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Word Error Rate

How do we measure the performance of an ASR 
system?
Define WER = (substitutions + deletions+ insertions) / 
(number of words in reference script)
Example:
ref:   The       dog is here now
hyp:  The uh bog is          now

Compute WER efficiently using dynamic programming 
(DTW)
Can WER be above 100% ?

insertion substitution

deletion

WER = 3/5 = 60%
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Model Order

Should we use big or small models? 
e.g. 3-gram or 5-gram?

With smaller models, less sparse data issues better 
probability estimates?

Empirically, bigger is better
With best smoothing, little or no performance 

degradation if model is too large
With lots of data (100M words +) significant gain 

from 5-gram
Limiting resource:  disk/memory
Count cutoffs can be used to reduce the size of the 
LM
Discard all n-grams with count less than threshold
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Administrivia

Main feedback from last lecture
more class discussion would be good

trellis for held-out estimation unclear

Labs        
mixed feedback on difficulty

want more documentation

Lab 1 handed back today

Lab 2 extension; now due 10/24 at 12:01am
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Evaluating Language Models

Best way: plug into ASR system, see how LM affects 
WER

Expensive to compute
Is there something cheaper that predicts WER well?

“perplexity” (PP) of test data (only needs text)

Doesn’t always predict WER well, but has theoretical 
significance

Predicts best when 2 LM’s being compared are 
trained on same data
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Perplexity

Perplexity is average branching factor, i.e. how many 
alternatives the LM believes there are following each 
word
Another interpretation: log2PP is the average number 
of bits per word needed to encode the test data using 
the model P( )

Ask a speech recognizer to recognize digits: 
0,1,2,3,4,5,6,7,8,9    simple task (?) perplexity = 10
Ask a speech recognizer to recognize alphabet:  
a,b,c,d,e,…z
more complex task … perplexity = 26

alpha, bravo, charlie … yankee, zulu
perplexity = 26

Perplexity measures LM difficulty, not acoustic difficulty
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Computing Perplexity

1. Compute the geometric average probability 
assigned to each word in test data w1..wn by model 
P( )

2. Invert it: PP = 1/pavg
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In the beginning…

…. was the whole word model

For each word in the vocabulary, decide on a topology

Often the number of states in the model is chosen to be proportional 
to the number of phonemes in the word

Train the observation and transition parameters for a given word
using examples of that word in the training data 
(Recall problem 3 associated with Hidden Markov Models)

Good domain for this approach:  digits
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Example topologies: Digits

Vocabulary consists of {“zero”, “oh”, “one”, “two”, “three”, “four”, 
“five”, “six”, “seven”, “eight”, “nine”}

Assume we assign two states per phoneme

Must allow for different durations – use self loops and skip arcs

Models look like:

“zero”

“oh”

1 2 3 4 5 6 7 8

9 10
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11 12 13 14 15 16

“one”

“two”

“three”

“four”

“five”

17 18 19 20

21 22 23 24 25 26

27 28 29 30 31 32

33 34 36 37 3835
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39 40 41 42 43 44 45 46

“six”

“seven”

“eight”

“nine”

47 48 49 50 51 52 53 54 55 56

57 58 59 60

61 62 63 64 65 66
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How to represent any sequence of digits?
1 2 3 4 5 6 7 8

9 10

11 12 13 14 15 16

17 18 19 20

21 22 23 24 25 26

27 28 29 30 31 32

33 34 36 37 3835

39 40 41 42 43 44

47 48 49 50

57 58 59 60

61 62 63 64 65 66

45 46

51 52 53 54 55 56



14

IBM Research

Columbia University    Lecture 7 © 2003 IBM Corporation

1 2 3 4 5 6 7 8

9 10

11 12 13 14 15 16

17 18 19 20

21 22 23 24 25 26

27 28 29 30 31 32

33 34 36 37 3835

39 40 41 42 43 44

47 48 49 50

57 58 59 60

61 62 63 64 65 66

45 46

51 52 53 54 55 56

“911”
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Trellis RepresentationS
tate:  0      1               2             3…

9  …

Time:       0                  1                    2           3                  4 …
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Whole-word model limitations

The whole-word model suffers from two main problems

1. Cannot model unseen words. In fact, we need several 
samples of each word to train the models properly. Cannot 
share data among models – data sparseness problem.

