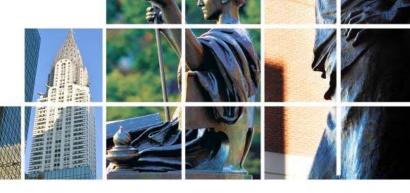


GAN Image Detection: Up-Sampling Artifact & GAN Pipeline Emulator

CVPR Workshop on Media Forensics

Xu Zhang and Shih-Fu Chang 06/17/2019

Zhang, Xu, Svebor Karaman, and Shih-Fu Chang. "Detecting and Simulating Artifacts in GAN Fake Images." arXiv preprint arXiv:1907.06515 (2019)

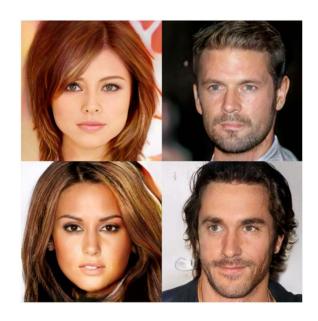


Goals:

- Are there "artifacts" induced in the GAN image generation pipeline?
 - We explore a phenomenon and a theory related to up-sampling artifact (checkerboard pattern).
- Are there ways to relax knowledge about the GAN models when training fake image classifier?
 - We propose a GAN pipeline emulator called AutoGAN.

Introduction

- 3 popular scenarios of image generation using GAN
 - Generating images from Noise
 - DCGAN [2016], ProgGAN [2017], StyleGAN [2018], BigGAN [2018]
 - Lack control of the generated content



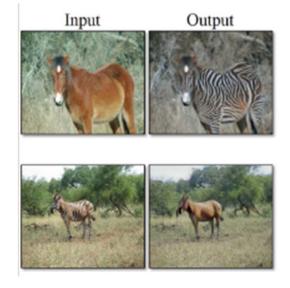
[Karras et. al, 2018a] ProgressiveGAN

[Karras et. al, 2018b] StyleGAN

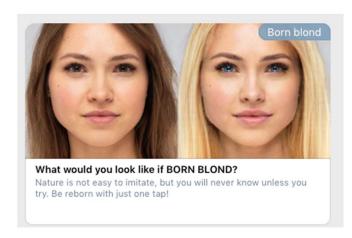
[Brock et. al, 2018] BigGAN

Introduction

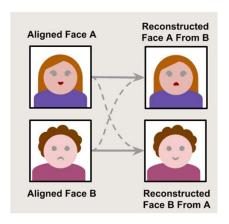
- 3 popular scenarios of image generation using GAN
 - Image to Image Translation: transfer images from one category/style to another
 - Pix2Pix [2016], CycleGAN [2017], StarGAN [2018], FaceSwap/DeepFake/FaceApp
 - Provide more control of the generated content



[Zhu et. al, 2017] CycleGAN



FaceApp by Facebook

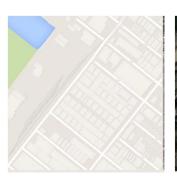


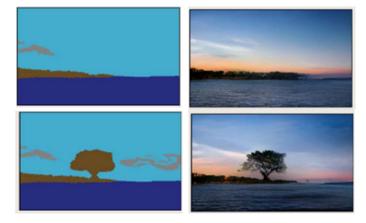
DeepFake

https://www.alanzucconi.com/2018/03/14/introduction-to-deepfakes/

Introduction

- 3 popular scenarios of image generation using GAN
 - Sketch to Image Translation
 - Pix2Pix [2017], CycleGAN [2017], GauGAN[2019]
 - Similar to image to image translation, but give even more controls to the generated content.



