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Recap

Can model distributions of feature vectors using mixtures of 
Gaussians.
Maximum Likelihood estimation can be used to estimate the 
parameters of Gaussian distributions.
An iterative algorithm was developed to estimate parameters of 
mixtures of Gaussian distributions.
Generalized the idea of Dynamic Time Warping to a probabilistic 
framework – the Hidden Markov Model.
Introduced the three main operations that need to be addressed  
with Hidden Markov Models

Computing the probability of a sequence of feature vectors
Finding the best sequence of states that produced the sequence of 

feature vectors
Estimating the parameters of a Hidden Markov Model from data
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Goals for Today

Introduce a general probabilistic framework for speech recognition
Explain how Hidden Markov Models fit in this overall framework.
Review some of the concepts of ML estimation in the context of an 
HMM framework.
Describe how the three basic HMM operations are computed.
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“The” Probabilistic Model for Speech Recognition
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W is a sequence of words, W* is the best sequence.

X is a sequence of acoustic features

Θ is a set of model parameters

A.K.A. The Fundamental Equation of Speech Recognition
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Automatic speech recognition – Architecture

feature extraction

acoustic model language model

search
audio words
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Acoustic Modeling from 30000 feet
Goal is to model sequences (i.e., compute probabilities) of feature vectors
Assume a word is made up from a sequence of speech sounds

Cat: K AE T
Dog: D AO G
Fish: F IH SH

When a speech sound is uttered, a sequence of feature vectors is produced 
according to a GMM associated with each sound
But the distributions overlap: you can’t uniquely identify which speech sound 
produced the feature vector – so how can you compute the likelihood if you 
don’t know which speech sound generated the feature vector?

If you did, you could just use the techniques we discussed last week.
Solution is the HMM
For simplicity, build up HMM concepts by using the outcome of a coin flip as 
our observation (rather than a feature vector)
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Models without Memory: Probability Sequence Computation

A coin has probability of “heads” = p  ,  probability of “tails” = 1-p

Flip the coin 10 times. Assume I.I.D. random sequence. There are 210 possible 
sequences.

Sequence:     1    0  1   0     0      0    1   0     0    1 
Probability:     p(1-p)p(1-p)(1-p)(1-p) p(1-p)(1-p)p        =   p4(1-p)6

Models without memory: Observations are Independent. Probability is the same for all 
sequences with 4 heads & 6 tails. Order of heads & tails does not matter in assigning a 
probability to the sequence, only the number of heads & number of tails

Probability of 
0 heads         (1-p)10 

1  head          p(1-p)9

…
10 heads         p10
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Models without Memory: Learning Model Parameters
If p is known, then it is easy to compute the probability of the sequence.   Now 

suppose p is unknown.

We toss the coin N times, obtaining H heads and T tails, where H+T=N
We want to estimate p

A “reasonable” estimate is p=H/N.   Is this actually the “best” choice for p?

What is “best”?  Consider the probability of the observed sequence.           
Prob(seq)=pH(1-p)T

The value of p for which Prob(seq) is maximized is the Maximum Likelihood 
Estimate (MLE) of p. (Denote pmle )

Prob(seq)

p
pmle
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Models without Memory: Example, cont’d

Assertion:   pmle =  H/N

Proof:       Prob(seq)=pH(1-p)T              

Maximizing Prob is equivalent to maximizing log(Prob)

L=log(Prob(seq)) = H log p  +  T log (1-p)

= H/p  – T/(1-p)

L maximized when          = 0

H/pmle - T/(1-pmle)  = 0

H – H pmle = T pmle

H = T pmle + H pmle = pmle (T + H)   = pmle N

pmle = H/N

p
L

∂
∂

p
L

∂
∂
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Models without Memory Example, cont’d

We showed that in this case 
MLE = Relative Frequency = H/N

We will use this idea many times.  

Often, parameter estimation reduces to
counting and normalizing.



11

ELEN E6884

Speech Recognition Lecture 3  September 22, 2005 © 2003 IBM Corporation

Models with Memory: Markov Models

Flipping a coin was memory-less. The outcome of 
each flip did not depend on the outcome of the 
other flips.

Adding memory to a memory-less model gives us a 
Markov Model.  Useful for modeling sequences of 
events.
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Markov Model Example
Consider 2 coins.    

