
• This is our room for a four hour period .

• This is hour room four a for our . period



A Bad Language Model… From “Herman” by Jim Unger

I swerve to 
smell de soup…
I swerve to 
smell de soup…

Repeat after 
me… I swear to 
tell the truth …

Repeat after 
me… I swear to 
tell the truth …



A Bad Language Model… From “Herman” by Jim Unger

de toll-booth …de toll-booth …

… the whole 
truth …

… the whole 
truth …



A Bad Language Model… From “Herman” by Jim Unger

An nuts sing on 
de roof.
An nuts sing on 
de roof.

… and nothing 
but the truth.

… and nothing 
but the truth.



A Bad Language Model… From “Herman” by Jim Unger

Now tell us in your 
own words exactly 
what happened.

Now tell us in your 
own words exactly 
what happened.



What’s a Language Model?

• A language model is a probability distribution 
over word sequences

• p(“and nothing but the truth”)        0.001

• p(“an nuts sing on de roof”)           0

≈

≈



Where Are Language Models Used?

• Speech recognition
• Handwriting recognition
• Spelling correction
• Optical character recognition
• Machine translation
• Natural language generation
• Information retrieval
• Any problem that involves sequences ?



The statistical approach to speech recognition
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• W is a sequence of words, W* is the best sequence.

• X is a sequence of acoustic features.

� Θ is a set of model parameters.



Automatic speech recognition – Architecture

feature extraction

acoustic model language model

search
audio words
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Aside: LM Weight

• class(x) = argmaxw p(w)α p(x|w)
• … or is it the acoustic model weight? ☺
• α is often between 10 & 20
• one theory: modeling error

– if we could estimate p(w) and p(x|w) perfectly…
– e.g. at a given arc at, acoustic model assumes frames are 

independent

p(xt,xt+1|at=at+1)=p(xt|at)p(xt+1|at)



LM Weight, cont’d
• another theory:

– higher variance in estimates of acoustic model probs
– generally |log p(x|w)|  >> |log p(w)|
– log p(x|w) is computed by summing many more terms
– e.g. continuous digits, |log p(x|w)| { 1000, 

|log p(w)| { 20

• Scale LM log probs in order for them not to be 
swamped by the AM probs

• In practice, it just works well…



Language Modeling and Domain

• Isolated digits: implicit language model

• All other word sequences have probability zero
• Language models describe what word sequences the domain 

allows
• The better you can model acceptable/likely word sequences, 

or the fewer acceptable/likely word sequences in a domain, 
the better a bad acoustic model will look

• e.g. isolated digit recognition, yes/no recognition
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Real-World Examples

• Isolated digits test set (i.e. single digits)
• Language model 1:

– each digit sequence of length 1 equiprobable
– probability zero for all other digit sequences

• Language model 2:
– each digit sequence (of any length) equiprobable
– LM 1: 1.8% error rate, LM 2: 11.5% error rate

• Point: use all of the available domain knowledge
e.g. name dialer, phone numbers, UPS tracking numbers



How to Construct an LM

• For really simple domains:
• Enumerate all allowable word sequences

i.e. all word sequences w with p(w)>0
e.g. yes/no, isolated digits

• Use common sense to set p(w)
e.g. uniform distribution: p(w) = 1/vocabulary size
in the uniform case, ASR reduces to ML classification
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Example

• 7-digit phone numbers
enumerate all possible sequences:
OH OH OH OH OH OH OH
OH OH OH OH OH OH ONE
OH OH OH OH OH OH TWO

etc.
• Is there a way we can compactly represent 

this list of strings?



Finite-State Automata
• Also called a grammar  or  finite-state machine
• Like a regular expression, a finite-state automaton matches or 

“recognizes” strings
• Any regular expression can be implemented as an FSA
• Any FSA can be described with a regular expression
• For example, the Sheep language /baa+!/ can be represented as 

the following FSA:

a

q0 q1 q2 q3 q4

ab a !