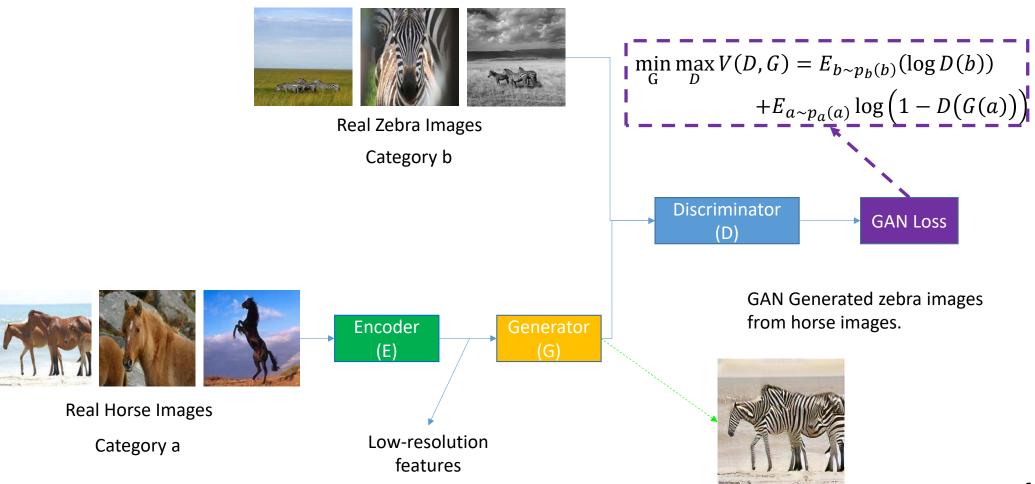


[Isola et. al, 2017] Pix2Pix

[Zhu et. al, 2017] CycleGAN

[Park et. al, 2019] GauGAN

A Common Pipeline for Image2Image or Sketch2Image Transfer



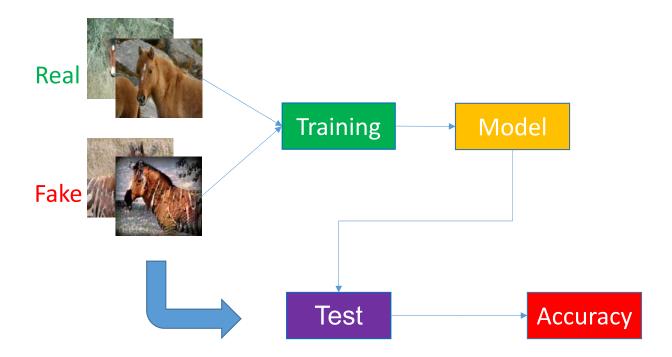
6

(An Incomplete) Review of Defense Tools

- Statistical Machine Learning + Feature Design
 - [Marra et. al 2018a] Use raw pixel and conventional forensics features. CNN, SVM, CycleGAN data
 - [Yu et. al 2018] Use raw pixel to detect noise2image GAN. CNN, ProGAN, SNGAN, and SAGAN
 - [Nataraj et. al 2019] Train with Co-Occurrence matrix. VGG-like, cycleGAN+StarGAN
 - [Marra et. al 2018b] Extract fingerprint from GAN. Correlation, cycleGAN+StarGAN
- Special Observations:
 - [McCloskey et. al 2018] GAN generated image doesn't have saturation region. SVM, NIST GAN challenge data
 - [Li et. al 2018] Deepfake video has no blinking eye. LSTM+VGG, Deep Fake
- Attribute Verification of Test Video against Real Video
 - [Agarwal et al 2019] Study the movement of the action unit of the leader from real video and see whether the generated video matches.

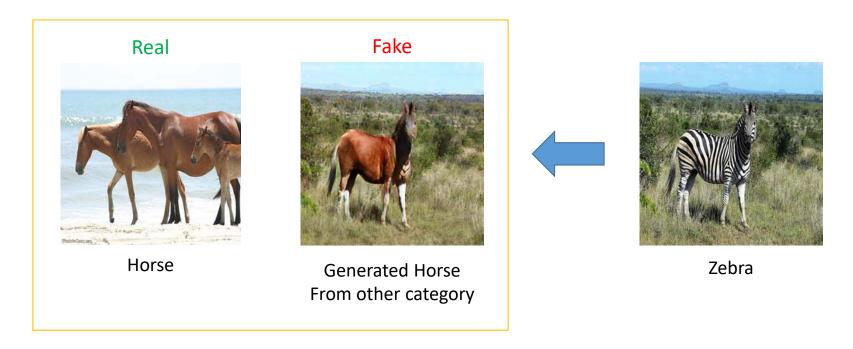
A Popular Baseline: Train a Fake/Real Image Classifier

- Design Issues
 - How to collect training samples?
 - What features to use?



Data Bias Pitfall

- In order to train a robust classifier we need, [Marra et. al 2018, Nataraj et. al 2019]
 - diverse training image content (avoid bias)
 - diverse generation models



Leave-one-out strategy to avoid data bias

- Collecting real images and GAN generated image from a variety of sematic transfer pairs. [Marra et. al 2018, Nataraj et. al 2019]
- Train with leave-one-out strategy: 10 transfer pairs/folds, leave one fold out for test. Horse-Zebra(2) Apple-Orange(2) Facades_photo(1) Cityscapes_photo(1) Training → Satellite(1) Ukiyoe-Photo(2) Van Gogh-Photo(2) Cezanne-Photo(2) Real Image CycleGAN Fake Image Monet-Photo(2) Test Summer-Winter(2)

Results (leave one out)

• Leave one out performs pretty well, but need training data from **diverse** sources.