2. The number of parameters in the system is proportional to 
the vocabulary size.

Thus, whole-word models are best on small vocabulary tasks.
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Subword Units
To reduce the number of parameters, we can compose word models 
from sub-word units.

These units can be shared among words. Examples include:

Units Approximate number
Phones 50
Diphones 2000
Triphones 10,000    
Syllables                                           5,000

Each unit is small

The number of parameters is proportional to the number of units (not 
the number of words in the vocabulary as in whole-word models.)
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Phonetic Models

We represent each word as a sequence of phonemes. This 
representation is the “baseform” for the word.

BANDS     B  AE  N  D  Z

Some words need more than one baseform

THE          DH   UH
DH   IY
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Baseform Dictionary
To determine the pronunciation of each word, we look it up in a dictionary 
Each word may have several possible pronunciations
Every word in our training script and test vocabulary must be in the 
dictionary
The dictionary is generally written by hand
Prone to errors and inconsistencies

acapulco | AE K AX P AH L K OW
acapulco | AE K AX P UH K OW
accelerator | AX K S EH L AX R EY DX ER
accelerator |  IX  K S EH L AX R EY DX ER
acceleration         | AX K S EH L AX R EY SH IX N
acceleration          | AE K S EH L AX R EY SH IX N
accent                  | AE K S EH N T
accept                  | AX K S EH P T
acceptable              | AX K S EH P T AX B AX L
access                  | AE K S EH S
accessory               | AX K S EH S AX R IY
accessory               | EH K S EH S AX R IY

2nd looks wrong
AA K .. is missing

Shouldn’t the choices
For the 1st phoneme be the
Same for these 2 words?

Don’t these words
All start the same?
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Phonetic Models, cont’d

We can allow for phonological variation by 
representing baseforms as graphs

acapulco AE K AX P AH L K OW
acapulco AA K AX P UH K OW

AE

AA

K AX P
LAH

OWK

UH
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Phonetic Models, cont’d

Now, construct a Markov model for each phone.

Examples:

p(
le

ng
th

)

length
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Embedding

Replace each phone by its Markov model to get a word model

n.b. The model for each phone will have different parameter values

AE

AA

K AX P
LAH

UH

OWK
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Reducing Parameters by Tying

Consider the three-state model

Note that 
t1 and t2 correspond to the beginning of the phone
t3 and t4 correspond to the middle of the phone
t5 and t6 correspond to the end of the phone

If we force the output distributions for each member of those pairs to 
be the same, then the training data requirements are reduced.

t1 t3 t5
t6t2 t4
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Tying

A set of arcs in a Markov model are tied to one 
another if they are constrained to have identical
output distributions.

Similarly, states are tied if they have identical 
transition probabilities.

Tying can be explicit or implicit.
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Implicit Tying

Occurs when we build up models for larger units from models of 
smaller units

Example:  when word models are made from phone models

First, consider an example without any tying.
Let the vocabulary consist of digits 0,1,2,…9

We can make a separate model for each word.

To estimate parameters for each word model, we need several 
samples for each word.

Samples of “0” affect only parameters for the “0” model.
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Implicit Tying, cont’d

Now consider phone-based models for this vocabulary

0           Z   IY  R  OW
1           W  AA  N
2           T  UW
3            TH  R  IY
4            F  AO  R
5            F   AY  V
6            S   IH  K  S
7            S  EH  V AX  N
8             EY  T
9             N  AY  N

Training samples of “0” will also affect models for “3” and “4”

Useful in large vocabulary systems where the number of words is much 
greater than the number of phones.
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Explicit Tying

Example:

6 non-null arcs, but only 3 different output distributions because of 
tying

Number of model parameters is reduced

Tying saves storage because only one copy of each distribution is 
saved

Fewer parameters mean less training data needed

b m e
eb m
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Variations in realizations of phonemes
The broad units, phonemes, have variants known as allophones

Example: In English  p and ph  (un-aspirated and aspirated p)
Exercise: Put your hand in front of your mouth and pronounce 

“spin” and then “pin.” Note that the p in “pin” has a puff of air, 
while the p in “spin” does not.