Coin 1:   pH = 0.9   ,  pT = 0.1
Coin 2:   pH = 0.2   ,  pT = 0.8

Experiment:
Flip Coin 1.
for J = 2 ; J<=4; J++

if (previous flip == “H”)   flip Coin 1;
else  flip Coin 2;

Consider the following 2 sequences:
H  H  T  T   prob = 0.9 x 0.9 x 0.1 x 0.8 = .0648
H  T  H  T   prob = 0.9 x 0.1 x 0.2 x 0.1 = .0018

Sequences with consecutive heads or tails are more likely.
The sequence has memory - order matters.
Order matters for speech too. 

The sequence of feature vectors  for “rat” are different from the sequence 
of vectors for “tar.”



13

ELEN E6884

Speech Recognition Lecture 3  September 22, 2005 © 2003 IBM Corporation

Markov Models – State Space Representation

Consider 2 coins.    
Coin 1:   pH = 0.9   ,  pT = 0.1
Coin 2:   pH = 0.2   ,  pT = 0.8

State-space representation of previous example

1 2

H 0.9 T 0.8

H 0.2

T 0.1
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Markov Models – State Space Representation (Con’t)

State sequence can be uniquely determined from 
the outcome sequence, given the initial state.
Output probability is easy to compute. It is the 
product of the transition probs for state sequence.

Example: O:      H         T         T       T    
S:  1(given)   1          2       2

Prob:     0.9  x   0.1  x  0.8  x 0.8

1 2

H 0.9
T 0.1

T 0.8

H 0.2
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Back to Memory-Less Models: Hidden Information

Let’s return to the memory-less coin flip model

Consider 3 coins.   Coin 0:  pH = 0.7
Coin 1:  pH = 0.9
Coin  2  pH = 0.2

Experiment:
For J=1..4

Flip coin 0. If  outcome == “H”
Flip coin 1 and record.

else  
Flip coin 2 and record.
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Hiding Information (cont.)
Coin 0: pH = 0.7    Coin 1: pH = 0.9   Coin 2: pH = 0.2

We cannot uniquely determine the output of the 
Coin 0 flips. This is hidden.

Consider the sequence H T T T.
What is the probability of the sequence?

Order doesn’t matter (memory-less)  
p(head)=p(head|coin0=H)p(coin0=H)+

p(head|coin0=T)p(coin0=T)= 0.9x0.7 + 0.2x0.3 = 0.69
p(tail)  =  0.1 x 0.7 + 0.8 x 0.3 = 0.31

P(HTTT) = .69 x .31 3
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Hidden Markov Model
The state sequence is hidden.
Unlike Markov Models, the state sequence cannot be uniquely deduced from 
the output sequence.

Experiment:  
Flip the same two coins. This time, flip each coin twice. The first flip gets 
recorded as the output sequence. The second flip determines which coin 
gets flipped next.  

Now, consider output sequence H  T  T  T.
No way to know the results of the even numbered flips, so no way to know 
which coin is flipped each time.

Unlike previous example, order now matters (start with coin 1, pH = 0.9)
H H T T T H T  = .9 x .9 x .1 x .1 x .8 x .2 x .1 = .0001296

T T T H T T H = .1 x .1 x .8 x .2 x .1 x .1 x .2 = .0000032
Even worse, same output sequence corresponds to multiple probabilities!

H T T H T T T  = .9 x .1 x .8 x .2 x .1 x .1 x .8 = .0001152
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Hidden Markov Model

0.2 
0.8 

0.9 
0.1 

0.9 0.1 0.8

0.2

The state sequence is hidden. Unlike Markov Models, the state sequence cannot 
be uniquely deduced from the output sequence.

In speech, the underlying states can be, say the positions of the articulators. 
These are hidden – they are not uniquely deduced from the output features. We 
already mentioned that speech has memory.  A process which has memory and 
hidden states suggests using an HMM.

0.9 
0.1 

0.2 
0.8 

1 2
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Is a Markov Model Hidden or Not?