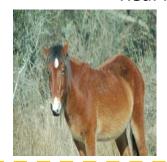
Training	Test (Accuracy)											
	Horse- Zebra	Apple- Orange	Summer- Winter	Facades	CityScape s	Мар	Ukiyo-e	Van Gogh	Cezanne	Monet	Avg.	
DenseNet	79.1	95.8	67.7	99.0	93.8	78.3	99.5	97.7	99.9	89.8	90.1	
Steganalysis feature	98.9	98.4	66.2	100.0	97.4	88.1	97.9	99.7	99.8	98.5	94.5	
Cozzalino2017	99.9	100.0	61.2	99.9	97.3	99.6	100.0	99.9	100.0	99.2	95.7	
XceptionNet	95.9	99.2	76.7	100.0	98.6	76.8	100.0	99.9	100.0	95.1	94.2	
Nataraj2019	99.8	99.8	99.7	92.0	80.6	97.5	99.6	100.0	99.6	99.2	96.8	

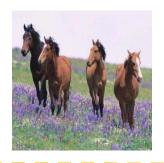
What if we train with one semantic class only?

- Performance downgrades significantly.
- Classifier does not generalize well to other categories

Tueinine		Test													
Training	Horse	Zebra	Summer	Winter	Apple	Orange	Facades	CityScap es	Мар	Ukiyoe	Van Gogh	Cezann e	Monet	Photo	Avg.
Horse	98.8	75.4	95.4	85.6	87.5	79.8	62.3	67.3	84.7	65.7	95.0	92.1	90.7	90.6	83.6
Zebra	87.7	98.8	95.4	92.1	57.2	57.8	50.5	53.9	50.1	66.3	89.7	64.5	89.2	90.3	74.5
Summer	88.8	87.3	98.7	99.8	76.1	76.3	50.9	59.5	77.0	94.5	91.9	93.7	90.5	94.3	84.2
Winter	84.6	82.7	98.2	98.9	74.7	69.6	50.0	50.4	88.5	96.7	82.5	93.3	87.3	92.9	82.2

Is It Recognizing Real vs. Fake images?





Generated Horse Images from Zebra Images

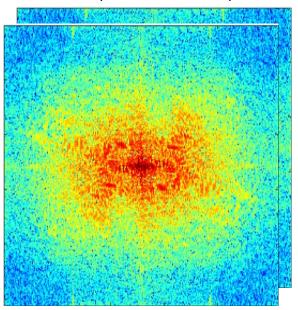
- Or is it recognizing other differences?
 - High-quality horse vs. low-quality horse
 - Horse habitats vs. zebra habitats

What if we change it to the frequency domain?

- Use frequency-domain data as input to the classifier
- Convert 3 RGB channels to the spectrum of each channel as input.

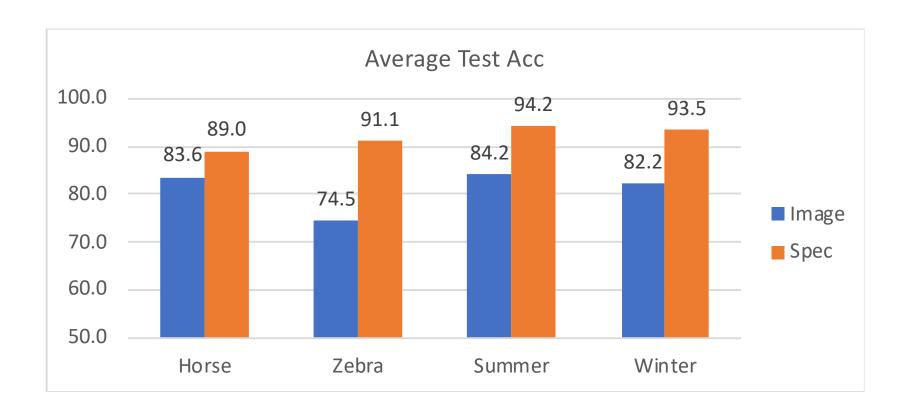
Generated Image

Spectrum of the Generated Image (3 channels RGB)