Articulators have inertia, thus the pronunciation of a phoneme is influenced by 
surrounding phonemes. This is known as co-articulation

Example:  Consider k and g in different contexts
In “key” and “geese” the whole body of the tongue has to be    
pulled up to make the vowel
Closure of the k moves forward compared to 
“caw” and “gauze”

Phonemes have canonical articulator target positions that may or may not be 
reached in a particular utterance.
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“keep”
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“coop”
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Context-dependent models

We can model phones in context

Two approaches:  “triphones” and  “leaves”

Both methods use clustering. “Triphones” use bottom-up clustering, 
“leaves” use top-down clustering

Typical improvements of speech recognizers when introducing 
context dependence:  30% - 50% fewer errors.
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Tri-phone models

Model each phoneme in the context of its left and right neighbor
e.g.  K-IY+P  is a model for IY when K is its left context phoneme and 

P is its right context phoneme

If we have 50 phonemes in a language, we could have as many as 503

triphones to model

Not all of these occur

Still have data sparsity issues

Try to solve these issues by agglomerative clustering
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Agglomerative / “Bottom-up” Clustering

Start with each item in a cluster by itself

Find “closest” pair of items

Merge them into a single cluster

Iterate

Different results based on distance measure used
Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
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Bottom-up clustering / Single Link

Assume our data points look like:

Single-link clustering into 2 groups proceeds as:

Single-link: clusters are close if any 
of their points are:
dist(A,B) = min dist(a,b) for a∈A, 
b∈B

Single-link clustering tends 
to yield long, stringy, 
meandering clusters



35

IBM Research

Columbia University    Lecture 7 © 2003 IBM Corporation

Bottom-up clustering / Complete Link

Again, assume our data points look like:

Single-link clustering into 2 groups proceeds as:

Complete-link: clusters are close 
only if ALL of their points are:
dist(A,B) = max dist(a,b) for a∈A, 
b∈B

Complete-link clustering 
tends to yield roundish
clusters
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Dendogram

A natural way to display clusters is through a “dendogram”

Shows the clusters on the x-axis, distance between clusters on the 
y-axis

Provides some guidance as to a good choice for the number of 
clusters

x1 x2 x3  x4  x5  x6 x7 x8

distance
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Triphone Clustering

We can use e.g. complete-link clustering to cluster triphones

Helps with data sparsity issue

Still have an issue with unseen data

To model unseen events, we need to “back-off” to lower order 
models such as bi-phones and uni-phones 
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Allophones

Pronunciation variations of phonemes

Less rigidly defined than triphones

In our speech recognition system, we typically have about 50 
allophones per phoneme. 

Older techniques (“tri-phones”) tried to enumerate by hand the set of 
allophones for each phoneme. 

We currently use automatic methods to identify the allophones of a 
phoneme.

Boils down to conditional modeling.
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Conditional Modeling

In speech recognition, we use conditional models and conditional statistics
Acoustic model 

Conditioned on the phone context
Spelling-to-sound rules

Describe the pronunciation of a letter in terms of a probability distribution that  
depends on neighboring letters and their pronunciations.

The distribution is conditioned on the letter context and pronunciation context.
Language model

Probability distribution for the next word  is conditioned on the preceding words

• One way to define the set of conditions is a class of statistical models known as 
decision trees

• Classic text: L. Breiman et al. Classification and Regression Trees. 
Wadsworth & Brooks. Monterey, California. 1984.
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Decision Trees

We would like to find equivalence classes among our 
training samples… DTs categorize data into multiple 
disjoint categories

The purpose of a decision tree is to map conditions (such 
as phonetic contexts) into equivalence classes

The goal in constructing a decision tree is to create good 
equivalence classes

DTs are examples of divisive / “top-down” clustering

Each internal node specifies an attribute that an object 
must be tested on

Each leaf node represents a classification
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What does a decision tree look like?
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Types of Attributes/Features

Numerical: Domain is ordered and can be represented 
on the real line (e.g., age, income)

Nominal or categorical: Domain is a finite set without 
any natural ordering (e.g., occupation, marital status, 
race)

Ordinal: Domain is ordered, but absolute differences 
between values is unknown (e.g., preference scale, 
severity of an injury)
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The Classification Problem

If the dependent variable is categorical, the 
problem is a classification problem
Let C  be the class label of a given data point 
X=X1, …, Xk
Let d( )  be the predicted class label
Define the misclassification rate of d:

Prob (d(X1, …, Xk) != C

Problem definition: Given a dataset, find the 
classifier d such that the misclassification rate is 
minimized.
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The Regression Problem

If the dependent variable is numerical, the problem is a 
regression problem.

