
Abstract

In this paper, we describe an algorithm for object recogni-
tion that explicitly models and estimates the posterior proba-
bility function, .  We have chosen a functional
form of the posterior probability function that captures the
joint statistics of local appearance and position on the object
as well as the statistics of local appearance in the visual world
at large. We use a discrete representation of local appearance
consisting of approximately 106 patterns. We compute an esti-
mate of  in closed form by counting the fre-
quency of occurrence of these patterns over various sets of
training images. We have used this method for detecting human
faces from frontal and profile views. The algorithm for frontal
views has shown a detection rate of 93.0% with 88 false alarms
on a set of 125 images containing 483 faces combining the MIT
test set of Sung and Poggio with the CMU test sets of Rowley,
Baluja, and Kanade. The algorithm for detection of profile
views has also demonstrated promising results.

1. Introduction

In this paper we derive a probabilistic model for object rec-
ognition based primarily on local appearance. Local appear-
ance is a strong constraint for object recognition when the
object contains areas of distinctive detailing. For example, the
human face consists of distinctive local regions such as the
eyes, nose, and mouth. However, local appearance alone is usu-
ally not sufficient to recognize an object. For example, a human
face becomes unintelligible to a human observer when the var-
ious features are not in the proper spatial arrangement. There-
fore the joint probability of local appearance and position on
the object must be modeled.

Nevertheless, representation of only the appearance of the
object is still not sufficient for object recognition. Some local
patterns on the object may be more unique than others. For
example, the intensity patterns around the eyes of a human face
are much more unique than the intensity patterns found on the
cheeks. In order to represent the “uniqueness” of local appear-
ance, the statistics of local appearance in the world at large
must also be modeled.

The underlying representation we have chosen for local

appearance is discrete. We have partitioned the space of local
appearance into a finite number of patterns. The discrete nature
of this representation allows us to estimate the overall statisti-
cal model, , in closed form by counting the
frequency of occurrence of these patterns over various sets of
“training” images.

In this paper we derive a functional form for the posterior
probability function  that combines these rep-
resentational elements. We then describe how we have applied
this model to the detection of faces in frontal view and profile.
We begin in section 2 with a review of Bayes decision rule. We
then describe our strategy for deriving the functional form of
the posterior probability function in section 3 and perform the
actual derivation in section 4. In section 5, we describe how use
training images to estimate a specific probability function
within the framework of this functional form. In section 6 and
7 we give our results for frontal face detection and profile
detection, respectively. In section 8 we compare our represen-
tation with other appearance-based recognition methods.

2. Review of Bayes decision rule

The posterior probability function gives the probability that
the object is present given an input image. Knowledge of this
function is all that is necessary to perform object recognition.
For a given input image region, , we decide whether
the object is present or absent based on which probability is
larger,  or , respec-
tively. This choice is known as the maximuma posteriori
(MAP) rule or the Bayes decision rule.  Using this decision
rule, we achieve optimal performance, in the sense of mini-
mum rate of classification errors, if the posterior probability
function is accurate.

3. Model derivation strategy

Unfortunately, it is not practically feasible to fully represent
 and achieve optimal performance; it is too

large and complex a function to represent. The best we can do
is choose a simplified form of  that can be reli-
ably estimated using the available training data.

Although a fully general form of  is intrac-
table, it provides a useful starting point for derivation of a sim-

P object image( )

P object image( )

P object image( )

P object image( )

x image=

P object x( ) P object x( ) 1 P object x( )–=

P object image( )

P object image( )

P object image( )

Probabilistic Modeling of Local Appearance and Spatial Relationships for Object
Recognition

Henry Schneiderman and Takeo Kanade
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Presented at CVPR98



plified probabilistic model. In our derivation, we take this
general form and apply successive simplifications to it until it
is in a computationally feasible form. At each stage of this der-
ivation we make our modeling decisions on the basis of domain
knowledge and intuitive preferences.

This strategy of derivation provides an explicit record of all
the representational simplifications made in deriving such a
functional form. We then know not only those relationships we
have modeled but those we have not modeled. For example, we
make the implicit modeling decision not to represent the joint
statistics of appearance across the full spatial extent of the
object. This simplification along with various others become
explicit through this derivation process.

4. Model derivation

In this section, we derive a functional form of the posterior
probability function. This functional form was derived with the
problem of frontal face detection in mind, but is generally
applicable to a wider range of objects.  For this reason, we
describe the specific modeling choices we make for face detec-
tion after we have described the general nature of the simplifi-
cation in each following section. Overall, we derive this
functional form by applying approximately 13 simplifications
and modifications to the general form of the posterior probabil-
ity function. Variations on these modeling choices for face pro-
file detection are described in section 7.

4.1. Notation

Throughout this document we make use of several nota-
tional conventions. Random variables are indicated in italics,
e.g., image.  When these random variables assume a specific
value, the value is not italicized, e.g., . Curly
braces, {}, indicate aggregates.  For example, {ai} represents
all ai: a1, a2, a3, etc. We designate the class of all visual scenes
that do not contain our object by the symbolobject.

4.2. General form of posterior probability function

The most general representation we consider is the poste-
rior probability function of the object conditioned directly on
the entire input image:

(1)

Where,  is the scalar intensity value (or color vector
value for a color image) at location (i, j) in theimage.

4.3. Size standardization

We first standardize the size of the object.  Rather than
model the object at all sizes simultaneously, we model the
object at one standard size.   This simplification allows us to
express the posterior probability function conditioned an image

region of fixed size, rregx creg:

(2)

where,  is the scalar intensity value at pixel location
(i, j) in theregion.

