the question is true, we go to node 3, else we go to node 1. Question 40 asks
whether the given phone belongs to the set of phones following the word �quest:�.

Let us go through the example of calculating the leaf number for the last state in the �rst AY
phone in our example. Here, the phone to the right of the �rst AY is the �L� phone, so the question
at the root node is true and we go to node 3. Node 3 contains leaf 71 and we are done.

Anyway, back to our graph expansion example. In the last step, we expand the FSM to the �nal
HMM, rewriting each model token by the HMM that represents it:

FsmOp md.fsm md2hmm.fsm -compose -invert hmm.fsm

This HMM is too large to display in its entirety, but here is an excerpt:

1 2<epsilon>:I 3<epsilon>:<epsilon> 4<epsilon>:LIKE 567:<epsilon>
667:<epsilon>

7
70:<epsilon>

867:<epsilon>

9
70:<epsilon>

70:<epsilon>

1071:<epsilon>

67:<epsilon>

70:<epsilon>
70:<epsilon>

71:<epsilon>
71:<epsilon>

11<epsilon>:<epsilon>

The graph contains GMM indices and words, which is what we need for decoding. We invert the
FSM, or switch its input and output labels, since our decoder expects the GMM indices to be on
the input side and the words on the output side. While the topology of the above HMM does not
look exactly like what we've been presenting in class, it is actually equivalent.

The actual Gaussians parameters and mixture weights are held in the �les wsj.gs and wsj.ms.
These are stored in Attila's binary format, but hold the same information as the GMM parameter
�les we used in Lab 2. The reason we use Attila format here is because we will be calling the
Attila library to do fast GMM probability computation. Attila implements a technique known as
hierarchical labeling where only the probabilities of the likeliest GMM's at each frame are computed
exactly; the remaining GMM's are assigned a default probability.

So, this pretty much describes all the data that we need to feed into our decoder. As mentioned
before, in real life we begin with a word graph representing an n-gram language model. One of the
language model graphs we use in this lab can be found in small_lm.fsm; it is a trigram model that
has been pruned to about 36k bigrams and 6k trigrams. The �nal expanded decoding graph can be
found in small_graph.fsm. It contains about 550k states and 1.3M arcs.

For this part of the lab, you will have to edit some of the FSM's used in our toy example to
handle a new word in the vocabulary. In addition, you will need to do some manual decision-tree
expansion; see lab4.txt for directions.

7

4 Part 3: Implement the Viterbi Algorithm, Handling Skip Arcs

and Token Passing

In this part of the lab, you will need to re-implement the Viterbi algorithm from Lab 2, except this
time handling skip arcs (i.e., arcs with no output) and token passing. We'll be doing this in three
stages: �rst, we'll get Viterbi working without skip arcs and token passing; then we'll add skip arcs;
and then we'll add token passing. For testing, we will be using isolated digit models as in Lab 2.

4.1 Not Storing the Whole Chart

Below is a pseudocode representation of the Viterbi algorithm we implemented for Lab 2:

C[0, start].logProb = 0

for t in [0 ... (T-1)]:

for s_src in [0 ... (S-1)]:

for a in outArcs(s_src):

s_dst = dest(a)

srcLogProb = C[t, s_src].logProb + a.logProb + gmmLogProb(a, t)

if srcLogProb > C[t+1, s_dst].logProb:

C[t+1, s_dst].logProb = srcLogProb

C[t+1, s_dst].trace = a

As mentioned in the lecture on LVCSR search, it is not generally feasible to store the whole dynamic
programming chart C[t, s] in large-vocabulary decoding. In the �rst stage of this part of the lab,
we'll �gure out how to do Viterbi decoding without storing the whole chart.

Instead of storing the whole chart, we're only going to store the cells that we actually �visit�,
where we may not visit a cell because it's not reachable from the start state or, more typically,
because of pruning (which we won't actually do until the next part). We'll call the cells we visit
at a frame the active cells in that frame. Another optimization we mentioned in lecture is that we
don't need to keep around cells from past frames if we have some other way of recovering the best
word sequence, i.e., token passing. What this boils down to is that at any point, we're only going
to need to store cells from two frames, the current frame we're processing and the next frame.

