
• This is our room for a four hour period .

• This is hour room four a for our . period

A Bad Language Model… From “Herman” by Jim Unger

I swerve to
smell de soup…
I swerve to
smell de soup…

Repeat after
me… I swear to
tell the truth …

Repeat after
me… I swear to
tell the truth …

A Bad Language Model… From “Herman” by Jim Unger

de toll-booth …de toll-booth …

… the whole
truth …

… the whole
truth …

A Bad Language Model… From “Herman” by Jim Unger

An nuts sing on
de roof.
An nuts sing on
de roof.

… and nothing
but the truth.

… and nothing
but the truth.

A Bad Language Model… From “Herman” by Jim Unger

Now tell us in your
own words exactly
what happened.

Now tell us in your
own words exactly
what happened.

What’s a Language Model?

• A language model is a probability distribution
over word sequences

• p(“and nothing but the truth”) 0.001

• p(“an nuts sing on de roof”) 0

≈

≈

Where Are Language Models Used?

• Speech recognition
• Handwriting recognition
• Spelling correction
• Optical character recognition
• Machine translation
• Natural language generation
• Information retrieval
• Any problem that involves sequences ?

The statistical approach to speech recognition

on W dependt doesn' P(X))|(),|(

rule Bayes'
)(

)|(),|(

),|(

maxarg

maxarg

maxarg*

ΘΘ=

ΘΘ
=

Θ=

WPWXP

XP
WPWXP

XWPW

W

W

W

• W is a sequence of words, W* is the best sequence.

• X is a sequence of acoustic features.

� Θ is a set of model parameters.

Automatic speech recognition – Architecture

feature extraction

acoustic model language model

search
audio words

acoustic model language model

)|(),|(maxarg* ΘΘ= WPWXP
W

W

Aside: LM Weight

• class(x) = argmaxw p(w)α p(x|w)
• … or is it the acoustic model weight? ☺
• α is often between 10 & 20
• one theory: modeling error

– if we could estimate p(w) and p(x|w) perfectly…
– e.g. at a given arc at, acoustic model assumes frames are

independent

p(xt,xt+1|at=at+1)=p(xt|at)p(xt+1|at)

LM Weight, cont’d
• another theory:

– higher variance in estimates of acoustic model probs
– generally |log p(x|w)| >> |log p(w)|
– log p(x|w) is computed by summing many more terms
– e.g. continuous digits, |log p(x|w)| { 1000,

|log p(w)| { 20

• Scale LM log probs in order for them not to be
swamped by the AM probs

• In practice, it just works well…

Language Modeling and Domain

• Isolated digits: implicit language model

• All other word sequences have probability zero
• Language models describe what word sequences the domain

allows
• The better you can model acceptable/likely word sequences,

or the fewer acceptable/likely word sequences in a domain,
the better a bad acoustic model will look

• e.g. isolated digit recognition, yes/no recognition

11
1)"(",

11
1)"(",...,

11
1)"(",

11
1)"(" ==== ohpzeroptwoponep

Real-World Examples

• Isolated digits test set (i.e. single digits)
• Language model 1:

– each digit sequence of length 1 equiprobable
– probability zero for all other digit sequences

• Language model 2:
– each digit sequence (of any length) equiprobable
– LM 1: 1.8% error rate, LM 2: 11.5% error rate

• Point: use all of the available domain knowledge
e.g. name dialer, phone numbers, UPS tracking numbers

How to Construct an LM

• For really simple domains:
• Enumerate all allowable word sequences

i.e. all word sequences w with p(w)>0
e.g. yes/no, isolated digits

• Use common sense to set p(w)
e.g. uniform distribution: p(w) = 1/vocabulary size
in the uniform case, ASR reduces to ML classification

)|(maxarg)|()(maxarg wxpwxpwp
ww

=

Example

• 7-digit phone numbers
enumerate all possible sequences:
OH OH OH OH OH OH OH
OH OH OH OH OH OH ONE
OH OH OH OH OH OH TWO

etc.
• Is there a way we can compactly represent

this list of strings?