The tree d maps observation X to prediction Y’ of Y and is 
called a regression function.

Define mean squared error rate of d as:
E[ (Y - d(X1, …, Xk))2 ]

Problem definition: Given dataset, find regression function d 
such that mean squared error is minimized.
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Goals & Requirements

Goals:
To produce an accurate classifier/regression function

To understand the structure of the problem

Requirements on the model:
High accuracy

Understandable by humans, interpretable

Fast construction for very large training databases
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Decision Trees:   Letter-to-Sound Example
Let’s say we want to build a tree to decide how the letter “p” will sound in various words

Training examples:

“p” loophole  peanuts  pay  apple
“f” physics  telephone  graph  photo
φ  apple psycho pterodactyl  pneumonia

The pronunciation of “p” depends on its context.

Task:  Using the above training data, partition the contexts  into equivalence classes so 
as to minimize the uncertainty of the pronunciation.
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Decision Trees:   Letter-to-Sound Example, cont’d
Denote the context as  … L2 L1 p  R1 R2 …

At this point we have two equivalence classes:  1. R1=“h” and 2. R1g“h”
The pronunciation of class 1 is either “p” or “f”, with “f” much more likely than “p”. 
The pronunciation of class 2 is either “p” or φ. 

R1 = “h”?

Y N

p
loophole

f
physics

telephone
graph
photo

p
peanut

pay
apple

φ
apple

psycho
pterodactyl
pneumonia
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R1 = “h”?

Y N

p
loophole

f
physics

telephone
graph
photo

p
peanut

pay
apple

φ
apple

psycho
pterodactyl
pneumonia

L1 = “o”?

Y N

p
loophole

f
physics

telephone
graph
photo

R1 = consonant?

Y N

p
apple

φ
apple

psycho
pterodactyl
pneumonia

p
peanut

pay1

2 3

4

Four equivalence classes. Uncertainty remains only in class 3.
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R1 = “h”?
Y N

p
loophole

f
physics

telephone
graph
photo

p
peanut

pay
apple

φ
apple

psycho
pterodactyl
pneumonia

L1 = “o”?

p
loophole

f
physics

telephone
graph
photo

R1 = consonant?

p
apple

φ
apple

psycho
pterodactyl
pneumonia

p
peanut

pay

Five equivalence classes, which 
is much less than the number of 
letter contexts. 

No uncertainty left in the classes.

A node without children (an equivalence
class) is called a leaf node. Otherwise it is 
called an internal node.

1

2

3 4

Y N Y N

p
apple

φ
apple

psycho
pterodactyl
pneumonia

Y N
L1 = “a”?

5
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R1 = “h”?
Y N

p
loophole

f
physics

telephone
graph
photo

p
peanut

pay
apple

φ
apple

psycho
pterodactyl
pneumonia

L1 = “o”?

p
loophole

f
physics

telephone
graph
photo

R1 = consonant?

p
apple

φ
apple

psycho
pterodactyl
pneumonia

p
peanut

pay1

2

3 4

Y N Y N

p
apple

φ
apple

psycho
pterodactyl
pneumonia

Y N
L1 = “a”?

5

Consider test case: Paris

Correct
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R1 = “h”?
Y N

p
loophole

f
physics

telephone
graph
photo

p
peanut

pay
apple

φ
apple

psycho
pterodactyl
pneumonia

L1 = “o”?

p
loophole

f
physics

telephone
graph
photo

R1 = consonant?

p
apple

φ
apple

psycho
pterodactyl
pneumonia

p
peanut

pay1

2

3 4

Y N Y N

p
apple

φ
apple

psycho
pterodactyl
pneumonia

Y N
L1 = “a”?