To store all of the active cells at a particular frame, we'll use a FrameData object (click for
documentation). This structure holds a list of FrameCell objects.

We allocate two FrameData objects, curFrame and nextFrame, to hold active cells for the current
and next frames, respectively (frames t and t+1 in the pseudocode). At the end of processing each
frame, we copy all the cells in nextFrame to curFrame and then clear nextFrame at the start of the
next frame, thus setting us up correctly for the next iteration.

Looking at the pseudocode, we need to make two main changes. First, instead of looping through
all states, we should loop through only those states with active cells in curFrame. To do this, we
can use the methods reset_iteration() and get_next_state(); an example of this is provided
in the code. Secondly, we need to be able to look up the source cell C[t, ssrc] in curFrame; and to
look up the destination cell C[t + 1, sdst] in nextFrame, creating it if it doesn't exist. To look up
the source cell (which we already know exists), we can use the method get_cell_by_state(). To

8

http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classFrameData.html
http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classFrameCell.html

look up the destination cell and create it if doesn't exist, we can use the method insert_cell().
Again, examples are provided in the code.

Your job in this part is to �ll in the Viterbi algorithm in the sections between the markers
BEGIN_LAB and END_LAB in the �le lab4_vit.C. For now, you don't have to worry about skip arcs
and you don't have to worry about computing the correct word tree node index in each FrameCell

(just use the value 0 for now). Read this �le to see what input and output structures need to be
accessed. We have provided sample skeleton code that you should use as a starting point. Note:
don't forget to apply the acoustic weight!

To compile this program, type make lab4_vit, which produces the executable lab4_vit. (For
things to work, your LD_LIBRARY_PATH environment variable needs to be set correctly, but this
should already be OK if you set up your account correctly at the beginning of the course.) This
program does the exact same thing as lab2_vit, except using our new Viterbi implementation.
In particular, it �rst loads in a big HMM graph to use for decoding and the associated GMM
parameters. Then, for each acoustic signal, it runs the front end to produce feature vectors, then
runs Viterbi, and then outputs the word sequence returned by Viterbi.

For testing, we'll use the same decoding graph and GMM's that we used in Lab 2 for isolated
digit recognition. To run lab4_vit on a single isolated digit utterance, run the script

lab4_p3a.sh

You can examine this script to see what arguments are being provided to lab4_vit. In addition to
outputting the decoded word sequence (which will be empty for now) to standard output, it also
outputs the contents of the dynamic programming chart (�rst log probs, then node ID's, then the
number of active states at each frame) to p3a.chart. In the �rst two sections, each row corresponds
to a di�erent frame, and each column corresponds to a di�erent state. The target output can be
found in p3a.chart.ref. You should try to match the target log probs more or less exactly, modulo
arithmetic error; don't worry about matching the other parts of the �le.

Note that you can use the �-dbg� �ag to run a script in the debugger, e.g.,

lab4_p3a.sh -dbg

For more information on debugging, see A Quick Tutorial on Debugging.

The instructions in lab4.txt will ask you to run the script lab4_p3b.sh, which runs the decoder
on a test set of ten single digit utterances.

4.2 Handling Skip Arcs

In this stage, we'll be adding support for skip arcs, or arcs with no associated GMM that don't
consume a frame of input. The hard part of handling skip arcs is making sure you visit states
in the correct order. As discussed in Lab 2, at a given frame, you must always visit the source
state of a skip arc before its destination state for Viterbi to work correctly. One way to assure this
is to renumber the states in the graph such that all skip arcs go from lower-numbered states to
higher-numbered states (which will be possible as long as there are no skip arc loops), and then to
visit states in increasing numeric order.

9

http://www.ee.columbia.edu/~stanchen/spring16/e6870/debugging.html

Luckily, we've done the hard work for you. We've renumbered the states in our decoding graphs
to satisfy the preceding constraint. Also, the method get_next_state() used to loop through cells
at a frame does indeed iterate through states in increasing order. In particular, it keeps track of
all cells not yet iterated through and always returns the cell corresponding to the lowest-numbered
state. In case you're interested, the data structure we use for doing this is a heap. (This is tricky,
because we have to be able to handle new cells being inserted into the current frame as we're looping
through the cells in the current frame.)

