
Lab 3: Language Modeling Fever

EECS E6870: Speech Recognition

Due: March 11, 2016 at 6:00pm

Contents

1 Overview 1

2 Part 1: Implement n-gram counting 2

2.1 The Big Picture . 2

2.2 This Part . 2

2.3 Compiling and testing . 4

3 Part 2: Implement +δ smoothing 5

4 Part 3: Implement Witten-Bell smoothing 5

5 Part 4: Evaluate various n-gram models on the task of N-best list rescoring 7

6 What is to be handed in 8

1 Overview

The goal of this assignment is for you, the student, to implement basic algorithms for n-gram
language modeling. This lab will involve counting n-grams and doing basic n-gram smoothing.
For this lab, we will be working with Switchboard data. The Switchboard corpus is a collection of
recordings of telephone conversations; participants were told to have a discussion on one of seventy
topics (i.e., pollution, gun control).

The lab consists of the following parts, all of which are required:

• Part 1: Implement n-gram counting � Given some text, collect all counts needed for
building an n-gram language model.

• Part 2: Implement +δ smoothing � Write code to compute LM probabilities for an
n-gram model smoothed with +δ smoothing.

• Part 3: Implement Witten-Bell smoothing � Write code to compute LM probabilities
for an n-gram model smoothed with Witten-Bell smoothing.

1

• Part 4: Evaluate various n-gram models on the task of N-best list rescoring �
See how n-gram order and smoothing a�ects WER when doing N -best list rescoring for
Switchboard.

All of the �les needed for the lab can be found in the directory /user1/faculty/stanchen/e6870/lab3/.
Before starting the lab, please read the �le lab3.txt; this includes all of the questions you will have
to answer while doing the lab. Questions about the lab can be posted on Piazza (accessible through
Courseworks).

2 Part 1: Implement n-gram counting

2.1 The Big Picture

For this lab, we will be compiling the code you write into the program lab3_lm. Here is an outline
of what this program does:

• Training phase.

� Reset all n-gram counts to 0.

� For each sentence in the training data:

∗ Update n-gram counts (A).

• Evaluation phase.

� For each sentence to be evaluated:

∗ For each n-gram in the sentence:

· Call smoothing routine to evaluate probability of n-gram given training counts
(B).

� Compute overall perplexity of evaluation data from n-gram probabilities.

In the �rst part of the lab, you'll be writing the code that does step (A). In the next two parts of
the lab, you'll be writing step (B) for two di�erent smoothing algorithms.

2.2 This Part

In this part, you will be writing code to collect all of the counts needed for building an n-gram
model given some text. For example, consider trying to compute the probability of the word KING

following the words OF THE. The maximum likelihood estimate of this trigram probability is:

PMLE(KING | OF THE) =
count(OF THE KING)∑

w count(OF THE w)
=

count(OF THE KING)
counthist(OF THE)

(1)

Thus, to compute this probability we need to collect the count of the trigram OF THE KING in
the training data as well as the count of the bigram history OF THE. (The history is whatever
words in the past we are conditioning on.) When building smoothed trigram LM's, we also need

2

https://courseworks.columbia.edu/

to compute bigram and unigram probabilities and thus also need to collect the relevant counts for
these lower-order distributions.

Before we continue, let us clarify some terminology. Consider the maximum likelihood estimate
for the bigram probability of the word THE following OF :

PMLE(THE | OF) =
count(OF THE)∑
w count(OF w)

=
count(OF THE)
counthist(OF)

(2)

Notice the term count(OF THE) in this equation and the term counthist(OF THE) in the last
equation. We refer to the former count as a regular bigram count and the latter count as a bigram
history count. While these two counts will be the same for most pairs of words, they won't be the
same for all pairs and so we distinguish between the two. Speci�cally, the history count is used for
normalization, and so is de�ned as

counthist(OF THE) ≡
∑
w

count(OF THE w) (3)