Finite-State Automata
• Also called a grammar or finite-state machine
• Like a regular expression, a finite-state automaton matches or

“recognizes” strings
• Any regular expression can be implemented as an FSA
• Any FSA can be described with a regular expression
• For example, the Sheep language /baa+!/ can be represented as

the following FSA:

a

q0 q1 q2 q3 q4

ab a !

States and Transitions
A finite-state automaton consists of:

– A finite set of states which are represented by vertices
(circular nodes) on a graph

– A finite set of transitions, which are represented by arcs
(arrows) on a graph

– Special states:
• The start state, which is outlined in bold
• One or more final (accepting) states represented with a double

circle

q0 q1 q2 q3 q4

b a a
a

!

How the automaton recognizes strings

• Start in the start state q0

• Iterate the following process:
1. Check the next letter of the input
2. If it matches the symbol on an arc leaving the

current state, then cross that arc into the state it
points to

3. If we’re in an accepting state and we’ve run
out of input, report success

Example: accepting the string baaa!

q0 q1 q2 q3 q4

b a a
a

!

• Starting in state q0, we read each input
symbol and transition into the specified
state

• The machine accepts the string because we
run out of input in the accepting state

Example: rejecting the string baba!

q0 q1 q2 q3 q4

b a a
a

!

• Start in state q0 and read the first input symbol “b”
• Transition to state q1, read the 2nd symbol “a”
• Transition to state q2, read the 3rd symbol “b”
• Since there is no “b” transition out of q2, we reject the

input string

Sample Problem

• Man with a wolf, a goat, and a cabbage is on the
left side of a river

• He has a small rowboat, just big enough for
himself plus one other thing

• Cannot leave the goat and wolf together (wolf will
eat goat)

• Cannot leave goat and cabbage together (goat will
eat the cabbage)

• Can he get everything to the other side of the
river?

Model

• Current state is a list of what things are on which
side of the river:

• All on left MWGC-

• Man and goat on right WC-MG

• All on right (desired) -MWGC

State Transitions

• Indicate with arrows changes between states

MWGC- WC-MG

Letter indicates what happened:
g: man took goat c: man took cabbage
w: man took wolf m: man went alone

g

g

Some States are Bad!

MWGC- WG-MC

• Don’t draw those…

c

MWGC- WC-MG MWC-G

C-MWG W-MGC

MGC-W WGM-C

-MWGC MG-WC G-MWC

g m

g

m

w
w

c
c

g g g g

c
c w

w

m

m

g

g

Finite-State Automata

• Can introduce probabilities on each path
• Probability of a path = product of

probabilities on each arc along the path
times the final probability of the state at the
end of the path

• Probability of a word sequence is the sum
of the probabilities of all paths labeled with
that word sequence

Setting Transition Probabilities in an FSA

Could use:
• common sense and intuition e.g. phone number

grammar
• collect training data: in-domain word sequences

– forward-backward algorithm

• LM training: just need text, not acoustics
– on-line text is abundant
– in-domain text may not be

Using a Grammar LM in ASR
• In decoding, take word FSA representing LM
• Replace each word with its HMM
• Keep LM transition probabilities
• voila!

yes/0.5

no/0.5

y1 y2 y3 eh1 s3

n1 ow3

q0 q1

yes/0.5

no/0.5

Grammars…
• Awkward to type in FSM’s
• e.g. “arc from state 3 to state 6 with label SEVEN”
• Backus-Naur Form (BNF)

[noun phrase] Æ [determiner] [noun]
[determiner] Æ A | THE
[noun] Æ CAT | DOG

• Exercise: How to express 7-digit phone numbers in
BNF?