States and Transitions
A finite-state automaton consists of:

– A finite set of states which are represented by vertices 
(circular nodes) on a graph

– A finite set of transitions, which are represented by arcs 
(arrows) on a graph

– Special states:
• The start state, which is outlined in bold 
• One or more final (accepting) states represented with a double 

circle

q0 q1 q2 q3 q4

b a a
a

!



How the automaton recognizes strings

• Start in the start state q0 

• Iterate the following process:
1. Check the next letter of the input
2. If it matches the symbol on an arc leaving the 

current state, then cross that arc into the state it 
points to

3. If we’re in an accepting state and we’ve run 
out of input, report success



Example: accepting the string baaa!

q0 q1 q2 q3 q4

b a a
a

!

• Starting in state q0, we read each input 
symbol and transition into the specified 
state

• The machine accepts the string because we 
run out of input in the accepting state



Example: rejecting the string baba!

q0 q1 q2 q3 q4

b a a
a

!

• Start in state q0 and read the first input symbol “b”
• Transition to state q1, read the 2nd symbol “a”
• Transition to state q2, read the 3rd symbol “b”
• Since there is no “b” transition out of q2, we reject the 

input string



Sample Problem

• Man with a wolf, a goat, and  a cabbage is on the 
left side of a river

• He has a small rowboat, just big enough for 
himself plus one other thing

• Cannot leave the goat and wolf together (wolf will 
eat goat)

• Cannot leave goat and cabbage together (goat will 
eat the cabbage)

• Can he get everything to the other side of the 
river?



Model

• Current state is a list of what things are on which 
side of the river:

• All on left   MWGC-

• Man and goat on right  WC-MG

• All on right (desired)   -MWGC



State Transitions

• Indicate with arrows changes between states

MWGC- WC-MG

Letter indicates what happened:
g: man took goat              c: man took cabbage
w: man took wolf           m: man went alone

g

g



Some States are Bad! 

MWGC- WG-MC

• Don’t draw those…

c



MWGC- WC-MG              MWC-G

C-MWG                  W-MGC

MGC-W                  WGM-C

-MWGC          MG-WC           G-MWC

g m

g

m

w
w

c
c

g g g g

c
c w

w

m

m

g

g



Finite-State Automata

• Can introduce probabilities on each path
• Probability of a path = product of 

probabilities on each arc along the path 
times the final probability of the state at the 
end of the path

• Probability of a word sequence is the sum 
of the probabilities of all paths labeled with 
that word sequence



Setting Transition Probabilities in an FSA

Could use:
• common sense and intuition e.g. phone number 

grammar
• collect training data: in-domain word sequences

– forward-backward algorithm

• LM training: just need text, not acoustics
– on-line text is abundant
– in-domain text may not be



Using a Grammar LM in ASR
• In decoding, take word FSA representing LM
• Replace each word with its HMM
• Keep LM transition probabilities
• voila!

yes/0.5

no/0.5

y1 y2 y3 eh1 s3

n1 ow3

q0 q1

yes/0.5

no/0.5



Grammars…
• Awkward to type in FSM’s
• e.g. “arc from state 3 to state 6 with label SEVEN”
• Backus-Naur Form (BNF)

[noun phrase] Æ [determiner] [noun]
[determiner] Æ A | THE
[noun] Æ CAT | DOG

• Exercise: How to express 7-digit  phone numbers in 
BNF?