A necessary and sufficient condition for being state-observable
is that all transitions from each state produce different outputs 

a,b

b

d

a,b

c

d

State-observable Hidden
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Three problems of general interest for an HMM

3 problems need to be solved before we can use HMM’s:

1. Given an observed output sequence X=x1x2..xT , compute              
Pθ(X) for a given model θ

2. Given X, find the most likely state sequence (Viterbi
algorithm)

3.   Estimate the parameters of the model. (training)

These problems are easy to solve for a state-observable Markov 
model. More complicated for an HMM because we need to consider 
all possible state sequences. Must develop a generalization….
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Problem 1

1. Given an observed output sequence X=x1x2..xT ,         
compute Pθ(X) for a given model θ

Recall the state-observable case

Example: O:      H         T         T       T    
S:  1(given)   1         2        2

Prob:     0.9  x   0.1  x  0.8  x 0.8

1 2

H 0.9
T 0.1

T 0.8

H 0.2
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Problem 1

1. Given an observed output sequence X=x1x2..xT ,         
compute Pθ(X) for a given model θ

Sum over all possible state sequences:
Pθ(X)=ΣS Pθ(X,S)

The obvious way of calculating Pθ(X) is to enumerate 
all state sequences that produce X

Unfortunately, this calculation is exponential in the 
length of the sequence
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Example for Problem 1

0.7 
0.3

0.8 
0.2

Compute Pθ(X) for X=aabb, assuming we start in state 1

1 2 3

0.5

0.3

0.2 0.1

0.4

0.5

0.3 
0.7

0.5 
0.5

a
b
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Example for Problem 1,cont’d
Let’s enumerate all possible ways of producing x1=a, 

assuming we start in state 1.  1
0.4

2
0.21

2 0.4 x 0.5

0.2

2

0.2

0.5 x 0.3

2
0.04

3
0.03

0.5 x 0.8
10.5 x 0.8 2

0.08
0.2

2 20.4 x 0.5

0.2

0.1
3

0.004

2

1 0.3 x 0.7
0.3 x 0.7

0.1
3

0.021

1 2 3
0.008

0.2 0.10.5 x 0.8
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Example for Problem 1, cont’d
Now let’s think about ways of generating x1x2=aa, for all paths from 
state 2 after the first observation

2
0.21

2 2
0.04

1
2

0.08

1

2

2 3

3

2

2 3

3

2

2 3

3
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Example for Problem 1,cont’d

We can save computations by combining paths.

This is a result of the Markov property, that the future doesn’t depend on 
the past if we know the current state

1

2
0.33

2

2

30.5 x 0.3

0.4 x 0.51
2

0.4 x 0.5 30.1
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Problem 1: Trellis Diagram
Expand the state-transition diagram in time.
Create a 2-D lattice indexed by state and time.
Each state transition sequence is represented exactly once.

Time:  0                       1                        2       3                    4
Obs:    φ                        a                       aa aab aabb

S
tate:  1                 2                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1 .1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7
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Problem 1: Trellis Diagram, cont’d
Now let’s accumulate the scores. Note that the inputs to a 
node are from the left and top, so if we work to the right and 
down all necessary input scores will be available.

Time:  0                       1                        2       3                    4
Obs:    φ                        a                       aa aab aabb

S
tate:  1                 2                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1 .1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

1

.2

.02

0.4

.21+.04+.08=.33

.033+.03=.063

.16

.084+.066+.32=.182

.0495+.0182=.0677
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Problem 1: Trellis Diagram, cont’d
Boundary condition:  
Score of (state 1, φ) = 1.

Basic recursion: 
Score of node i = 0

For the set of predecessor nodes j:
Score of node i += score of predecessor node j  x                  

the transition probability from j to i  x
observation probability along            

that transition if the transition is not null.
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Problem 1: Forward Pass Algorithm
Let αt(s) for t ε {1..T} be the probability of being in state s at time t and having 

produced  output x1
t=x1..xt   

αt(s) = Σs’ αt-1(s’)  Pθ(s|s’) Pθ (xt|s’->s)        +          Σs’ αt(s’)  Pθ(s|s’) 

1st term: sum over all output producing arcs         2nd term:  all null arcs

This is called the Forward Pass algorithm.

Important:  The computational complexity of the forward algorithm is linear in time 
(or in the length of the observation sequence)

This calculation allows us to solve Problem 1:
Pθ(X)   =  Σs αT(s) 

Note that in many cases you may wish to compute Pθ(X,sf)
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Problem 2

Given the observations X, find the most likely state sequence 

This is solved using the Viterbi algorithm

Preview:
The computation is similar to the forward algorithm, except we use      

max( ) instead of +

Also, we need to remember which partial path led to the max
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Problem 2: Viterbi algorithm
Returning to our example, let’s find the most likely path for producing 
aabb.  At each node, remember the max of predecessor score x 
transition probability. Also store the best predecessor for each node.