5

Consider test case 2: gopher

Wrong

Although effective on the training 
data, this tree does not generalize 
well.  It was constructed from too 
little data.
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Decision Tree Construction

1. Find the best question for partitioning the data at 
a given node into 2 equivalence classes.

2. Repeat step 1 recursively on each child node.

3. Stop when there is insufficient data to continue 
or when the best question is not sufficiently 
helpful.
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Basic Issues to Solve

The selection of the splits

The decisions when to declare a node terminal or 
to continue splitting

The assignment of each node to a class
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Decision Tree Construction – Fundamental Operation

There is only 1 fundamental operation in tree 
construction:

Find the best question for partitioning a 
subset of the data into two smaller subsets.  

i.e. Take an equivalence class and split it into 
2 more-specific classes.
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Decision Tree Greediness

Tree construction proceeds from the top down –
from root to leaf.

Each split is intended to be locally optimal.

Constructing a tree in this “greedy” fashion usually 
leads to a good tree, but probably not globally 
optimal.

Finding the globally optimal tree is an NP-complete 
problem: it is not practical.
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Splitting

Each internal node has an associated splitting question. 

Example questions:
Age <= 20  (numeric)

Profession in {student, teacher}  (categorical)

5000*Age + 3*Salary – 10000 > 0   (function of raw features)
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Dynamic Questions
The best question to ask about some discrete variable x consists of the best subset 
of the values taken by x.

Search over all subsets of values taken by x at a given node. (This is generating 
questions on the fly during tree construction.)

Use the best question found.  

Potential problems:
1. Requires a lot of CPU. For alphabet size A there are    questions.
2. Allows a lot of freedom, making it easy to overtrain.

xc{A,B,C}
Q1: xc{A}?    Q2: xc{B}?       Q3: xc{C}?
Q4: xc{A,B}?  Q5: xc{A,C}?  Q6: xc{B,C}?
Q7: xc{A,B,C}?

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

j j
A
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Pre-determined Questions

The easiest way to construct a decision tree is to create in advance 
a list of possible questions for each variable.

Finding the best question at any given node consists of subjecting 
all relevant variables to each of the questions, and picking the best 
combination of variable and question.

In acoustic modeling, we typically ask about 10 variables: the 5
phones to the left of the current phone and the 5 phones to the 
right of the current phone.  Since these variables all span the same 
alphabet (phone alphabet) only one list of questions.

Each question on this list consists of a subset of the phonetic 
phone alphabet.
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Sample Questions

Phones                               Letters
{P}                                       {A}
{T}                                       {E}
{K}                                       {I}
{B}                                       {O}
{D}                                       {U}
{G}                                       {Y}

{P,T,K}                              {A,E,I,O,U}
{B,D,G}                            {A,E,I,O,U,Y}

{P,T,K,B,D,G}
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Discrete Questions

A decision tree has a question associated with every non-terminal 
node.

If x is a discrete variable which takes on values in some finite
alphabet Α, then a question about x has the form:  xcS? where S is 
a subset of Α.

Let L denote the preceding letter in building a spelling-to-sound tree. 
Let S={A,E,I,O,U}. Then LcS? denotes the question: Is the 
preceding letter a vowel?

Let R denote the following phone in building an acoustic context
tree. Let S={P,T,K}. Then RcS? denotes the question: Is the 
following phone an unvoiced stop?
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Continuous Questions

If x is a continuous variable which takes on real values, a question 
about x has the form x<θ? where θ is some real value.

In order to find the threshold θ, we must try  values which separate all 
training samples.

We do not currently use continuous questions for speech recognition.

x
θ1 θ2 θ3
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Types of Questions
In principle, a question asked in a decision tree can have any 
number (greater than 1) of possible outcomes.

Examples:
Binary:   Yes No
3 Outcomes:  Yes No  Don’t_Know

26 Outcomes:   A  B  C  … Z

In practice, only binary questions are used to build decision trees.
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Simple Binary Question

A simple binary question consists of a single Boolean condition, and 
no Boolean operators.

X1 c S1?   Is a simple question.

(( X1 c S1) && ( X2 c S2))?   Is not a simple question.

Topologically, a simple question looks like:

xcS?

Y N
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Complex Binary Question
A complex binary question has precisely 2 outcomes (yes, no) but
has more than 1 Boolean condition and at least 1 Boolean operator.

(( X1 c S1) && ( X2 c S2))?   Is a complex question.

Topologically this question can be shown as:

All complex questions can be represented as binary trees with 
terminal nodes tied to produce 2 outcomes.

x1cS1?

Y N
x2cS2?