Compiling a BNF Grammar into an 
FSM

1. Express each individual rule as an FSM
2. Replace each symbol with its FSM

Can we handle recursion/self-reference?
Not always possible unless we restrict the 

form of the rules



Compiling a BNF Grammar into an 
FSM, cont’d

7-digit phone number
sdigit digit digit dash digit

digitdigitdigit

0

1

9

…

digit2

3

9

…

sdigit dash
-



Aside: The Chomsky Hierarchy

• An FSA encodes a set of word sequences
• A set of word sequences is called a language 
• Chomsky hierarchy:
• Regular language: a language expressible by 

(finite) FSA
• Context-free languages: a language expressible in 

BNF
• {Regular languages} _ {Context-free languages}
• e.g. the language anbn

i.e.{ab, aabb, aaabbb,aaaabbbb, …} is context free 
but not regular



Aside: The Chomsky Hierarchy

• Is English regular? i.e. can it be expressed with an 
FSA?  
– probably not

• Is English context-free? 
• Well, why don’t we just write down a grammar for 

English?
– too many rules (i.e. we’re too stupid)
– people don’t follow the rules
– machines cannot do it either



When Grammars Just Won’t Do…

• Can’t write grammars for complex domains
• what to do?
• goal: estimate p(w) over all word sequences w 
• simple maximum likelihood?

• can’t get training data that covers a reasonable fraction of w
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Vocabulary Selection

• Trade-off:
– The more words, the more things you can confuse each 

word with
– The fewer words, the more out-of-vocabulary (OOV) 

words you will likely encounter
– You cannot get a word correct if it’s OOV

• In practice…
– Just choose the k most frequent words in training data
– k is around 50,000 for unconstrained speech
– k< 10,000 for constrained tasks



N-gram Models 

• It’s hard to compute 
p(“and nothing but the truth”)

• Decomposition using conditional probabilities can help

p(“and nothing but the truth”) = p(“and”) x 
p(“nothing”|“and”) x p(“but”|“and nothing”) x 
p(“the”|“and nothing but”) x 
p(“truth”|“and nothing but the”)



The N-gram Approximation

• Q:  What’s a trigram? What’s an n-gram?
A:  Sequence of 3 words. Sequence of n words.

• Assume that each word depends only on the 
previous two words (or n-1 words for n-grams)

p(“and nothing but the truth”) = p(“and”) x 
p(“nothing”|“and”) x p(“but”|“and nothing”) x 
p(“the”|“nothing but”) x p(“truth”|“but the”)



• Trigram assumption is clearly false
p(w | of the) vs. p(w | lord of the)

• Should we just make n larger?
can run into data sparseness problem

• N-grams have been the workhorse of language 
modeling for ASR over the last 30 years

• Still the primary technology for LVCSR
• Uses almost no linguistic knowledge
• Every time I fire a linguist the performance of the 

recognizer improves. Fred Jelinek (IBM, 1988)



Technical Details: Sentence Begins & 
Ends
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Pad beginning with special beginning-of-sentence token: 
w-1 = w0 = >

Want to model the fact that the sentence is ending, so pad
end with special end-of-sentence token:
wn+1 = ,
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Bigram Model Example
JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

JOHN READ A BOOK
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Trigrams, cont’d
Q: How do we estimate the probabilities?
A: Get real text, and start counting…

Maximum likelihood estimate would say:
p(“the”|“nothing but”) = 

C(“nothing but the”) / C(“nothing but”)
where C is the count of that sequence in the data

Q: Why might we want to not use the ML estimate    
exactly? 



Data Sparseness
• Let’s say we estimate our language model from 

yesterday’s court proceedings
• Then, to estimate

p(“to”|“I swear”) we use
count (“I swear to”) / count (“I swear”)

• What about p(“to”|“I swerve”) ?
If no traffic incidents in yesterday’s hearing,

count(“I swerve to”) / count(“I swerve”)
= 0 if the denominator > 0, or else is undefined

Very bad if today’s case deals with a traffic incident!



Sparseness, cont’d

• Will we see all the trigrams we need to see?
• (Brown et al,1992) 350M word training set

– in test set, what percentage of trigrams unseen?  > 15%
– i.e. in 8-word sentence, about 1 unseen trigram

• decoder will never choose word sequence with zero 
probability! 

• guaranteed errors.
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Life after Maximum Likelihood

• Maybe MLE isn’t such a great idea?
• (Church & Gale, 1992) Split 44M word data set 

into two halves
• For a bigram that occurs, say, 5 times in the first 

half, how many times does it occur in the 2nd half, 
on average?