Time:  0                       1                        2       3                    4
Obs:    φ                        a                       aa aab aabb

S
tate:  1                 2                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1 .1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

1 0.4

max(.03 .021) Max(.0084 .0315) 

max(.08 .21 .04)

.16 .016

.0294

max(.084 .042 .032)

.0016

.00336

.00588

.0168
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Problem 2: Viterbi algorithm, cont’d
Starting at the end, find the node with the highest score.  
Trace back the path to the beginning, following best arc 

leading into each node along the best path.

Time:  0                       1                        2       3                    4
Obs:    φ                        a                       aa aab aabb

S
tate:  1                 2                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1 .1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

.03 .0315

.21

.16 .016

.0294

.0016

.00336.0168
0.2

0.02

1 0.4

.084 

.00588
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Problem 3
Estimate the parameters of the model. (training)

Given a model topology and an output sequence, find the transition 
and output probabilities such that the probability of the output
sequence is maximized.

Recall in the state-observable case, we simply followed the unique 
path, giving a count to each transition.
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Problem 3 – State Observable Example

Assume the output sequence X=abbab, and we start in state 1.

Observed counts along transitions:

a a b
bb

a

1 0 0
12

1
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Problem 3 – State Observable Example
Observed counts along transitions:

Estimated transition probabilities. (this is of course too little data to estimate 
these well.)

1 0 0
12

1

0.33

1

0 0
0.67 1
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Generalization to Hidden MM case

Hidden states
Many paths
Assign a fractional count to each 
path
For each transition on a given 
path, give the fractional count for 
that path
Sum of the fractional counts =1 
How to assign the fractional 
counts??

State-observable
Unique path
Give a count of 1 to each
transition along the path
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How to assign the fractional counts to the paths

Guess some values for the parameters
Compute the probability for each path using 
these parameter values
Assign path counts in proportion to these 
probabilities
Re-estimate parameter values
Iterate until parameters converge
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Problem 3: Enumerative Example

For the following model, estimate the transition probabilities and the 
output probabilities for the sequence X=abaa

a1

a2

a3

a4

a5
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Problem 3: Enumerative Example

Initial guess: equiprobable

1/3

1/3

1/3

1/2

1/2

½
½ ½

½

½
½

½
½
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Problem 3: Enumerative 
Example cont’d

1/3

1/3

1/3

1/2

1/2

½
½ ½

½

½
½

½
½7 paths corresponding to an output of abaa

1.                        pr(X,path1)=1/3x1/2x1/3x1/2x1/3x1/2x1/3x1/2x1/2=.000385

2.                        pr(X,path2)=1/3x1/2x1/3x1/2x1/3x1/2x1/2x1/2x1/2=.000578

3.                        pr(X,path3)=1/3x1/2x1/3x1/2x1/3x1/2x1/2x1/2=.001157

4.                        pr(X,path4)=1/3x1/2x1/3x1/2x1/2x1/2x1/2x1/2x1/2=.000868
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Problem 3: Enumerative 
Example cont’d

7 paths:

5.                        pr(X,path5)=1/3x1/2x1/3x1/2x1/2x1/2x1/2x1/2=.001736

6.                        pr(X,path6)=1/3x1/2x1/2x1/2x1/2x1/2x1/2x1/2x1/2=.001302

7.                        pr(X,path7)=1/3x1/2x1/2x1/2x1/2x1/2x1/2x1/2=.002604

Pr(X) = Σi pr(X,pathi) = .008632

1/3

1/3

1/3

1/2

1/2

½
½ ½

½

½
½

½
½
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Problem 3: Enumerative 
Example cont’d

Let Ci be the a posteriori probability of path i
Ci = pr(X,pathi)/pr(X)

C1 = .045    C2 = .067   C3 = .134    C4=.100   C5 =.201   C6=.150  C7=.301

Count(a1)= 3C1+2C2+2C3+C4+C5  = .838
Count(a2)=C3+C5+C7 = .637
Count(a3)=C1+C2+C4+C6 = .363