However, there's still a little work left to be done for skip arcs to work correctly, and that's your
mission in this stage of the lab. That is, you need to edit the code you wrote for the last stage to
handle skip arcs. This should involve only changing a few lines of code. (FYI, an arc is a skip arc
if hasGmm is false.) In particular, here are the issues you need to address:

• The location of the destination cell for a skip arc is di�erent. (Which frame?)

• When computing the log prob of the destination cell of a skip arc, there's no GMM log prob
to add in.

• You need to process skip arcs for when frmIdx == frmCnt (and not process non-skip arcs).
One thing to worry about is that the backtrace function expects cells for the �nal frame to
be located in curFrame, not nextFrame. If you do this part in the way that we expect, this
should happen naturally. If you don't, you may need to call

curFrame.swap(nextFrame);

right before the backtrace function is called (and before that last call to copy_frame_to_chart()).

For testing, we'll use the same decoding graph and GMM's as in the last stage, except we've inserted
some skip arcs into the decoding graph. To run lab4_vit on a single isolated digit utterance using
this graph, run the script

lab4_p3c.sh

You can examine this script to see what arguments are being provided to lab4_vit. In addition to
outputting the decoded word sequence (which will still be empty) to standard output, it also outputs
the contents of the dynamic programming chart (�rst log probs, then node ID's, then the number
of active states at each frame) to p3c.chart. The target output can be found in p3c.chart.ref.
You should try to match the target log probs more or less exactly, modulo arithmetic error; don't
worry about matching the other parts of the �le. (After completing this stage, you should make
sure your Viterbi still works without skip arcs by checking the output of lab4_p3a.sh again.)

4.3 Token Passing

From the previous stages, we (hopefully) now have code that can correctly compute the Viterbi
probability of an utterance, even when there are skip arcs. However, we don't currently have a
way to recover the word sequence labeling the Viterbi path. In this stage, we remedy this problem.
Again, we will be editing your code from the previous stage.

To do this, we will be constructing what we call a word tree (which is an instance of a trie). An
example word tree is depicted in Figure 1. It can be viewed as a way of compactly storing a list of

10

http://www.dogma.net/markn/articles/pq_stl/priority.htm

Figure 1: A Backtrace Word Tree

0

1THE

8THIS

10

THUD

2DIG

3DOG

9DOG

4ATE

5
EIGHT

6MAY

7
MY

related word sequences. The word sequence associated with a node is the sequence of words labeling
the path from the root node to that node. For example, in Figure 1, the index 4 corresponds to
the word sequence THE DOG ATE. We represent a word tree using the class WordTree (click for
documentation).

During decoding, we will be constructing a single word tree, stored in the variable wordTree that
we declare for you. Initially, this tree consists of a single node, the root node. In each FrameCell,
we store the index of a node in this tree, and our goal is to do this such that the node index at a cell
corresponds to the word sequence that labels the best path to that cell. If we do this correctly, we
can recover the best overall word sequence by �nding the word sequence associated with the best
�nal state at the �nal frame.

So, how do we do this? Here are some hints.

• All you have to do for this part is to correctly set the word tree node index for each cell
(in addition to its Viterbi log probability, which already should be set correctly). Then, the
traceback function we provide can recover the �nal word sequence.

• Word labels occur on arcs. To �nd the index of the word label associated with an arc arc, do
arc.get_word(). If this value is 0, then the arc has no word label. Note: most arcs do not
have word labels on them.

• The best word sequence for the cell associated with the start state at frame 0 is the empty word
sequence. This corresponds to the root node of the word tree, or wordTree.get_root_node().

• If processing an arc with no word label at a particular frame, how does the best word sequence
to its destination state along that arc compare with the best word sequence to its source state?

• If processing an arc with a word label at a particular frame, how does the best word sequence
to its destination state along that arc compare with the best word sequence to its source state?

11

http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classWordTree.html

• To �nd the index of the node reached by extending the node srcWordTreeIdx with the word
wordIdx, do something like:

int dstWordTreeIdx = wordTree.insert_node(srcWordTreeIdx, wordIdx);

If the node doesn't exist, it will be created. For example, wordTree.insert_node(4, nextWord)

would return the value 7 in Figure 1 if nextWord corresponds to the word MY. By doing calls
like this, nodes of the word tree can be be created as needed during decoding.