• MLE predicts 5
• in reality,  it was about 4.2
• huh?



Explanation

• Some bigrams with zero count in the first 
half occurred in the 2nd half

• The bigrams that did occur in the 1st half 
must occur slightly less frequently in the 2nd

half, on average, since the total number of 
bigrams in each half is the same

• how can we model this phenomenon?



Maximum a Posteriori Estimation

• Let’s say I take a coin out of my pocket, flip it, and 
observe “heads”

• Let p(heads) = θ,   p(tails) = 1-θ
• MLE: 
• In reality, we believe p(heads) is around 0.5
• Instead of finding θ to maximize p(x|θ), find θ to 

maximize p(x|θ)p(θ)
• p(θ) is the prior probability of the parameter θ

1)|(maxarg == θθ
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MAP Estimation
Prior distribution:  p(θ=0.5) = 0.99
p(θ=0.000) = p(θ=0.001) = …= p(θ=0.999)= p(θ=1.000) = 0.00001

Data: 1 Flip, 1 Head  
p(θ=0.5|D)} p(D|θ=0.5)p(θ=0.5) = 0.5x.99 = 0.495
p(θ=1.0|D)} p(D|θ=1.0)p(θ=1.0) = 1.0x0.00001 = 0.00001
All other values of θ yield even smaller probabilities…
θMAP = 0.5

Data: 17 Flips, 17 Heads
p(θ=0.5|D)} p(D|θ=0.5)p(θ=0.5) = 0.5 17 x 0.99   = 0.000008
p(θ=1.0|D)} p(D|θ=1.0)p(θ=1.0) = 1.0x 0.00001  = 0.000010
All other values of θ yield smaller probabilities…
θMAP = 1.0

So, little data, prior has a big effect
Lots of data, prior has little effect, MAP estimate converges to ML estimate



Language Model Smoothing

• How can we adjust the ML estimates 
to account to account for the effects of 
the prior distribution when data is 
sparse?

• Generally, we don’t actually come up 
with explicit priors, but we use it as 
justification for ad hoc methods



Smoothing: Simple Attempts

• Add one: (V is vocabulary size)

Advantage: Simple
Disadvantage:  Works very badly

• What about delta smoothing:

A: Still bad…..
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Smoothing: Good-Turing

• Basic idea: seeing something once is roughly the 
same as not seeing it at all

• Count the number of times you observe an event 
once; use this as an estimate for unseen events

• Distribute unseen events’ probability equally over 
all unseen events

• Adjust all other estimates downward, so that the 
set of probabilities sums to 1

• Several versions; simplest is to scale ML estimate 
by (1-prob(unseen))



Good-Turing Example
• Imagine you are fishing in a pond containing {carp, cod, 

tuna, trout, salmon, eel, flounder, and bass}
• Imagine you’ve caught: 10 carp, 3 cod, 2 tuna, 1 trout, 1 

salmon, and 1 eel so far.
• Q: How likely is it that the next catch is a new species 

(flounder or bass)?
• A: prob(new) = prob(1’s) = 3/18 
• Q: How likely is it that the next catch is a bass?
• A: prob(new)x0.5 = 3/36 
• Q: What’s the probability the next catch is an eel?
• A: 1/18 * 15/18  = 0.046  (compared to 0.055 for MLE)



Back Off

• (Katz, 1987) Use MLE if we have enough counts, 
otherwise back off to a lower-order model

• choose         so that 
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Smoothing: Interpolation
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Idea:  Trigram data is very sparse, noisy, 
Bigram is less so,
Unigram is very well estimated from a large corpus

Interpolate among these to get the best combination

Find 0< λ , µ <1 by optimizing on “held-out” data
Can use deleted interpolation in an HMM framework



Example

• Die              Possible outputs: 1,2,3,4,5,6

• Assume our training sequence is: x = 1,3,1,6,3,1,3,5
• Test sequence is: y = 5,1,3,4
• ML estimate from training:

θm = ( 3/8, 0, 3/8, 0, 1/8, 1/8)

pθm (y) = 0

• Need to smooth θm



Example, cont’d
• Let θu = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)

• We can construct a linear combination from θm
and θu

θs = λ θm + (1- λ) θu 0 <= λ <= 1

• What should the value of 1- λ be?