Y N

1 2

2 Outcomes:
( X1 c S1) 3 ( X2 c S2) 

( X1 c S1) 3 ( X2 c S2)

=( X1 c S1) 4 ( X2 c S2)

1

2
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Configurations Currently Used

All decision trees currently used in speech 
recognition use:

a pre-determined set 
of  simple,
binary questions

on discrete variables.



66

IBM Research

Columbia University    Lecture 7 © 2003 IBM Corporation

Tree Construction Overview
Let x1 … xn denote n discrete variables whose values may be asked about.  
Let Qij denote the jth pre-determined question for xi.

Starting at the root, try splitting each node into 2 sub-nodes:

1. For each variable xi evaluate questions Qi1, Qi2, … and let Q’i
denote the best.

2. Find the best pair xi,Q’i and denote it x’,Q’.

3.  If Q’ is not sufficiently helpful, make the current node a leaf.

4. Otherwise, split the current node into 2 new sub-nodes      
according to the answer of question Q’ on variable x’.

Stop when all nodes are either too small to split further or have been 
marked as leaves.
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Question Evaluation
The best question at a node is the question which maximizes the 
likelihood of the training data at that node after applying the 
question.

Goal:  Find Q such that  L(datal|µl,Σl) x L(datar|µr,Σr) is maximized.

Parent node: Model as a single Gaussian N(µp,Σp)
Compute likelihood L(datap|µp,Σp)

Q?

Y N

Left child node: Model as a 
single Gaussian N(µl,Σl)

Compute likelihood L(datal|µl,Σl)

Right child node: Model as a 
single Gaussian N(µr,Σr)

Compute likelihood L(datar|µr,Σr)
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Question Evaluation, cont’d

Let x1,x2,…xN be a sample of feature x,  in which outcome ai occurs ci
times.

Let Q be a question which partitions this sample into left and right sub-
samples of size nl and nr, respectively.

Let ci
l, ci

r denote the frequency of ai in the left and right sub-samples.

The best question Q for feature x is the one which maximizes the
conditional likelihood of the sample given Q, or, equivalently, maximizes 
the conditional log likelihood of the sample.
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log likelihood computation

The log likelihood of the data, 
given that we ask question Q, is:

Using the maximum likelihood 
estimates of pi

l, pi
r gives:
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The best question is the one which maximizes this simple expression.
ci

l,ci
r,nl,and nr are all non-negative integers. 

The above expression can be computed very efficiently using a pre-computed
table of n log n   for non-negative integers n.



70

IBM Research

Columbia University    Lecture 7 © 2003 IBM Corporation

Entropy

Entropy is a measure of uncertainty, measured in bits.

Let x be a discrete random variable taking values a1..aN in an alphabet A of 
size N with probabilities p1…pN respectively.

The uncertainty about what value x will take can be measured by the entropy 
of the probability distribution p=(p1 p2 … pN).

H>=0.   
Entropy is maximized when pi=1/N for all i.  Then H=log2N.
Thus H tells us something about the sharpness of the distribution p.

H can be interpreted as the theoretical minimum average number of bits that 
are required to encode/transmit the distribution p.

jipjpH

ppH

ij

i

N

i
i

≠==⇔=

−= ∑
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for0 and  somefor10

log2
1
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What does entropy look like for a binary variable?
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Entropy and Likelihood
Let x be a discrete random variable taking values a1..aN in an alphabet A of size N with 

probabilities p1…pN respectively.

Let x1 .. xn be a sample of x in which ai occurs ci times, i=1..N.

The sample likelihood is:  

The maximum likelihood estimate of pi is 

Thus, an estimate of the sample log likelihood is:

and

Since n is a constant, and log is a monotonic function, H is monotonically related to L.

Therefore, maximizing likelihood minimizing entropy.
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“p” tree, revisited

“p”:      peanut, pay, loophole, apple cp = 4
“f”:       physics, photo, graph, telephone cf = 4
φ :       apple, psycho, pterodactyl, pneumonia cφ = 4     n=12

Log likelihood of data at the root node is:

Average entropy at the root node is:
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“p” tree revisited: Question A
R1 = “h”?