A related point that is worth mentioning is that it is useful to have the concept of a 0-gram history.
Just as we use unigram history counts in computing bigram probabilities, we use 0-gram history
counts in computing unigram probabilities. We use the notation counthist(ε) to denote the 0-gram
history count, and it is de�ned similarly as above, i.e.,

counthist(ε) ≡
∑
w

count(w) (4)

In practice, instead of working directly with strings when collecting counts, all words are �rst
converted to a unique integer index; i.e., the words OF, THE, and KING might be encoded as the
integers 1, 2, and 3, respectively. In this lab, the words in the training data have been converted to
integers for you. To see the mapping from words to integers, check out the �le lab3.syms (once you
have copied over the �les for the lab). In practice, it is much easier to �x the set of words that the
LM assigns (nonzero) probabilities to beforehand (rather than allowing any possible word spelling);
this set of words is called the vocabulary. When encountering a word outside the vocabulary, one
typically maps this word to a distinguished word, the unknown token, which we call <UNK> in
this lab. The unknown token is treated like any other word in the vocabulary, and the probability
assigned to predicting the unknown token (in some context) can be interpreted as the sum of the
probabilities of predicting any word not in the vocabulary (in that context).

To prepare for the exercise, create the relevant subdirectory and copy over the needed �les:

mkdir -p ~/e6870/lab3/

chmod 0700 ~/e6870/

cd ~/e6870/lab3/

cp -d /user1/faculty/stanchen/e6870/lab3/* .

Be sure to use the �-d� �ag with cp (so the symbolic links are copied over correctly).

Your job in this part is to �ll in the sections between the markers BEGIN_LAB and END_LAB in
the method count_sentence_ngrams() in the �le lang_model.C. Read this �le to see what input
and output structures need to be accessed. This routine corresponds to step (A) in the pseudocode
listed in Section 2.1. In this function, you will be passed a sentence (expressed as an array of integer
word indices) and will need to update all relevant regular n-gram counts (i.e., trigram, bigram, and

3

unigram counts for a trigram model) and all relevant history n-gram counts (i.e., bigram, unigram,
and 0-gram). All of these counts will be initialized to zero for you.

In addition, for Witten-Bell smoothing (to be implemented in Part 3), you will also need to
compute how many unique words follow each bigram/unigram/0-gram history. We refer to this as
a �1+� count, since this is the number of words with one or more counts following a history.

It is a little tricky to �gure out exactly which n-grams to count in a sentence, namely at the
sentence begins and ends. For more details, refer to the section on n-gram models in the week 6
language modeling slides; e.g., think about what counts you need to collect to estimate the �rst and
last terms in the sentence probabilities computed in the WSJ example. Hint: If you're building a
trigram model, say, the trigram counts to update correspond one-to-one to the trigram probabilities
used in computing the trigram probability of a sentence. Bigram history counts can be de�ned in
terms of trigram counts using the equation described earlier. How to do counting for lower-order
models is de�ned analogously.

In the lab, you'll need to deal with the class NGramCounter (click for documentation). Also,
n-grams are represented using vector<int>'s; see Lab 1 for some documentation and examples for
vectors.

(Pedantic note: In this lab, n-gram counting is done in the constructor of the LangModel class,
which is unusual in real life. In real life, one normally does counting o�ine, saves the LM to a
�le, and this LM �le would be read in the constructor of the LM class. However, we compress this
stu� into a single program so we don't have to deal with reading and writing LM's, which can be
nontrivial.)

2.3 Compiling and testing

Your code will be compiled into the program lab3_lm which constructs an n-gram language model
from training data and then uses this LM to evaluate the probability and perplexity of some test
data. To compile this program with your code, type make lab3_lm in the directory containing your
source �les.