• A reasonable choice is a/N, where a is a small 
number, and N is the training sample size



Example, cont’d

• e.g. if a=2, then  1-λ = 2/8 = 0.25

θs = 0.75 (.375, 0, .375, 0, .125, .125)
+ 0.25 (.167, .167, .167, .167, .167, .167)

= (.323, .042, .323, .042, .135, .135)



Held-out Estimation
• Split training data into two parts:

Part 1:   x1
n = x1 x2 … xn

Part 2:   xn+1
N = xn+1 xn+2 … xN

• Estimate θm from part 1, combine with θu
θs = λ θm + (1- λ) θu 0 <= λ <= 1

• Pick λ so as to maximize the probability of Part 2 of the 
training data

• Q: What if we use the same dataset to estimate the MLE 
estimate θm and λ? 
Hint: what does MLE stand for?



• We can use the forward-backward 
algorithm to find the optimal λ.

• Smoothed model is equivalent to:

θm
1 2 3

1.0

λ

1-λ

θu1.0



Example, cont’d

• Split training data into:
Part 1:    1,3,1,6
Part 2:    3,1,3,5

In this case the ML estimate from part 1 is:
θm = ( 2/4, 0, 1/4, 0, 0, 1/4)



S
tate:  1                 2                3

Time:  0                       1                        2       3                    4
Obs:   φ                          3                       1                       3              5

λ

1-λ

1x.2
5

1x
.1

67
λ

1-λ

λ

1-λ

λ

1-λ

1x.5

1x
. 1

67

1x.2
5

1x
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67

1x0

1x
.1

67

pθs (3,1,3,5) =   ( .25λ + 0.167 (1- λ)) 
x ( .5 λ + 0.167 (1- λ))
x (.25λ + 0.167 (1- λ)) 
x ( 0 λ + 0.167 (1- λ)) 



pθs(3,1,3,5)

0.00121

0.00077

0.46 1.0 λ



• We can compute the a posteriori counts for each piece of the 
trellis separately

• This is a simple form of the forward-backward algorithm

λ

1-λ

p 1

p 2
t1

21

1
1 )1(

)|(
pp

pxtc
λλ

λ
−+

=



Returning to our example…

• Let’s start with an initial guess λ = 0.7
3        1       3         5         sum

c(t1|x):      .778   .875   .778      0        2.431
c(t2|x):      .222   .125   .222      1        1.569

New λ = 2.431 / (2.431 + 1.569) = .608



Iteration                λ  p(x)
1                      .7                 .00101
2                     .608              .00114
3                     .555              .00118
4                     .523              .00120
5                     .503              .00121

10                    .467              .00121
20                    .461              .00121
38                    .460              .00121  converged



Notes
• It can be shown that log pθs(xn+1

N) is a convex
function of λ.  Thus it has 1 global maximum and 
no other local maxima.

• Convexity result generalizes to linear 
combinations of more than two distributions.

• In held-out smoothing we use some of the data for 
estimating θm and some for estimating λ

• Can we use all of the data for each of the 2 
purposes?  Yes, if we use deleted estimation

Ι



Deleted Estimation

• Divide the data into L parts

x1…xk1| xk1+1…xk2| … | xkL-1+1 .. xN

part 1  |   part 2    | … |   part L

• Let θmL = maximum likelihood values for 
the data with part L removed



• Smooth as before, using all the data for 
computing pλ(x) but:
for part 1, use λθm1 + (1-λ) θu

for part 2, use λθm2 + (1-λ) θu.        etc.