Your mission for this stage of the lab is to update the code you wrote for the last stage to do token
passing. You should only need to write a few lines of code for this part. For testing, we'll use the
same decoding graph and GMM's as in the last stage. To run lab4_vit on a single isolated digit
utterance using this graph, run the script

lab4_p3c.sh

(the same script as in the last stage). In addition to outputting the decoded word sequence to
standard output, it also outputs the contents of the dynamic programming chart (�rst log probs,
then node ID's, then the number of active states at each frame) to p3c.chart. The target output
can be found in p3c.chart.ref. Hopefully, your log probs already match, but now the node indices
section should also match. However, it's possible that two di�erent sets of node indices are identical
if they di�er only via renumbering. Ultimately, what matters is that you get the correct decoded
output, which in this case should be ~SIL TWO ~SIL.

The instructions in lab4.txt will ask you to run the script lab4_p3d.sh, which runs the decoder
on a test set of ten single digit utterances.

5 Part 4: Add Support for Beam Pruning and Optionally Rank

Pruning

5.1 Beam Pruning

In the �rst task for this part, you need to implement beam pruning. Here is the general idea: before
you process the outgoing arcs of a state in the main loop in Viterbi, you �rst check whether its
log probability is above a threshold log probability, and if not, you skip that state. The threshold
log probability is computed by taking the highest log probability of any cell at that frame and
subtracting the beam width.

However, it is unacceptable for this lab to add any loops to compute the highest log probability
at a frame, since the whole point of beam pruning is to make things faster. Instead, you must do
this computation within existing loops. To complete this part of the lab, you should only have to
add a few lines of code.

Again, you'll be modifying your code from earlier in this lab to complete this part. For testing,
we'll use the same decoding graph and GMM's as in the last stage. To run lab4_vit on a single
isolated digit utterance using this graph, run the script

lab4_p4a.sh

12

This is identical to lab4_p3c.sh except with pruning turned on. In addition to outputting the
decoded word sequence to standard output, it also outputs the contents of the dynamic programming
chart (�rst log probs, then node ID's, then the number of active states at each frame) to p4a.chart.
The target output can be found in p4a.chart.ref. Hopefully, the log probs and node indices already
match from previous parts of the lab, and now you should also try to match the number of active
states for each frame at the end of the �le. While you needn't match the number of active states
exactly, you should be pretty close. In any case, you should make sure that at least some states are
being pruned. As a contrast, you can look at p3c.chart.ref which corresponds to the same run
without pruning. The number of active cells at each frame in p4a.chart should be signi�cantly less
than in p3c.chart.ref.

The instructions in lab4.txt will ask you to run the script lab4_p4b.sh, which runs the decoder
on a 10-sentence WSJ test set using several di�erent beams.

5.2 Rank Pruning

This part is optional.

In this part, you can implement rank pruning. This is the same as beam pruning except that we
compute the threshold in a di�erent manner. If the rank pruning beam is set to k cells/states, we
set the threshold to be the log prob of the cell in the current frame with the k-th highest log prob.
In this way, we will process at most k cells at each frame (not counting the e�ect of skip arcs). (If
there are fewer than k active cells at a frame, then rank pruning shouldn't prune away anything at
that frame.) To combine rank pruning with beam pruning, just compute thresholds separately for
each and use the threshold that is higher.

Unlike for beam pruning, you will probably need to add a loop. Here is an example of how to
e�ciently loop through all of the active cells at the current frame:

int cellCnt = curFrame.size();

for (int cellIdx = 0; cellIdx < cellCnt; ++cellIdx)

{

const FrameCell& curCell = curFrame.get_cell_by_index(cellIdx);

double curLogProb = curCell.get_log_prob();

...

}

(We don't use get_next_state() since we don't need to loop in sorted state order.) It's OK to
not keep exactly k cells at each frame (i.e., if you do a bucket sort). For this part of the lab, speed
matters.