Directly Train with DFT Spectrum, using one class only

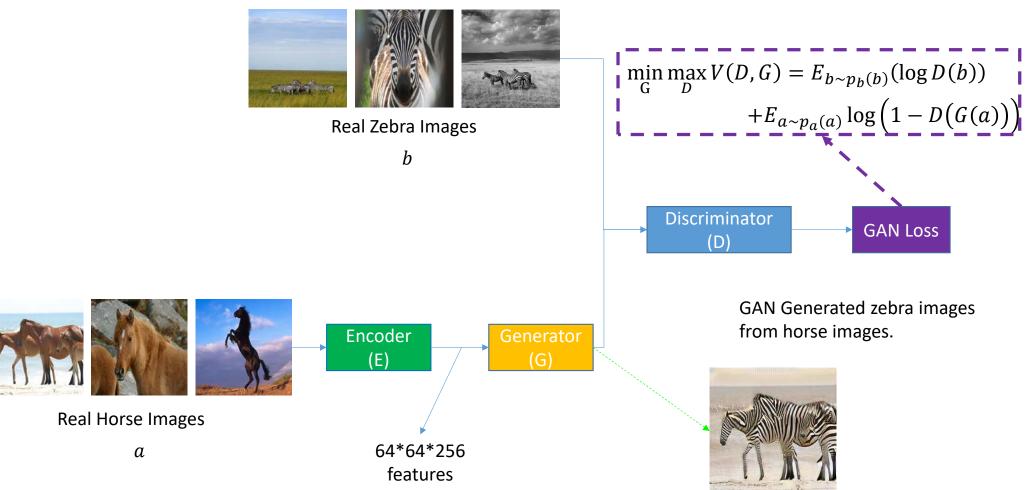
- Performance is significantly improved
- The generalization ability is much better than training with RGB images



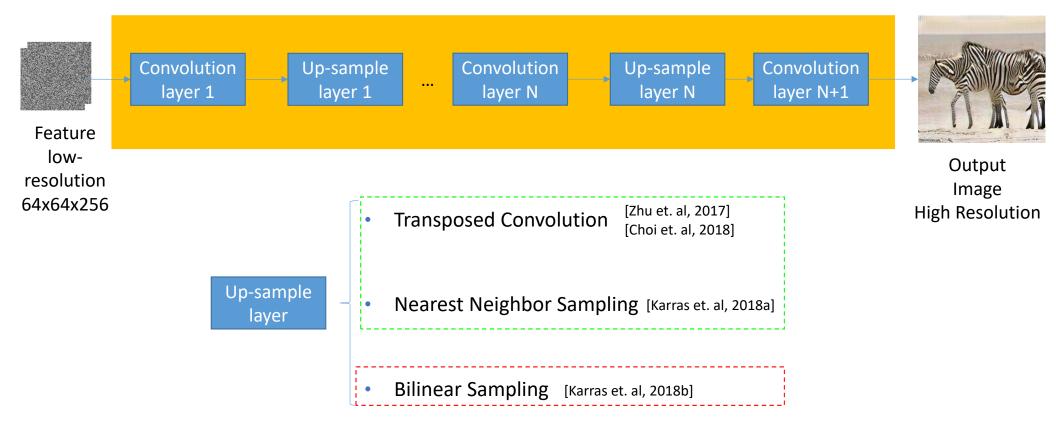
Explaining the Success of Spectrum Input

• Explore the signal processing model underlying the GAN synthesis pipeline

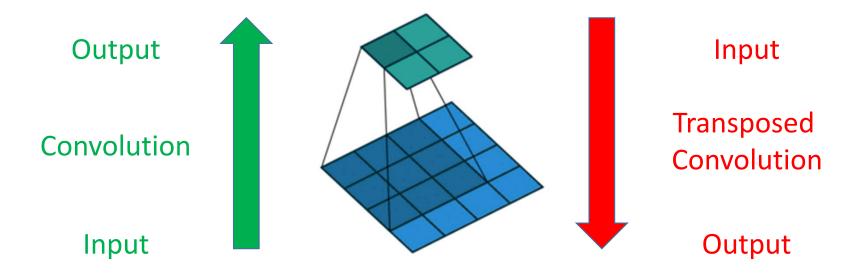
Revisit the Pipeline in Image2Image Transfer



Inside the GAN Generator

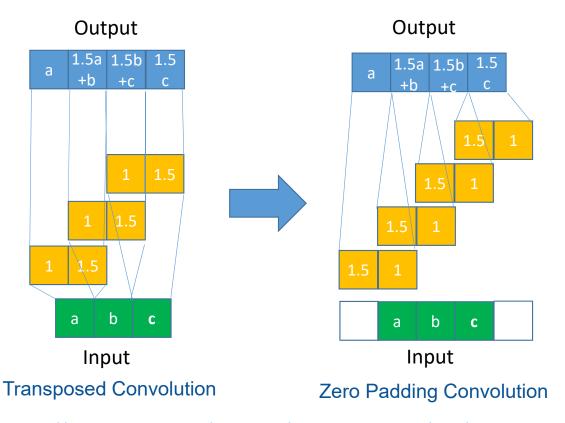


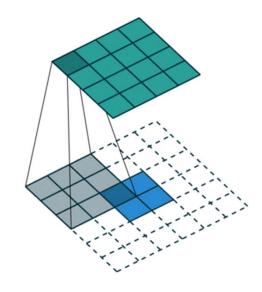
Convolution vs. Transposed Convolution (Deconvolution)



http://deeplearning.net/software/theano_versions/dev/tutoria_l/conv_arithmetic.html