Compiling a BNF Grammar into an
FSM

1. Express each individual rule as an FSM
2. Replace each symbol with its FSM

Can we handle recursion/self-reference?
Not always possible unless we restrict the

form of the rules

Compiling a BNF Grammar into an
FSM, cont’d

7-digit phone number
sdigit digit digit dash digit

digitdigitdigit

0

1

9

…

digit2

3

9

…

sdigit dash
-

Aside: The Chomsky Hierarchy

• An FSA encodes a set of word sequences
• A set of word sequences is called a language
• Chomsky hierarchy:
• Regular language: a language expressible by

(finite) FSA
• Context-free languages: a language expressible in

BNF
• {Regular languages} _ {Context-free languages}
• e.g. the language anbn

i.e.{ab, aabb, aaabbb,aaaabbbb, …} is context free
but not regular

Aside: The Chomsky Hierarchy

• Is English regular? i.e. can it be expressed with an
FSA?
– probably not

• Is English context-free?
• Well, why don’t we just write down a grammar for

English?
– too many rules (i.e. we’re too stupid)
– people don’t follow the rules
– machines cannot do it either

When Grammars Just Won’t Do…

• Can’t write grammars for complex domains
• what to do?
• goal: estimate p(w) over all word sequences w
• simple maximum likelihood?

• can’t get training data that covers a reasonable fraction of w

∑
=

w
wcount

wcountwp
)(

)()(ρ
ρ

ρ

Vocabulary Selection

• Trade-off:
– The more words, the more things you can confuse each

word with
– The fewer words, the more out-of-vocabulary (OOV)

words you will likely encounter
– You cannot get a word correct if it’s OOV

• In practice…
– Just choose the k most frequent words in training data
– k is around 50,000 for unconstrained speech
– k< 10,000 for constrained tasks

N-gram Models

• It’s hard to compute
p(“and nothing but the truth”)

• Decomposition using conditional probabilities can help

p(“and nothing but the truth”) = p(“and”) x
p(“nothing”|“and”) x p(“but”|“and nothing”) x
p(“the”|“and nothing but”) x
p(“truth”|“and nothing but the”)

The N-gram Approximation

• Q: What’s a trigram? What’s an n-gram?
A: Sequence of 3 words. Sequence of n words.

• Assume that each word depends only on the
previous two words (or n-1 words for n-grams)

p(“and nothing but the truth”) = p(“and”) x
p(“nothing”|“and”) x p(“but”|“and nothing”) x
p(“the”|“nothing but”) x p(“truth”|“but the”)

• Trigram assumption is clearly false
p(w | of the) vs. p(w | lord of the)

• Should we just make n larger?
can run into data sparseness problem

• N-grams have been the workhorse of language
modeling for ASR over the last 30 years

• Still the primary technology for LVCSR
• Uses almost no linguistic knowledge
• Every time I fire a linguist the performance of the

recognizer improves. Fred Jelinek (IBM, 1988)

Technical Details: Sentence Begins &
Ends

)|()...(12
1

1 −−
=

∏== ii

n

i
in wwwpwwwp

Pad beginning with special beginning-of-sentence token:
w-1 = w0 = >

Want to model the fact that the sentence is ending, so pad
end with special end-of-sentence token:
wn+1 = ,

)|()...(12

1

1
1 −−

+

=
∏== ii

n

i
in wwwpwwwp

Bigram Model Example
JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

JOHN READ A BOOK

2
1)|(

2
1

)(
)()|(

3
2

)(
)()|(

1
)(

)()|(

3
1

)(
)()|(

=

=
⋅

=

=
⋅

=

=
⋅

=

==

BOOKp

Acount
BOOKAcountABOOKp

READcount
AREADcountREADAp

JOHNcount
READJOHNcountJOHNREADp

count
JOHNcountJOHNp

<

>
>

>

training data:

testing data / what’s the probability of:

36
2

2
1

2
1

3
21

3
1)(=⋅⋅⋅⋅=wp

Trigrams, cont’d
Q: How do we estimate the probabilities?
A: Get real text, and start counting…

Maximum likelihood estimate would say:
p(“the”|“nothing but”) =

C(“nothing but the”) / C(“nothing but”)
where C is the count of that sequence in the data

Q: Why might we want to not use the ML estimate
exactly?