Y N

p
loophole

f
physics

telephone
graph
photo

p
peanut

pay
apple

φ
apple

psycho
pterodactyl
pneumonia

nl=5
cp

l=1
cf

l=4
cφ

l=0

nr=7
cp

r=3
cf

r=0
cφ

r=4
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nr=7
cp

r=3
cf

r=0
cφ

r=4

nl=5
cp

l=1
cf

l=4
cφ

l=0

“p” tree revisited: Question A

Log likelihood of data after applying question A is:

Average entropy of data after applying question A is:

Increase in log likelihood due to question A is -10.51+19.02=8.51

Decrease in entropy due to question A is 1.58-0.87=0.71 bits
Knowing the answer to question A provides 0.71 bits of information about 
the pronunciation of p. A further 0.87 bits of information is still required to 
remove all the uncertainty about the pronunciation of p.
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“p” tree revisited: Question B
L1 = φ?

Y N

p
peanut

pay

f
physics
photo

p
loophole

apple

φ
apple

φ
psycho

pterodactyl
pneumonia

f
telephone

graph

nl=7
cp

l=2
cf

l=2
cφ

l=3

nr=5
cp

r=2
cf

r=2
cφ

r=1
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nr=5
cp

r=2
cf

r=2
cφ

r=1

nl =7
cp

l=2
cf

l=2
cφ

l=3

“p” tree revisited: Question B

Log likelihood of data after applying question B is:

Average entropy of data after applying question B is:

Increase in log likelihood due to question B is -18.51+19.02=0.51

Decrease in entropy due to question B is 1.58-1.54=0.04 bits
Knowing the answer to question A provides 0.04 bits of information (very 

little) about the pronunciation of p.
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“p” tree revisited: Question C
L1 = vowel?

Y N

p
loophole

apple

f
telephone

graph

p
peanut

pay

φ
apple

psycho
pterodactyl
pneumonia

f
physics
photo

nl=4
cp

l=2
cf

l=2
cφ

l=0

nr=8
cp

r=2
cf

r=2
cφ

r=4
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nr=8
cp

r=2
cf

r=2
cφ

r=4

nl=4
cp

l=2
cf

l=2
cφ

l=0

“p” tree revisited: Question C

Log likelihood of data after applying question C is:

Average entropy of data after applying question C is:

Increase in log likelihood due to question C is -16+19.02=3.02

Decrease in entropy due to question C is 1.58-1.33=0.25 bits
Knowing the answer to question C provides 0.25 bits of information about 

the pronunciation of p. 

00.168log84log42log22log2
4log42log22log2)|..(log

2222

222
121

2

−=−+++
−+=CQxxL

bits33.112/16)|..(log
12

1)|..( 121
2

121 ==
−

= CC QxxLQxxH



80

IBM Research

Columbia University    Lecture 7 © 2003 IBM Corporation

Comparison of Questions A, B, C
Log likelihood of data given question:

A   -10.51
B -18.51
C -16.00

Average entropy (bits) of data given question:
A 0.87
B 1.54
C 1.33

Gain in information (in bits) due to question:
A 0.71
B 0.04
C 0.25

These measures all say the same thing:
Question A is best. Question C is 2nd best. Question B is worst.
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Best Question

In general, we seek questions which maximize the likelihood of the 
training data given some model.

The expression to be maximized depends on the model.

In the previous example the model is a multinomial distribution.

Another example: context-dependent prototypes use a continuous 
distribution.
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Best Question: Context-Dependent Prototypes
For context-dependent prototypes, we use a decision tree for each arc in 
the Markov model.  

At each leaf of the tree is a continuous distribution which serves as a 
context-dependent model of the acoustic vectors associated with the arc.

The distributions and the tree are created from acoustic feature vectors 
aligned with the arc.

We grow the tree so as to maximize the likelihood of the training data (as 
always), but now the training data are real-valued vectors.

We estimate the likelihood of the acoustic vectors during tree construction 
using a diagonal Gaussian model. 