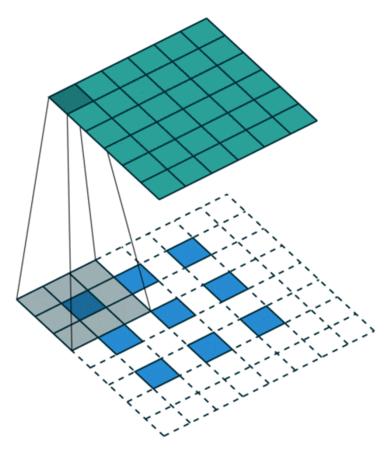
Transposed Convolution = Zero Padding Convolution





http://deeplearning.net/software/theano_versions/dev/tutoria_l/conv_arithmetic.html

Stride 2 Transposed Convolution for Up-sampling



Input: 3*3

Output: 6*6

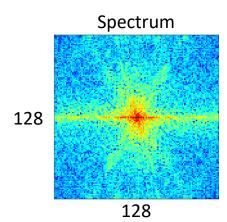
Kernel: 3*3

Stride: 2

http://deeplearning.net/software/theano_versions/dev/tutoria_l/conv_arithmetic.html

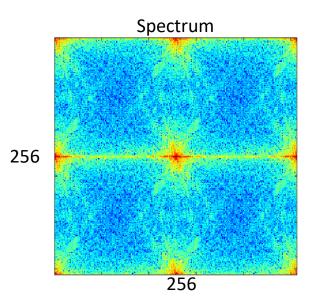
Zero insertion → spectrum artifact

Low-resolution image

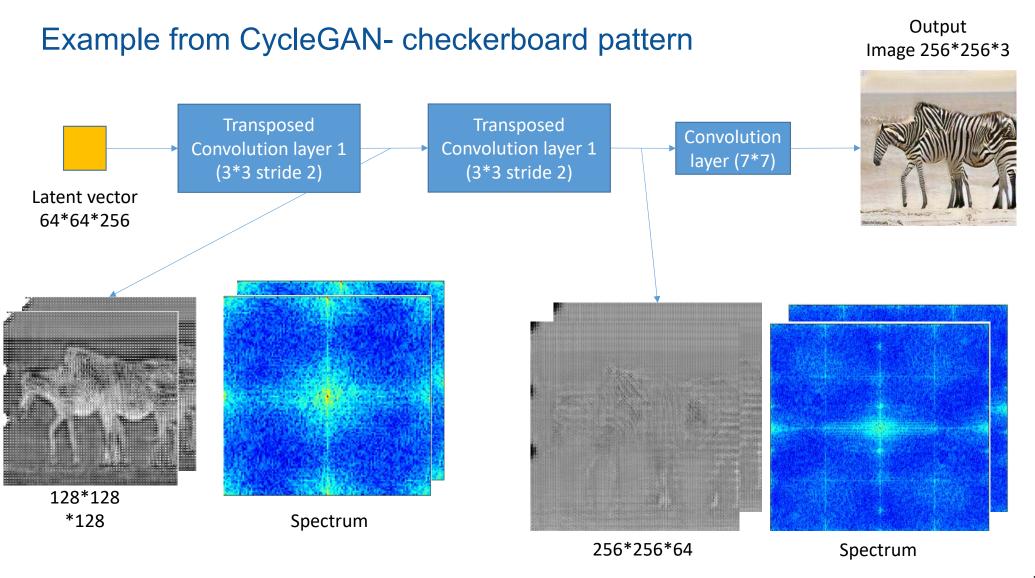


Zero Inserted image

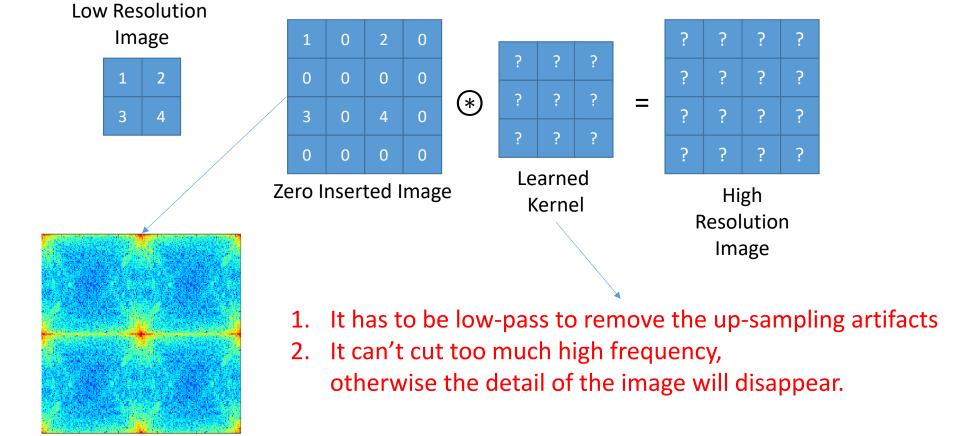
256



Stride 2 Low-resolution image 128 128 Stride 3 Stride 4

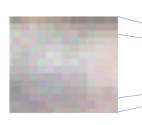