Data Sparseness
• Let’s say we estimate our language model from

yesterday’s court proceedings
• Then, to estimate

p(“to”|“I swear”) we use
count (“I swear to”) / count (“I swear”)

• What about p(“to”|“I swerve”) ?
If no traffic incidents in yesterday’s hearing,

count(“I swerve to”) / count(“I swerve”)
= 0 if the denominator > 0, or else is undefined

Very bad if today’s case deals with a traffic incident!

Sparseness, cont’d

• Will we see all the trigrams we need to see?
• (Brown et al,1992) 350M word training set

– in test set, what percentage of trigrams unseen? > 15%
– i.e. in 8-word sentence, about 1 unseen trigram

• decoder will never choose word sequence with zero
probability!

• guaranteed errors.

0)()|(1212 =∝ −−−− iiiiii wwwcountwwwp

Life after Maximum Likelihood

• Maybe MLE isn’t such a great idea?
• (Church & Gale, 1992) Split 44M word data set

into two halves
• For a bigram that occurs, say, 5 times in the first

half, how many times does it occur in the 2nd half,
on average?

• MLE predicts 5
• in reality, it was about 4.2
• huh?

Explanation

• Some bigrams with zero count in the first
half occurred in the 2nd half

• The bigrams that did occur in the 1st half
must occur slightly less frequently in the 2nd

half, on average, since the total number of
bigrams in each half is the same

• how can we model this phenomenon?

Maximum a Posteriori Estimation

• Let’s say I take a coin out of my pocket, flip it, and
observe “heads”

• Let p(heads) = θ, p(tails) = 1-θ
• MLE:
• In reality, we believe p(heads) is around 0.5
• Instead of finding θ to maximize p(x|θ), find θ to

maximize p(x|θ)p(θ)
• p(θ) is the prior probability of the parameter θ

1)|(maxarg == θθ
θ

xpmle

MAP Estimation
Prior distribution: p(θ=0.5) = 0.99
p(θ=0.000) = p(θ=0.001) = …= p(θ=0.999)= p(θ=1.000) = 0.00001

Data: 1 Flip, 1 Head
p(θ=0.5|D)} p(D|θ=0.5)p(θ=0.5) = 0.5x.99 = 0.495
p(θ=1.0|D)} p(D|θ=1.0)p(θ=1.0) = 1.0x0.00001 = 0.00001
All other values of θ yield even smaller probabilities…
θMAP = 0.5

Data: 17 Flips, 17 Heads
p(θ=0.5|D)} p(D|θ=0.5)p(θ=0.5) = 0.5 17 x 0.99 = 0.000008
p(θ=1.0|D)} p(D|θ=1.0)p(θ=1.0) = 1.0x 0.00001 = 0.000010
All other values of θ yield smaller probabilities…
θMAP = 1.0

So, little data, prior has a big effect
Lots of data, prior has little effect, MAP estimate converges to ML estimate

Language Model Smoothing

• How can we adjust the ML estimates
to account to account for the effects of
the prior distribution when data is
sparse?

• Generally, we don’t actually come up
with explicit priors, but we use it as
justification for ad hoc methods

Smoothing: Simple Attempts

• Add one: (V is vocabulary size)

Advantage: Simple
Disadvantage: Works very badly

• What about delta smoothing:

A: Still bad…..