To run this program (training on 10 Switchboard sentences and evaluating on 10 other sentences),
run

lab3_p1a.sh

This shell script starts the executable lab3_lm located in the current directory with the appropriate
�ags (or Lab3Lm.class if lab3_lm is absent). You can examine this script to see what arguments
are being provided to lab3_lm. The �nal cross-entropy/perplexity output will be bogus, since the
code for computing LM probabilities won't be �lled in until later in the lab. However, this script
also outputs all collected counts to the �le p1a.counts. The �le �rst contains all regular counts,
then history counts, and then 1+ counts; each line contains a single n-gram followed by its count.
The target output can be found in p1a.counts.ref; your output should match the target output
exactly. The training data used by the script can be found in minitrain2.txt.

The instructions in lab3.txt will ask you to run the script lab3_p1b.sh, which does the same
thing as lab3_p1a.sh except training on 100 rather than 10 sentences.

4

http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classNGramCounter.html

3 Part 2: Implement +δ smoothing

In this part, you will write code to compute LM probabilities for an n-gram model smoothed with
+δ smoothing. This is just like add-one smoothing in the readings, except instead of adding one
count to each trigram, say, we will add δ counts to each trigram for some small δ (i.e., δ = 0.0001 in
this lab). This is just about the simplest smoothing algorithm around, and this can actually work
acceptably in some situations (though not in large-vocabulary ASR). To estimate the probability
of a trigram P+δ(wi|wi−2wi−1) with this smoothing, we take

P+δ(wi|wi−2wi−1) =
c(wi−2wi−1wi) + δ

ch(wi−2wi−1) + δ × |V |
(5)

where |V | is the size of the vocabulary. (Note: in the above equation and the rest of the document,
we abbreviate count(·) as c(·) and counthist(·) as ch(·).)

Your job in this part is to �ll in the method get_prob_plus_delta(). This function should
return the value P+δ(wi|wi−2wi−1) given a trigram wi−2wi−1wi (if n=3). You will be provided with
the vocabulary size and all of the counts you computed in Part 1. This routine corresponds to step
(B) in the pseudocode listed in Section 2.1.

Your code will again be compiled into the program lab3_lm. To compile, type make lab3_lm.
To run this program on a 100-sentence Switchboard training set and 10-sentence test set, run

lab3_p2a.sh

This does three runs, corresponding to unigram, bigram, and trigram models. Here is the target
output:

408.6994 PP (66 words)

397.5355 PP (66 words)

1052.6901 PP (66 words)

It also writes the probability of each word to a �le; the corresponding �les for each run are
p2a.1.probs, p2a.2.probs, and p2a.3.probs. The target output can be found in �les of the
same name with the extension ".ref`' appended. Again, you should try to match the target output
just about exactly.

The instructions in lab3.txt will ask you to run the script lab3_p2b.sh, which does the same
thing as lab3_p2a.sh except on a 100-sentence test set and only for trigrams.

4 Part 3: Implement Witten-Bell smoothing

Witten-Bell smoothing is this smoothing algorithm that was invented by some dude named Mo�at,
but dudes named Witten and Bell have generally gotten credit for it. It is signi�cant in the �eld of
text compression and is relatively easy to implement, and that's good enough for us.

Here's a rough motivation for this smoothing algorithm: One of the central problems in smooth-
ing is how to estimate the probability of n-grams with zero count. For example, let's say we're

5

building a bigram model and the bigram wi−1wi has zero count, so PMLE(wi|wi−1) = 0. According
to the Good-Turing estimate, the total mass of counts belonging to things with zero count in a
distribution is the number of things with exactly one count. In other words, the probability mass
assigned to the backo� distribution should be around N1(wi−1)

ch(wi−1) , where N1(wi−1) is the number of

words w′ following wi−1 exactly once in the training data (i.e., the number of bigrams wi−1w
′ with

exactly one count). This suggests the following smoothing algorithm

PWB(wi|wi−1)
?= λPMLE(wi|wi−1) +

N1(wi−1)
ch(wi−1)

Pbacko�(wi) (6)

where λ is set to some value so that this probability distribution sums to 1, and Pbacko�(wi) is
some unigram distribution that we can backo� to.