• Once the optimal λ is found, we can compute 
θm from all of the data and use:

θs = λ θm + (1-λ) θu
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What about more estimators?
• e.g. we are interested in interpolating 

among 3-gram, bigram, and unigram 
models

• We can construct 
θs = λ1θ1+ λ2θ2+ λ3θ3+…. 
where the λ’s sum to 1

λ1

λ2

p 1

p 2

t1

λ3

p 3



Smoothing: Kneser-Ney
• Combines back off and interpolation
• Motivation: consider bigram model
• Consider p(Francisco|eggplant)
• Assume that the bigram “eggplant Francisco” never 

occurred in our training data ... therefore we back off 
or interpolate with lower order (unigram) model

• Francisco is a common word, so both back off and 
interpolation methods will say it is likely

• But it only occurs in the context of “San” (in which 
case the bigram models it well)

• Key idea:  Take the lower-order model to be the 
number of different contexts the word occurs in, rather 
than the unigram probability of the word



Smoothing: Kneser-Ney

• Subtract a constant D from all counts
• Interpolate against lower-order model which 

measures how many different contexts the word 
occurs in

• Modified K-N Smoothing:  make D a function of 
the number of times the trigram xyz occurs
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So, which technique to use?

• Empirically, interpolation is superior to 
back off

• State of the art is Modified Kneser-Ney
smoothing (Chen & Goodman, 1999)



Does Smoothing Matter?

• No smoothing (MLE estimate): 
– Performance will be very poor
– Zero probabilities will kill you

• Difference between bucketed linear interpolation 
(ok) and modified Kneser-Ney (best) is around 1% 
absolute in word error rate for a 3-gram model

• No downside to better smoothing (except in effort)
• Differences between best and suboptimal become 

larger as model order increases



Word Error Rate
• How do we measure the performance of an ASR 

system?
• Define WER = (substitutions + deletions+ 

insertions) / (number of words in reference script)
• Example:

ref:   The       dog is here now
hyp:  The uh bog is          now

• Compute WER efficiently using dynamic 
programming (DTW)

• Can WER be above 100% ?

insertion substitution

deletion

WER = 3/5 = 60%



Model Order
• Should we use big or small models? 

e.g. 3-gram or 5-gram?
• With smaller models, less sparse data issues Æ

better probability estimates?
– Empirically, bigger is better
– With best smoothing, little or no performance 

degradation if model is too large
– With lots of data (100M words +) significant gain from 

5-gram
• Limiting resource:  disk/memory
• Count cutoffs can be used to reduce the size of the 

LM
• Discard all n-grams with count less than threshold



Evaluating Language Models

• Best way: plug into ASR system, see how LM 
affects WER
– Expensive to compute

• Is there something cheaper that predicts WER 
well?
– “perplexity” (PP) of test data (only needs text)
– Doesn’t always predict WER well, but has theoretical 

significance
– Predicts best when 2 LM’s being compared are trained 

on same data



Perplexity
• Perplexity is average branching factor, i.e. how many alternatives the 

LM believes there are following each word
• Another interpretation: log2PP is the average number of bits per word 

needed to encode the test data using the model P( )

• Ask a speech recognizer to recognize digits: 0,1,2,3,4,5,6,7,8,9
simple task (?) perplexity = 10

• Ask a speech recognizer to recognize alphabet:  a,b,c,d,e,…z
more complex task … perplexity = 26

• alpha, bravo, charlie … yankee, zulu
perplexity = 26

Perplexity measures LM difficulty, not acoustic difficulty



Computing Perplexity

1. Compute the geometric average probability 
assigned to each word in test data w1..wn by 
model P( )

2. Invert it: PP = 1/pavg
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Course Feedback

• Was this lecture mostly clear or unclear?
• What was the muddiest topic?
• Comments on difficulty of labs?
• Other feedback (pace, content, 

atmosphere)?
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