VxyC
xyzCxyzp

+
+

≈
)(

1)()|(

δ
δ

VxyC
xyzCxyzp

+
+

≈
)(
)()|(

Smoothing: Good-Turing

• Basic idea: seeing something once is roughly the
same as not seeing it at all

• Count the number of times you observe an event
once; use this as an estimate for unseen events

• Distribute unseen events’ probability equally over
all unseen events

• Adjust all other estimates downward, so that the
set of probabilities sums to 1

• Several versions; simplest is to scale ML estimate
by (1-prob(unseen))

Good-Turing Example
• Imagine you are fishing in a pond containing {carp, cod,

tuna, trout, salmon, eel, flounder, and bass}
• Imagine you’ve caught: 10 carp, 3 cod, 2 tuna, 1 trout, 1

salmon, and 1 eel so far.
• Q: How likely is it that the next catch is a new species

(flounder or bass)?
• A: prob(new) = prob(1’s) = 3/18
• Q: How likely is it that the next catch is a bass?
• A: prob(new)x0.5 = 3/36
• Q: What’s the probability the next catch is an eel?
• A: 1/18 * 15/18 = 0.046 (compared to 0.055 for MLE)

Back Off

• (Katz, 1987) Use MLE if we have enough counts,
otherwise back off to a lower-order model

• choose so that

)|()|(11 −− = iiMLEiiKatz wwpwwp

if 1 [count(wi-1wi) [4)|(1−= iiGT wwp
if count(wi-1wi) m 5

)(
1 iKatzw wp

i−
= α if count(wi-1wi) = 0

1−iwα 1)|(1 =−∑ iiKatz
w

wwp
i

Smoothing: Interpolation

)(
)()1(

)(
)(

)(
)()|(

•
−−++=

C
zC

yC
yzC

xyC
xyzCxyzp µλµλ

Idea: Trigram data is very sparse, noisy,
Bigram is less so,
Unigram is very well estimated from a large corpus

Interpolate among these to get the best combination

Find 0< λ , µ <1 by optimizing on “held-out” data
Can use deleted interpolation in an HMM framework

Example

• Die Possible outputs: 1,2,3,4,5,6

• Assume our training sequence is: x = 1,3,1,6,3,1,3,5
• Test sequence is: y = 5,1,3,4
• ML estimate from training:

θm = (3/8, 0, 3/8, 0, 1/8, 1/8)

pθm (y) = 0

• Need to smooth θm

Example, cont’d
• Let θu = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)

• We can construct a linear combination from θm
and θu

θs = λ θm + (1- λ) θu 0 <= λ <= 1

• What should the value of 1- λ be?

• A reasonable choice is a/N, where a is a small
number, and N is the training sample size

Example, cont’d

• e.g. if a=2, then 1-λ = 2/8 = 0.25

θs = 0.75 (.375, 0, .375, 0, .125, .125)
+ 0.25 (.167, .167, .167, .167, .167, .167)

= (.323, .042, .323, .042, .135, .135)

Held-out Estimation
• Split training data into two parts:

Part 1: x1
n = x1 x2 … xn

Part 2: xn+1
N = xn+1 xn+2 … xN

• Estimate θm from part 1, combine with θu
θs = λ θm + (1- λ) θu 0 <= λ <= 1

• Pick λ so as to maximize the probability of Part 2 of the
training data

• Q: What if we use the same dataset to estimate the MLE
estimate θm and λ?
Hint: what does MLE stand for?

• We can use the forward-backward
algorithm to find the optimal λ.

• Smoothed model is equivalent to:

θm
1 2 3

1.0

λ

1-λ

θu1.0

Example, cont’d

• Split training data into:
Part 1: 1,3,1,6
Part 2: 3,1,3,5

In this case the ML estimate from part 1 is:
θm = (2/4, 0, 1/4, 0, 0, 1/4)

S
tate: 1 2 3

Time: 0 1 2 3 4
Obs: φ 3 1 3 5

λ

1-λ

1x.2
5

1x
.1

67
λ

1-λ

λ

1-λ

λ

1-λ

1x.5

1x
. 1

67

1x.2
5

1x
.1

67

1x0

1x
.1

67

pθs (3,1,3,5) = (.25λ + 0.167 (1- λ))
x (.5 λ + 0.167 (1- λ))
x (.25λ + 0.167 (1- λ))
x (0 λ + 0.167 (1- λ))

pθs(3,1,3,5)