When tree construction is complete, we replace the diagonal Gaussian 
models at the leaves by more accurate models to serve as the final 
prototypes. Typically we use mixtures of diagonal Gaussians.
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Diagonal Gaussian Likelihood

Let Y=y1 y2 yn be a sample of independent p-dimensional acoustic vectors 
arising from a diagonal Gaussian distribution with mean µ and variances σ2.  
Then

The maximum likelihood estimates of µ and σ2 are:

Hence, an estimate of log L(Y) is

}
)(

log)2log({
2
1)),(|(log

1
2

2

1 1

22 ∑∑ ∑
== =

−
++−=

p

j j

jij
n

i

p

j
j

y
pDGYL

σ
µ

σπσµ

pjy
n

pjy
n

u

j

n

i
ijj

n

i
ijj

,...2,1ˆ1ˆ

,...2,11ˆ

2

1

22

1

=−=

==

∑

∑

=

=

µσ

}
ˆ

)ˆ(
ˆlog)2log({

2
1))ˆ,ˆ(|(log

1
2

2

1 1

22 ∑∑ ∑
== =

−
++−=

p

j j

jij
n

i

p

j
j

y
pDGYL

σ
µ

σπσµ



84

IBM Research

Columbia University    Lecture 7 © 2003 IBM Corporation

Diagonal Gaussian Likelihood

Now,

Hence
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Diagonal Gaussian Splits

Let Q be a question which partitions Y into left and right sub-samples Yl
and Yr, of size nl and nr.

The best question is the one which maximizes logL(Yl)+logL(Yr)

Using a diagonal Gaussian model
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Diagonal Gaussian Splits, cont’d
Thus, the best question Q minimizes:

Where

DQ involves little more than summing vector elements and their squares.
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How Big a Tree?

CART suggests cross-validation
Measure performance on a held-out data set
Choose the tree size that maximizes the likelihood of the held-out data

In practice, simple heuristics seem to work well

A decision tree is fully grown when no terminal node can be split

Reasons for not splitting a node include:

1. Insufficient data for accurate question evaluation
2. Best question was not very helpful / did not improve the likelihood 

significantly
3. Cannot cope with any more nodes due to CPU/memory limitations
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Instability

Decision trees have the undesirable property that a small change in the data 
can result in a large difference in the final tree

Consider a 2-class problem, w1 and w2 

Observations for each class are  2-dimensional

w1 “x” w2  “o”
---------- -----------
x1 x2 x1 x2

----------------- ----------------

.15   .83                        .10   .29 
.09   .55                        .08   .15
.29   .35                        .23   .16
.38   .70                        .70 .19
.52   .48                        .62   .47
.57   .73                        .91   .27
.73   .75                        .65   .90
.47   .06                        .75   .36* (.32^) 
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Bagging

Create multiple models by training the same learner on 
different samples of the training data

Given a training set of size n, create m different training sets of 
size n by sampling with replacement

Combine the m models using a simple majority vote.

Can be applied to any learning method, including decision 
trees.

Decreases the generalization error by reducing variance in the 
results for unstable learners (i.e. when the hypothesis can 
change dramatically if training data is slightly altered.)
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Boosting

Another method for producing multiple models by 
repeatedly altering the data given to a learner.

Examples are given weights, and at each iteration
– a new hypothesis is learned and
– the examples are reweighted to focus on those 
that the latest hypothesis got wrong

During testing, each of the hypotheses gets a 
weighted voted proportional to its training set 
accuracy.
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Strengths & Weaknesses of Decision Trees
Strengths

Easy to generate; simple algorithm

Relatively fast to construct

Classification is very fast

Can achieve good performance on many tasks

Weaknesses

Not always sufficient to learn complex concepts

Can be hard to interpret. Real problems can produce large trees…

Some problems with continuously valued attributes may not be easily discretized

Data fragmentation
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Putting it all together

Given a word sequence, we can construct the 
corresponding Markov model by:

1. Re-writing word string as a sequence of 
phonemes

2. Concatenating phonetic models
3. Using the appropriate tree for each arc to 

determine which alloarc (leaf) is to be 
used in that context
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Example
The rain in Spain falls ….

Look these words up in the dictionary to get:

DH AX | R EY N | IX N | S P EY N | F AA L Z | …

Rewrite phones as states according to phonetic model

DH1 DH2 DH3 AX1 AX2 AX3 R1 R2 R3 EY1 EY2 EY3 …

Using phonetic context, descend decision tree to find leaf 
sequences

DH1_5 DH2_27 DH3_14 AX1_53 AX2_37 AX3_11 R1_42 R2_46 ….

Use the Gaussian mixture model for the appropriate leaf 
as the observation probabilities for each state in the  
Hidden Markov Model.
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Course Feedback

Was this lecture mostly clear or unclear?  

What was the muddiest topic?

Other feedback (pace, content, atmosphere, etc.)
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