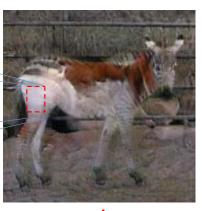
Effect of the Convolution Kernel



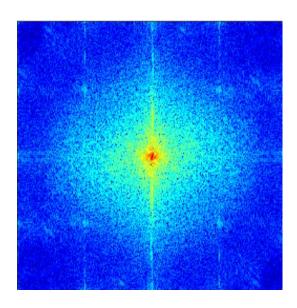
Spectrum of the Fake Image

Final Output

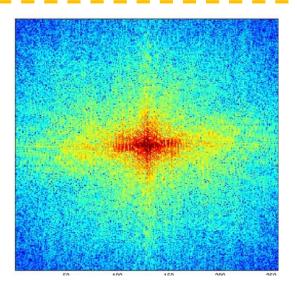




Fake



Real

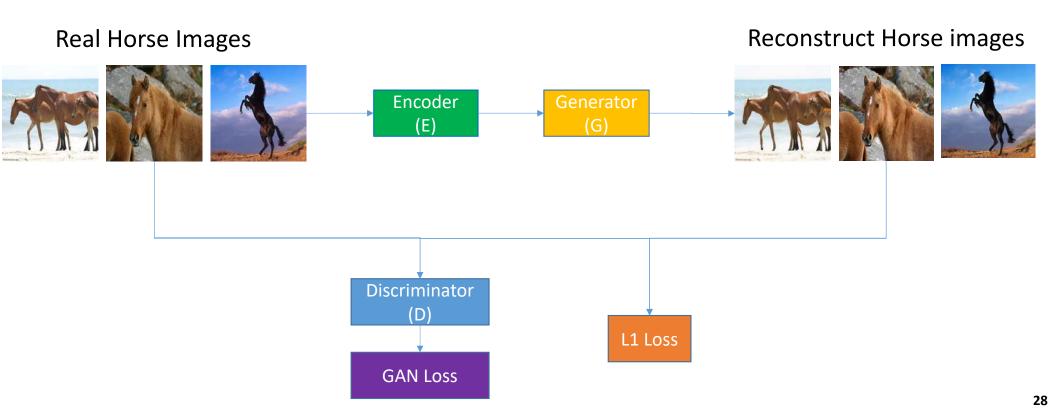


Goals:

- Are there "artifacts" induced in GAN image generation pipeline?
 - We explore a phenomenon and a theory related to up-sampling artifact.
- Are there ways to relax knowledge about the GAN models when training fake image classifier?
 - We propose a GAN pipeline emulator called AutoGAN.

AutoGAN – a GAN emulator for generating training samples

 Inspired by CycleGAN, we propose AutoGAN, which emulates the pipeline used in most GAN generation processes