0.00121

0.00077

0.46 1.0 λ

• We can compute the a posteriori counts for each piece of the
trellis separately

• This is a simple form of the forward-backward algorithm

λ

1-λ

p 1

p 2
t1

21

1
1)1(

)|(
pp

pxtc
λλ

λ
−+

=

Returning to our example…

• Let’s start with an initial guess λ = 0.7
3 1 3 5 sum

c(t1|x): .778 .875 .778 0 2.431
c(t2|x): .222 .125 .222 1 1.569

New λ = 2.431 / (2.431 + 1.569) = .608

Iteration λ p(x)
1 .7 .00101
2 .608 .00114
3 .555 .00118
4 .523 .00120
5 .503 .00121

10 .467 .00121
20 .461 .00121
38 .460 .00121 converged

Notes
• It can be shown that log pθs(xn+1

N) is a convex
function of λ. Thus it has 1 global maximum and
no other local maxima.

• Convexity result generalizes to linear
combinations of more than two distributions.

• In held-out smoothing we use some of the data for
estimating θm and some for estimating λ

• Can we use all of the data for each of the 2
purposes? Yes, if we use deleted estimation

Ι

Deleted Estimation

• Divide the data into L parts

x1…xk1| xk1+1…xk2| … | xkL-1+1 .. xN

part 1 | part 2 | … | part L

• Let θmL = maximum likelihood values for
the data with part L removed

• Smooth as before, using all the data for
computing pλ(x) but:
for part 1, use λθm1 + (1-λ) θu

for part 2, use λθm2 + (1-λ) θu. etc.

• Once the optimal λ is found, we can compute
θm from all of the data and use:

θs = λ θm + (1-λ) θu

λ

1-λ

p 1

p 2

t1

21

1
1)1(

)|(
pp

pxtc
λλ

λ
−+

=

What about more estimators?
• e.g. we are interested in interpolating

among 3-gram, bigram, and unigram
models

• We can construct
θs = λ1θ1+ λ2θ2+ λ3θ3+….
where the λ’s sum to 1

λ1

λ2

p 1

p 2

t1

λ3

p 3

Smoothing: Kneser-Ney
• Combines back off and interpolation
• Motivation: consider bigram model
• Consider p(Francisco|eggplant)
• Assume that the bigram “eggplant Francisco” never

occurred in our training data ... therefore we back off
or interpolate with lower order (unigram) model

• Francisco is a common word, so both back off and
interpolation methods will say it is likely

• But it only occurs in the context of “San” (in which
case the bigram models it well)

• Key idea: Take the lower-order model to be the
number of different contexts the word occurs in, rather
than the unigram probability of the word

Smoothing: Kneser-Ney

• Subtract a constant D from all counts
• Interpolate against lower-order model which

measures how many different contexts the word
occurs in

• Modified K-N Smoothing: make D a function of
the number of times the trigram xyz occurs

∑ ⋅
⋅

+
−

=
)(

)(
)(

)()|(
zC

zC
xyC

DxyzCxyzp λ

So, which technique to use?

• Empirically, interpolation is superior to
back off

• State of the art is Modified Kneser-Ney
smoothing (Chen & Goodman, 1999)

Does Smoothing Matter?