However, N1(wi−1) is kind of a �nicky value; i.e., it can be zero even for distributions with lots
of counts. Thus, we replace it with N1+(wi−1), the number of words following wi−1 at least once
(rather than exactly once), and we �ddle with some of the other terms. Long story short, we get

PWB(wi|wi−1) =
ch(wi−1)

ch(wi−1) +N1+(wi−1)
PMLE(wi|wi−1) +

N1+(wi−1)
ch(wi−1) +N1+(wi−1)

Pbacko�(wi)

(7)
For the backo� distribution, we can use an analogous equation:

Pbacko�(wi) = PWB(wi) =
ch(ε)

ch(ε) +N1+(ε)
PMLE(wi) +

N1+(ε)
ch(ε) +N1+(ε)

1
|V |

(8)

The term ch(ε) is the 0-gram history count de�ned earlier, and N1+(ε) is the number of di�erent
words with at least one count. For the backo� distribution for the unigram model, we use the
uniform distribution Punif(wi) = 1

|V | . Trigram models are de�ned analogously.

If a particular distribution has no history counts, then just use the backo� distribution directly.
For example, if when computing PWB(wi|wi−1) you �nd that the history count ch(wi−1) is zero,
then just take PWB(wi|wi−1) = PWB(wi). Intuitively, if a history h has no counts, the MLE
distribution PMLE(w|h) is not meaningful and should be ignored.

Your job in this part is to �ll in the method get_prob_witten_bell(). This function should
return the value PWB(wi|wi−2wi−1) given a trigram wi−2wi−1wi (for n=3). You will be provided
with all of the counts that you computed in Part 1. Again, this routine corresponds to step (B) in
the pseudocode listed in Section 2.1.

Your code will again be compiled into the program lab3_lm. To compile, type make lab3_lm.
To run this program on a 100-sentence Switchboard training set and 10-sentence test set, run

lab3_p3a.sh

This does three runs, corresponding to unigram, bigram, and trigram models. Here is the target
output:

242.2294 PP (66 words)

99.3588 PP (66 words)

103.1958 PP (66 words)

6

It also writes the probability of each word to a �le; the corresponding �les for each run are
p3a.1.probs, p3a.2.probs, and p3a.3.probs. The target output can be found in �les of the
same name with the extension ".ref`' appended. Again, you should try to match the target output
just about exactly. Due to the recursive nature of the algorithm, it's best to try to match the
unigram model output �rst, then the bigram model, etc.

The instructions in lab3.txt will ask you to run the script lab3_p3b.sh, which does the same
thing as lab3_p3a.sh except on a 100-sentence test set and only for trigrams.

5 Part 4: Evaluate various n-gram models on the task of N-best

list rescoring

In this section, we use the code you wrote in the earlier parts of this lab to build various language
models on the full original Switchboard training set (about 3 million words). We will investigate
how n-gram order (i.e., the value of n) and smoothing a�ect WER's using the paradigm of N-best
list rescoring. First, it's a good idea to recompile with optimization, like so:

make clean

OPTFLAGS=-O2 make lab3_lm

In ASR, it is sometimes convenient to do recognition in a two-pass process. In the �rst pass,
we may use a relatively small LM (to simplify the decoding process) and for each utterance output
the N best-scoring hypotheses, where N is typically around 100 or larger. Then, we can use a
more complex LM to replace the LM scores for these hypotheses (retaining the acoustic scores) to
compute a new best-scoring hypothesis for each utterance. To see an example N -best list, type

gzip -cd nbest/0001.nbest.gz

The correct transcript for this utterance is DARN ; each line contains a hypothesis word sequence
and an acoustic logprob at the end (i.e., logP (x|ω)).