AutoGAN

Real Horse Image

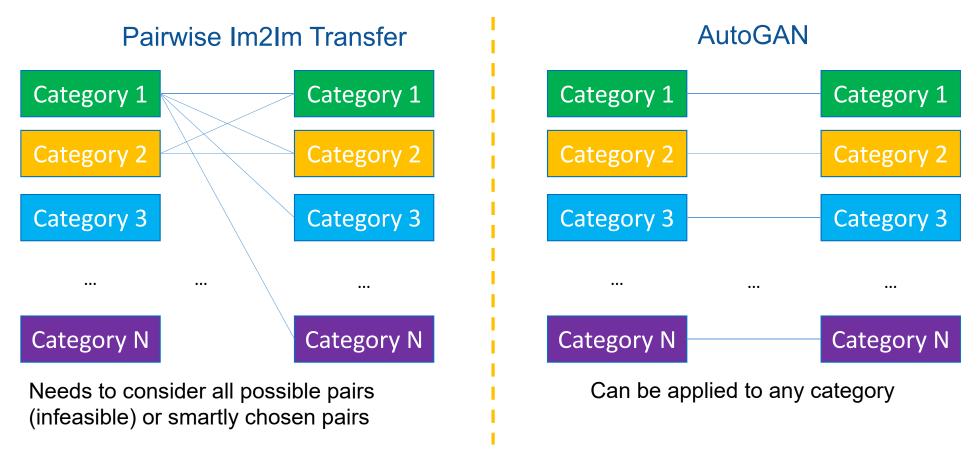
AutoGAN Reconstructed Horse image

Benefits of GAN Pipeline Emulator

- High output image quality
- Different components can be easily incorporated (e.g., different up-samplers)
- Can be applied to any semantic class

Pairwise Training vs. AutoGAN

 AutoGAN does not need category transfer pairs and does not require access to the pre-trained model.



Leave One Out Performance

Result

 Leave one out performs pretty well, but need a huge number of training data from diverse sources.

Training	Test										
	Horse- Zebra	Apple- Orange	Summer- Winter	Facades	Cityscape s	Мар	Ukiyo-e	Van Gogh	Cezanne	Monet	Avg.
image	95.2	90.0	97.9	76.4	85.1	92.7	98.0	91.6	96.3	97.0	92.0
Spectrum	99.6	99.4	99.7	100.0	100.0	50.0	100.0	98.0	100.0	99.4	94.6
Auto	92.7	67.4	98.4	94.8	50.6	51.8	68.7	97.1	57.4	92.5	77.1
Auto Spectrum	98.7	99.3	99.9	100.0	100.0	79.1	100.0	99.7	97.8	98.7	97.3

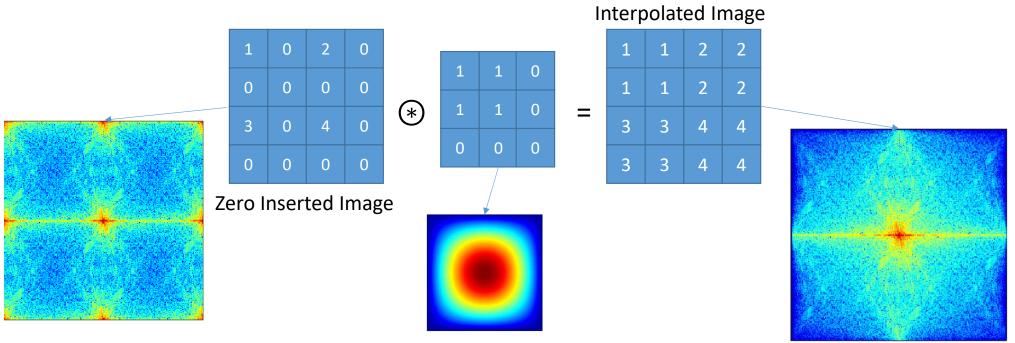
Trained with One Semantic Class Only

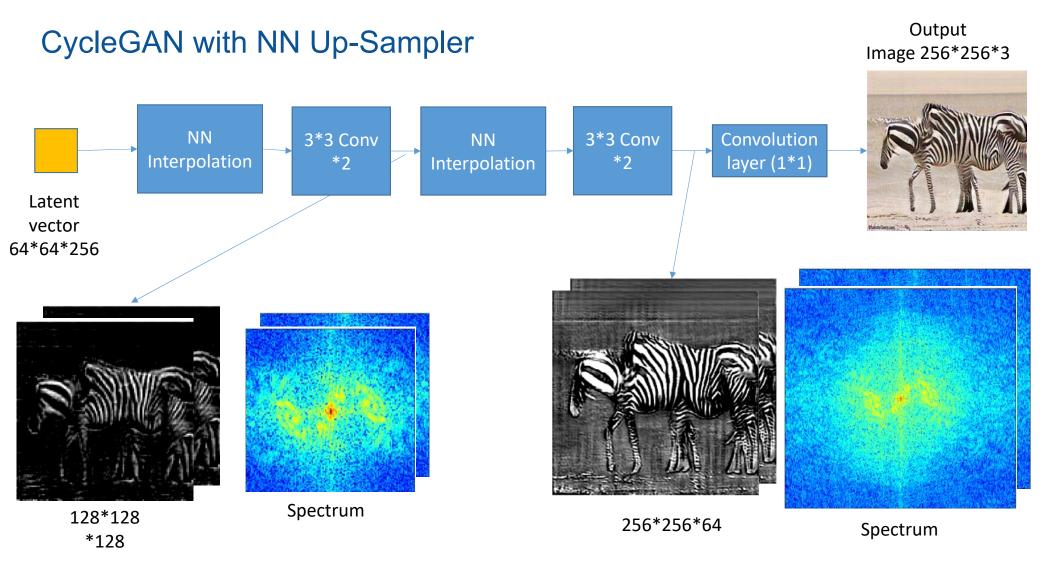
- Train with spectrum and AutoGAN works well for selective classes
- Conjecture: need classes that have sufficient spectrum coverage