• No smoothing (MLE estimate):
– Performance will be very poor
– Zero probabilities will kill you

• Difference between bucketed linear interpolation
(ok) and modified Kneser-Ney (best) is around 1%
absolute in word error rate for a 3-gram model

• No downside to better smoothing (except in effort)
• Differences between best and suboptimal become

larger as model order increases

Word Error Rate
• How do we measure the performance of an ASR

system?
• Define WER = (substitutions + deletions+

insertions) / (number of words in reference script)
• Example:

ref: The dog is here now
hyp: The uh bog is now

• Compute WER efficiently using dynamic
programming (DTW)

• Can WER be above 100% ?

insertion substitution

deletion

WER = 3/5 = 60%

Model Order
• Should we use big or small models?

e.g. 3-gram or 5-gram?
• With smaller models, less sparse data issues Æ

better probability estimates?
– Empirically, bigger is better
– With best smoothing, little or no performance

degradation if model is too large
– With lots of data (100M words +) significant gain from

5-gram
• Limiting resource: disk/memory
• Count cutoffs can be used to reduce the size of the

LM
• Discard all n-grams with count less than threshold

Evaluating Language Models

• Best way: plug into ASR system, see how LM
affects WER
– Expensive to compute

• Is there something cheaper that predicts WER
well?
– “perplexity” (PP) of test data (only needs text)
– Doesn’t always predict WER well, but has theoretical

significance
– Predicts best when 2 LM’s being compared are trained

on same data

Perplexity
• Perplexity is average branching factor, i.e. how many alternatives the

LM believes there are following each word
• Another interpretation: log2PP is the average number of bits per word

needed to encode the test data using the model P()

• Ask a speech recognizer to recognize digits: 0,1,2,3,4,5,6,7,8,9
simple task (?) perplexity = 10

• Ask a speech recognizer to recognize alphabet: a,b,c,d,e,…z
more complex task … perplexity = 26

• alpha, bravo, charlie … yankee, zulu
perplexity = 26

Perplexity measures LM difficulty, not acoustic difficulty

Computing Perplexity

1. Compute the geometric average probability
assigned to each word in test data w1..wn by
model P()

2. Invert it: PP = 1/pavg

n
i

n

i
iavg wwwPp

1

11
1

)]...|([−
=

∏=

Course Feedback

• Was this lecture mostly clear or unclear?
• What was the muddiest topic?
• Comments on difficulty of labs?
• Other feedback (pace, content,

atmosphere)?

	What’s a Language Model?
	Where Are Language Models Used?
	Automatic speech recognition – Architecture
	Aside: LM Weight
	LM Weight, cont’d
	Language Modeling and Domain
	Real-World Examples
	How to Construct an LM
	Example
	Finite-State Automata
	States and Transitions
	How the automaton recognizes strings
	Example: accepting the string baaa!
	Example: rejecting the string baba!
	Sample Problem
	Model
	State Transitions
	Some States are Bad!
	Finite-State Automata
	Setting Transition Probabilities in an FSA
	Using a Grammar LM in ASR
	Grammars…
	Compiling a BNF Grammar into an FSM
	Compiling a BNF Grammar into an FSM, cont’d
	Aside: The Chomsky Hierarchy
	Aside: The Chomsky Hierarchy
	When Grammars Just Won’t Do…
	Vocabulary Selection
	N-gram Models
	The N-gram Approximation
	Technical Details: Sentence Begins & Ends
	Bigram Model Example
	Trigrams, cont’d
	Data Sparseness
	Sparseness, cont’d
	Life after Maximum Likelihood
	Explanation
	Maximum a Posteriori Estimation
	MAP Estimation
	Language Model Smoothing
	Smoothing: Simple Attempts
	Smoothing: Good-Turing
	Good-Turing Example
	Back Off
	Smoothing: Interpolation
	Example
	Example, cont’d
	Example, cont’d
	Held-out Estimation
	Example, cont’d
	Returning to our example…
	Notes
	Deleted Estimation
	What about more estimators?
	Smoothing: Kneser-Ney
	Smoothing: Kneser-Ney
	So, which technique to use?
	Does Smoothing Matter?
	Word Error Rate
	Model Order
	Evaluating Language Models
	Perplexity
	Computing Perplexity
	Course Feedback