New estimates:
a1 =.46       a2 = .34       a3=.20

Count(a1,’a’) = 2C1+C2+C3+C4+C5  = .592   Count(a1,’b’)=C1+C2+C3=.246

New estimates:  
p(a1,’a’)= .71         p(a1,’b’)= .29

a1

a2

a3

a4

a5



44

ELEN E6884

Speech Recognition Lecture 3  September 22, 2005 © 2003 IBM Corporation

Problem 3: Enumerative 
Example cont’d

Count(a2,’a’) = C3+C7  = .436   Count(a2,’b’)=C5 =.201

New estimates:  
p(a2,’a’)= .68        p(a2,’b’)= .32

Count(a4)=C2+2C4+C5+3C6+2C7 = 1.52
Count(a5)=C1+C2+C3+C4+C5+C6+C7 = 1.00

New estimates:  a4=.60     a5=.40
Count(a4,’a’) = C2+C4+C5+2C6+C7 = .972   Count(a4,’b’)=C4+C6+C7=.553

New estimates:  
p(a4,’a’)= .64         p(a4,’b’)= .36

Count(a5,’a’) = C1+C2+C3+C4+C5+2C6+C7 = 1.0  Count(a5,’b’)=0
New estimates:  
p(a5,’a’)= 1.0        p(a5,’b’)= 0

a1

a2

a3

a4

a5
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Problem 3: Enumerative Example cont’d
New parameters

Recompute Pr(X) = .02438  > .008632
Keep on repeating…..

.46

.34

.20

.60

.40

.71

.29 .68
.32

.64

.36

1
0
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Problem 3: Enumerative Example cont’d

Step                                        Pr(X)
1                                        0.008632
2                                        0.02438
3                                        0.02508
100                                     0.03125004
600                                     0.037037037  converged

0

1

0

2/3

1/3

1
0

1/2
1/2

1
0
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Problem 3: Enumerative Example cont’d

Let’s try a different initial parameter set

1/3

1/3

1/3

1/2

1/2

.6

.4 ½
½

½
½

½
½

Only
change



48

ELEN E6884

Speech Recognition Lecture 3  September 22, 2005 © 2003 IBM Corporation

Problem 3: Enumerative Example cont’d

Step                                        Pr(X)
1                                        0.00914
2                                        0.02437
3                                        0.02507
10                                       0.04341
16                                       0.0625  converged

1/2

1/2

0

1/2

1/2

0
1

1
0

1
0

1
0
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Performance

The above re-estimation algorithm converges to a 
local maximum.

The final solution depends on the starting point.

The speed of convergence depends on the starting 
point.
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Problem 3: Forward-Backward Algorithm

The forward-backward algorithm improves on the 
enumerative algorithm by using the trellis

Instead of computing counts for each path, we 
compute counts for each transition at each time in 
the trellis.

This results in the reduction from exponential 
computation to linear computation.
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Problem 3: Forward-Backward Algorithm

Consider transition from state i to j, trij

Let pt(trij,X) be the probability that trij is taken at time t, and the 
complete output is X.

pt(trij,X) = αt-1(i) aij bij(xt)  βt(j)

Si

Sj

αt-1(i)

xt

βt(j)
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Problem 3: F-B algorithm cont’d

pt(trij,X) = αt-1(i) aij bij(xt)  βt(j)

where:

αt-1(i) = Pr(state=i, x1…xt-1) = probability of being in state i and 
having produced  x1…xt-1

aij = transition probability from state i to j

bij(xt) = probability of output symbol xt along transition ij

βt(j) = Pr(xt+1…xT|state= j) = probability of producing xt+1…xT
given you are in state j
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Problem 3: F-B algorithm cont’d

Transition count ct(trij|X) = pt(trij,X) / Pr(X) 

The β’s are computed recursively in a backward 
pass (analogous to the forward pass for the α’s)

βt(j) = Σk βt+1(k)  ajk bjk(xt+1)  (for all output producing arcs)

+ Σk βt(k)  ajk (for all null arcs) 
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Problem 3: F-B algorithm cont’d

Let’s return to our previous example, and work out the trellis calculations

1/3

1/3

1/3

1/2

1/2

½
½ ½

½

½
½

½
½
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Problem 3: F-B algorithm, cont’d

Time:  0                       1                        2       3                    4
Obs:    φ                        a                       ab aba abaa

S
tate:  1                 2                3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2
1/3x1/2

1/3x1/2

1/3x1/2
1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2
1/2x1/2

1/2x1/2
1/2x1/2
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Problem 3: F-B algorithm, cont’d