Training	Test														
	Horse	Zebra	Summer	Winter	Apple	Orange	Facades	Cityscap es	Мар	Ukiyo-e	Van Gogh	Cezann e	Monet	Photo	Avg
Horse Auto Spec	99.2	99.6	100.0	98.7	98.8	98.2	100.0	99.9	59.1	100.0	99.0	99.9	97.6	99.5	96.4
Zebra Auto Spec	61.9	91.5	94.0	54.3	61.7	53.1	100.0	86.0	51.5	94.3	52.8	91.8	51.1	97.1	74.4
Summer Auto Spec	96.9	96.9	99.8	95.6	95.1	95.5	100.0	99.6	50.1	99.4	99.1	99.6	97.5	99.0	94.6
Winter Auto Spec	47.3	69.2	94.1	82.1	58.8	57.2	53.8	52.1	50.8	99.2	95.0	84.7	90.9	95.4	73.6
COCO Auto Spec	93.8	88.5	85.9	85.6	89.9	92.0	100.0	100.0	89.7	97.2	74.0	98.0	83.3	79.7	89.8

Does It Work for Different Up-sample Modules?

- Nearest neighbor interpolation
 - Widely used nowadays for up-sampling (Prog-GAN, GauGAN)
 - Can be viewed as zero inserting + low pass filter
 - Suffers less from checkerboard patterns [Odena, et al., 2016].





Up-sample Module Comparison

Nearest neighbor interpolation causes less checkerboard effect

Real Horse Image

Reconstructed Zebra image with TRANS convolution

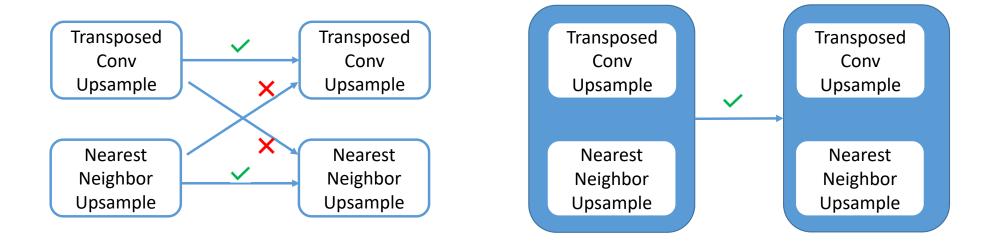
Reconstructed Zebra image with NN interpolation

Train with NN up-sampler and Test with NN up-sampler, One Class

 Spectrum based models still work well for NN up-sample, even if trained on one class only

	Test										
Training	Horse NN	Zebra NN	Summer NN	Winter NN	Apple NN	Orange NN	Avg				
Horse_NN_Spec	99.6	96.9	86.7	97.1	96.1	93.2	94.9				
Zebra_NN_Spec	100.0	99.6	96.5	99.3	92.2	90.9	96.4				
Summer_NN_Spec	96.2	91.2	99.6	99.8	87.2	85.0	93.2				
Winter_NN_Spec	96.2	96.5	100.0	100.0	93.4	90.3	96.1				

Generalization: GANs of different upsamplers



Generalization across different models

- [Nataraj et. al 2019] showed model trained with CycleGAN works well for StarGAN
- StarGAN and CycleGAN share the similar generator structure
- But model learned with cycleGAN (2 up-sampling modules) does not generalize well to GauGAN (5 up-sampling modules)

Toot	Method Train with CycleGAN								
Test	Image	Spectrum	Auto	Auto_Spectrum					
StarGAN	65.06	100.0	92.49	98.68					

Conclusions

- Typical up-sampling modules in GAN leave up-sampling artifacts in the generated images.
- Spectrum-based detectors seem to be able to reveal the artifacts
 - Training with spectrum input generalizes well even if trained with one calss only.
- We also propose GAN pipeline emulator AutoGAN, while emulates the up-sampling artifacts in GAN generated image.
 - Relax knowledge about GAN model
 - Does not need access to the GAN model or generated images

Conclusions

- Model trained with one up-sampling module does not generalize well to different up-sampling modules
 - But models trained with multiple modules work
- Model learned with similar up-sampling architectures works (CycleGAN vs. StarGAN), but not distinct models (e.g., GauGAN)