To give a little more detail, recall the fundamental equation of speech recognition

class(x) ≈ arg max
ω

P (ω)αP (x|ω) = arg max
ω

[α logP (ω) + logP (x|ω)] (9)

where {x} is the acoustic feature vector, ω is a word sequence, and α is the language model weight.
(In the lecture slides, we use an acoustic model weight rather than a language model weight, but
they serve the same purpose.) In N -best list rescoring, for each hypotheses ω in an N -best list,
we compute logP (ω) for our new language model and combine it with the acoustic model score
logP (x|ω) computed earlier. Then, we compute the above argmax over the hypotheses in the
N -best list to produce a new best-scoring hypothesis.

For this part of the lab, we have created 100-best lists for each of 100 utterances of a Switchboard
test set, and we will calculate the WER over these utterances when rescoring using various language
models. Because the LM used in creating the 100-best lists prevents really bad hypotheses (from
an LM perspective) from making it onto the lists, WER di�erences between good and bad LM's
will be muted when doing N -best list rescoring as compared to when using the LM's directly in
one-pass decoding. However, N -best list rescoring is very easy and cheap to do so we use it here.

7

So, all you have to do in this part is run:

lab3_p4.sh | tee p4.out

This does a bunch of di�erent rescoring runs, varying n-gram order, smoothing algorithm, and
training set size. In each rescoring run, the script �rst calls the script p018p1.rescore.py. What
this does is take all of the hypotheses in each N -best list in the directory nbest/ and collects
them into a single big text �le. Then, lab3_lm is run using this �le as the test set and the total
log probability of each hypothesis is output. Then, p018p1.rescore.py combines these LM scores
with the acoustic model scores already in the N -best lists to compute the total score of each
hypothesis, and the highest-scoring hypothesis is output for each utterance. Finally, the program
p018h1.calc-wer.sh is called to compute the WER of the output hypotheses.

Rescoring runs are done using unigram, bigram, and trigram models; with no smoothing, plus-
delta smoothing, and Witten-Bell smoothing; and with training set sizes of 2000, 20000, and 200000
sentences. With no smoothing, we assign a small nonzero �oor probability to trigram probabilities
that have an MLE of zero. (This will make some conditional distributions sum to slightly more than
1, but we don't care in N -best list rescoring.) To create the smaller training sets, we just take the
pre�x of the full Switchboard corpus of that length. In case you were wondering, there are about
13 words per sentence on average in Switchboard data.

Pedantic notes:

• We use a language model weight of 4 for all runs. We have no recollection of how that value
was chosen.

• Before computing word-error rates, we normalize hypotheses to better match the conventions
of the reference transcript. For example, we expand all contractions, i.e., AIN'T is changed
to IS NOT ; and we change hesitation sounds (i.e., UH) to the token (%HESITATION). To
do this, we use a �nite-state transducer (see the �le filter.fsm); these will be covered later
in the class.

• Before sending all the hypotheses in the N -best lists to be scored by lab3_lm, we remove all
silence tokens from the hypotheses. Instead, we assign each silence a probability of 0.1 (which
is the approximate frequency of silence in actual speech) and manually add these probabilities
into the �nal LM scores. This technique is known as treating silence as a transparent word,
because silences can be thought of as being invisible to the n-gram model.

6 What is to be handed in

You should have a copy of the ASCII �le lab3.txt in your current directory. Fill in all of the �elds
in this �le and submit this �le using the provided script.

Incidentally, if you �nd that your forehead is becoming warm as you do this assignment, do not
be alarmed: you probably have language modeling fever. It should recede by itself within a day, but
if it does not, go see a doctor and tell them that you have language modeling fever; they'll know
what to do.

8

	Overview
	Part 1: Implement n-gram counting
	The Big Picture
	This Part
	Compiling and testing

	Part 2: Implement + smoothing
	Part 3: Implement Witten-Bell smoothing
	Part 4: Evaluate various n-gram models on the task of N-best list rescoring
	What is to be handed in