.083

Time:  0                       1                        2       3                    4
Obs:    φ                        a                       ab aba abaa

S
tate:  1                 2                3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2
1/3x1/2

1/3x1/2

1/3x1/2
1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2
1/2x1/2

1/2x1/2
1/2x1/2

1

.33

0

.167

.306

.027

.076

Compute α’s. since forced to end at state 3, αT=.008632=Pr(X)

.113

.0046

.035

.028

.00077

.0097

.008632
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Problem 3: F-B algorithm, cont’d

0

Time:  0                       1                        2       3                    4
Obs:    φ                        a                       ab aba abaa

S
tate:  1                 2                3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2
1/3x1/2

1/3x1/2

1/3x1/2
1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2
1/2x1/2

1/2x1/2
1/2x1/2

.0086

.0039

0

.028

.016

.076

0

Compute β’s. 

.0625

.083

.25

0

0

0

1
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Problem 3: F-B algorithm, cont’d

Time:  0                       1                        2       3                    4
Obs:    φ                        a                       ab aba abaa

S
tate:  1                 2                3

.547 .246 .045 0

.151 .101 .067 .045 0
.302

.201
.134 0

.151 .553 .821 0

00 0 0

Compute counts. (a posteriori probability of each transition)
ct(trij|X) = αt-1(i) aij bij(xt)  βt(j)/ Pr(X)

.167x.0625x.333x.5/.008632
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Problem 3: F-B algorithm cont’d

C(a1)=.547+.246+.045
C(a2)=.302+.201+.134
C(a3)=.151+.101+.067+.045
C(a4)=.151+.553+.821
C(a5)=1

C(a1,’a’)=.547+.045,  C(a1,’b’)=.246
C(a2,’a’)=.302+.134,  C(a2,’b’)=.201
C(a4,’a’)=.151+.821,  C(a4,’b’)=.553
C(a5,’a’)=1,                C(a5,’b’)=0

a1

a2

a3

a4

a5
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Problem 3: F-B algorithm cont’d

Normalize counts to get new parameter values.

Result is the same as from the enumerative algorithm!!

.46

.34

.20

.60

.40

.71

.29 .68
.32

.64

.36

1
0
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Continuous Hidden Markov models – Parameterization

Continuous Hidden Markov models (HMMs) have 3 sets of parameters.

1. A prior distribution over the states π = P(s0 = j); j= 1…N

2. Transition probabilities between the states,
aij = P(s = j | s’ = i); i, j = 1…N

3. A set of transition-conditioned observation probabilities, 
bij (xt)=P(xt | s= j,s’=i)

Let’s use the mixture of Gaussians we discussed in the previous lecture:
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Continuous Hidden Markov Models – The Three Problems
The forward pass and Viterbi algorithm can be treated as before:

αt(s) = Σs’ αt-1(s’)  Pθ(s|s’) Pθ (xt|s’->s)        +          Σs’ αt(s’)  Pθ(s|s’)
1st term: sum over all output producing arcs         2nd term:  all null arcs

The forward-backward algorithm is still computed as
ct(trij|X) = αt-1(i) aij bij(xt)  βt(j) / Pr(X)

where bij(xt) is the Gaussian mixture likelihood.

The count for the mth Gaussian on transition trij can be computed as
ct(ijm|X) = αt-1(i) aij bijm(xt)  βt(j) / Pr(X)

So the mean of the mth Gaussian on transition tij would be 

∑
∑

=

t
t

t
tt

ijm Xijmc

xXijmc

)|(

)|(
µ

and similarly for the variance/covariance matrix
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Parameter Tying
•Represent word as sequence of speech sounds:

cat:   K AE T
bat:   B AE T
nap:  N AE P

a1
a2

a1

a2

•Forward pass/Viterbi is easy:   

•Forward-backward algorithm: 

•Map transition ij to index k, where k is a unique identifier 
(e.g., number of the speech sound)

•Establish set of accumulators on k rather than transition ij
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Practical Matters – Dynamic Range Issues

Typical Gaussian likelihood for 13-dimensional Gaussian ~ e-13 ~ 1E-6
Forward pass calculation:

αt(s) = Σs’ αt-1(s’)  Pθ(s|s’) Pθ (xt|s’->s)        +          Σs’ αt(s’)  Pθ(s|s’)

so likelihood of 100 frame utterance on the order of 10-600

Clear issue if calculations done in linear likelihood/probability domain
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Practical Matters – Dynamic Range Issues
Solution: Do calculation in log domain
Let   L1 , L2 and L3 be likelihoods and let  x = lnb L1, y = logb L2 , z = logb L3

For the case when we need to compute L3 = L1 L2 z = x + y. Wonderful!
But what about L3 = L1 + L2 ?
Assume L1 > L2

L1 + L2 = bx + by = bx (1+by-x)
z = x + logb (1 + by-x )
If L1 >> L2  (say 5 orders of magnitude) then set z = x
If we choose b = 1.001, then (y-x) ~ 1000 log (L2 / L1), so a difference of five orders 
of magnitude can be stored in a table of size roughly 10000 with direct lookup of 
entries of round (x-y)
So for addition:

If x > y

if x > y + 11000 return x

else return x + table [x-y]

Else

if y > x + 11000 return y

else return y + table[y-x]
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Practical Matters: Thresholding

•The large fraction of the counts are in an ellipse along the trellis diagonal
•Can therefore threshold the αs in the forward pass.
•Let T =sum of the live αs in each timeslice. Do not extend α to next timeslice if 
α < k T. 
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Other Practical Matters

Since you only need to save the αs in a narrow band, you don’t need to 
keep an N (number of states) x M (time) trellis in memory. You just need to 
store two timeslices of N states and keep swapping them, and save the αs 
(in the F-B algorithm). Much less storage.

Keep track of the total logprob of the data. It MUST increase after each 
iteration or you did not program the algorithm correctly – a nice property of 
the F-B algorithm.
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Sketch of Proof of Convergence of F-B Algorithm

Goal is to find set of parameters θ that maximize Pθ(X).

If we knew the actual transition sequence tij this would be easy, as 
discussed earlier.

What we do instead is to assume a θ , estimate Pθ(tij|X) and use this 
to compute a new θ

Why does this converge?
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Sketch of Proof – Jensen’s Inequality

Say we have two probability distributions, p(x) and q(x)

Σx p(x) log q(x) / p(x) <= Σx p(x) [q(x) / p(x) -1] = 0

Since log x <= x for all x ……

The inequality -Σx p(x) log q(x) >= -Σx p(x) log p(x) [= H(p(x))] is 
known as Jensen’s Inequality 
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Sketch of Proof
Start with set of parameters θ, want to find a θ‘ that increases the likelihood of 
the data

log Pθ‘(X) = log Pθ‘(X,T) – log Pθ‘(T|X)       (Bayes’ Law)
T a set of transitions (i.e., a path) through the lattice

Multiply by Pθ(T|X) and sum over all paths T:
ΣT Pθ(T|X) log Pθ‘(X)  = ΣT Pθ(T|X) log Pθ‘(X,T) – ΣT Pθ(T|X) log Pθ‘(T|X) 

log Pθ‘(X)        =          Q(θ,θ’)                 - H(θ,θ’) 

If we can find a θ‘ such that Q(θ,θ’) > Q(θ,θ) then by Jensen’s inequality, 
H(θ,θ’) will also decrease.

But what is Q(θ,θ’)? It is just the weighted sum of the path likelihoods with 
respect to the new parameters θ. We can therefore collect terms and 
maximize as in ordinary ML estimation. Note the likelihood of the data is 
guaranteed to increase after each iteration.

The two steps – the “Estimation” of the Q function, and its’ Maximization – is 
called the “E-M” algorithm and the proof can be generalized to a wide variety 
of cases in which there is a set of hidden variables whose values, if known, 
would simplify ML estimation.
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Summary of Markov Modeling Basics
Key idea 1: States for modeling sequences
Markov introduced the idea of state to capture the dependence on the past. A 
state embodies all the relevant information about the past. Each state 
represents an equivalence class of pasts that influence the future in the same 
manner.

Key idea 2: Marginal probabilities
To compute Pr(X), sum up over all of the state sequences than can produce X    

Pr(X) = Σs Pr(X,S)
For a given S, it is easy to compute Pr(X,S)

Key idea 3: Trellis
The trellis representation is a clever way to enumerate all sequences. It uses 
the Markov property to reduce exponential-time enumeration algorithms to 
linear-time trellis algorithms.
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