Again, you'll be modifying your code from earlier in this lab to complete this part. Make sure
not to break the earlier parts when you do this. In particular, if k (i.e., beamStateCnt) is set to 0,
turn o� rank pruning. For testing, we'll be using a 10-sentence WSJ test set. First, get a baseline
timing by running:

lab4_p4c.sh

This decodes with only beam pruning, at about the minimum beam width where no search errors
are being made. Record the real-time factor (xRT) output for this run. (This is how long processing

13

took divided by the length of the speech signal, so lower is better. The program uses CPU time to
compute this rather than elapsed time, so it should be �ne if someone else is concurrently running
a job on the same machine as you.) Then, run

lab4_p4d.sh

This decodes with only rank pruning, at about the minimum beam width where no search errors
are being made. Your goal is for this run to be roughly as fast as the beam pruning run, though it's
OK if it's somewhat slower. You should also check that the decoded output is the same (or almost
the same); the decoded output is written to p4c.dcd and p4d.dcd, respectively. For debugging,
you may want to compute the number of cells that pass the threshold at each frame and print this
out. This value may be signi�cantly higher than k due to skip arcs, but that's �ne.

6 Part 5: Evaluate the Performance of Various Models on WSJ

Test Data

In this section, we will be using the decoder you have written to run various experiments on WSJ
data. We will investigate the e�ects of pruning and vary language model size and vocabulary size.
First, make sure to recompile with optimization, like so:

make clean

OPTFLAGS=-O2 make lab4_vit

Then, all you have to do in this part is run:

lab4_p5.sh | tee p5.out

This does a bunch of di�erent decoding runs, calling p018h1.calc-wer.sh after each run to compute
the WER of the output hypotheses.

For the WSJ runs, we use the acoustic model described in Section 3.1. We consider two vo-
cabulary sizes: the full 21k-word vocabulary, and a smaller 3k-word vocabulary (that still contains
all of the words in the test set). We also consider two language models. Both are entropy-pruned
versions of a modi�ed-Kneser-Ney-smoothed trigram model built on 23M words of WSJ text. The
larger LM was pruned to about 370k n-grams while the smaller LM contains a total of about 60k
n-grams. For the WSJ runs, we will be using a small 10-sentence test set.

In the �rst set of contrast runs, we look at how the width of the pruning beam a�ects speed
and accuracy. For these runs, we use the smaller vocabulary and LM with several di�erent beam
widths. In the next set of runs, we look at the e�ect of increasing vocabulary size and increasing
LM size, by running with both the smaller and larger WSJ vocabularies and LM's. Look at how
both speed and accuracy vary with graph size. The reference transcript for the WSJ test set can be
found in wsj.ref. Check out how similar the decoded output is to the target text, and see whether
you can basically understand what is being said from the decoded output.

In the �nal set of contrast runs, we look at the di�erence in the fraction of decoding time used
for front end signal processing, GMM probability computation, and Viterbi search in small vs. large

14

vocabulary tasks. For the small vocabulary run, we do an isolated digit recognition run, and for
the large vocabulary run, we do WSJ with the full vocabulary and large LM. In fact, this is not a
fair comparison because in the large vocabulary run, we do two things di�erently. Instead of doing
signal processing in lab4_vit, we used Attila to produce the �nal feature vectors ahead of time
and just read in these features directly. Secondly, as mentioned before, we use a di�erent GMM
probability computation implementation, involving hierarchical labeling and using the CBLAS math
library. Despite these di�erences, the relative fraction of time spent on each subcomputation is still
approximately correct.

If you made it this far, congratulations! You have now written most of a real-time (or close to
real-time) large-vocabulary continuous speech recognizer and have shown that it works reasonably
well on a (kind of) real-life task! Yay!

7 What is to be handed in

You should have a copy of the ASCII �le lab4.txt in your current directory. Fill in all of the �elds
in this �le and submit this �le using the provided script.

15

	Overview
	Part 1: Play With FSM's and the IBM FSM Toolkit
	Part 2: Investigate the Static Graph Expansion Process
	The Model
	Graph Expansion Steps

	Part 3: Implement the Viterbi Algorithm, Handling Skip Arcs and Token Passing
	Not Storing the Whole Chart
	Handling Skip Arcs
	Token Passing

	Part 4: Add Support for Beam Pruning and Optionally Rank Pruning
	Beam Pruning
	Rank Pruning

	Part 5: Evaluate the Performance of Various Models on WSJ Test Data
	What is to be handed in