In order to detect an object at any position in an image, we
must then evaluate   for every overlapping
region of this size within the image boundaries.  Additionally,
to detect the object at any size, we must repeat this process
over a range of magnification scales of the original image.

We model faces that are normalized in size to 64x64.  This
size was chosen to be large enough to capture the detailed
appearance of a human face.

4.4. Decomposition into class conditional probabilities

Using Bayes theorem, we can decompose the posterior
probability function into the class conditional probabilities for
the object, , and non-object, ,
and the prior probabilities,  and :

(3)

where the unconditional probability of the image region,
, is given by:

(4)

This decomposition allows us to separately estimate each of
the class-conditional probability functions,
and  from object and non-object training
images, respectively. In the following sections we discuss how
we simplify the functional forms for these probabilities.

Furthermore, using Bayes theorem, Bayes decision rule can
re-written in an equivalent form as a likelihood ratio test:

(5)

Under this formulation we decide the object is present if the
likelihood ratio (left side) is larger than the ratio of prior proba-
bilities (right side). Otherwise we decide the object is not
present.

Often we have little knowledge of the prior probabilities.
By writing the decision rule this way all information concern-
ing the priors is combined into one term,λ. This term can be
viewed as a threshold controlling the sensitivity of the detector.

4.5. Decomposition into subregions

We decompose the input region into an aggregate of
smallersubregionsof fixed size, rsubx csub:
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(6)

where  contains two types of infor-
mation:pattern - the array of pixel intensities over the subre-
gion andpos -the subregion position with respect to the overall
region. We consider all overlappingsubregions within the
largerregion. For faces we usesubregions of size 16x16.

With these modifications, the class conditional probability
functions become:

(7)

where there are nsubssubregions in aregion.
We describe the advantages of this decomposition in sec-

tions 4.6.3 and 4.6.4.

4.6. No modeling of statistical dependency among
subregions

We do not model statistical dependency among subregions.
This simplification gives the following expression for the class
conditional probability functions:

(8)

Through these simplifications, our modeling requirements are
reduced to representing

 and
 that describe the joint behavior of sub-

region appearance and position.

4.6.1. Model complexity reduction

The choice of not modeling the statistical dependency
among subregions greatly reduces the complexity of the model.
To illustrate the extent of this simplification, let us assume that
a region is represented by an aggregate ofn subregionsand
each subregion can take onm possible values describing its
intensitypattern. The full statistical distribution for the object,

, is then modeled
over mn discrete events. In contrast, the distribution,

, is modeled overmn discrete events.

4.6.2. Loss of modeling power

Unfortunately, by not modeling this statistical dependency,
there are many relationships we cannot represent.   For exam-
ple, we cannot represent attributes that are similar across the
extent of the object, such as skin color on a human face.  We
cannot represent the structure in the brightness distribution
across the object that is larger in extent than a subregion.  For

example, on human faces the forehead is usually brighter than
the eye sockets [1]. We cannot represent any form of symme-
try. We cannot represent if all parts of a geometric figure are
connected [2].

However, this assumption does not impose a debilitating
penalty for the problem of face detection because local features
are salient and consistent among different faces, e.g., noses
look relatively similar from individual to individual and appear
in relatively the same position relative to the other facial
attributes.

The application of this assumption to the recognition of
other objects may not be as successful.  In particular, it could
be argued that many objects are more distinguished by overall
structure rather than individual features.  For example, on a
modern building, windows are distributed in a regularly spaced
arrangement against the uniform texture of the building mate-
rial. The distinguishing characteristics are not the individual
windows, nor the specific spacing of the window arrangement,
but simply the presence of some form of regular window spac-
ing.

4.6.3. Small alignment errors when matching

Using the subregion decomposition, we can accommodate
some degree of geometric distortion in the appearance of the
object. The alignment error between a full-size template and a
rotated version of the template will be quite significant -- see
figure 1. If we match individual subregions, the alignment error
will be much less -- see figure 2. Similarly, subregion-based

matching will reduce the alignment error for distortions in
aspect ratio and magnification.

4.6.4. Emphasizing distinct parts of the object’s appearance

The subregion decomposition provides a mechanism for
emphasizing distinctive parts of the object’s appearance over
less distinctive parts.  Let us consider the current expression for
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the likelihood ratio:

Distinctive areas on the object,subregionk, will have a large
value for  since
the occurrence of these patterns is much more frequent on the
object than in the world at large. Thus, such distinctive areas
contribute more to the overall product given above.

4.7. Projection of the subregion intensity pattern

We linearly project the subregion intensitypattern, onto a
lower dimensional space of dimension npr:

(9)

wherepattern is rewritten as a column vector.
The columns of the projection operator, A, are chosen to be

principal components computed from a sample ofsubregions
collected from training images of the object.

A linear projection was chosen because of its computa-
tional efficiency using fast Fourier transforms. We chose prin-
cipal components as basis functions because they minimize the
mean square reconstruction error with respect the training set
of object images.

For faces, we project the 16x16 subregion intensitypattern
onto a 12 dimensional space.  Below we show a set of principal
components displayed as 16x16 arrays.

Overall, these principal components capture 98.4% of the total
energy of their data set.

4.8. Sparse coding of projection

Typically, for any given pattern, its projection onto some of
the eigenvectors will be negligibly small. Therefore, we apply
sparse coding where for each pattern, we selectively represent
only the ntr largest responses among the npr eigenvectors.

For faces, we do not apply sparse coding to individual coor-
dinates but instead togroups of coordinates.  We first arrange
the 12 coordinates into 9 different groups.  Coordinates 1
through 6 are each assigned their own group.  The remaining
coordinates are grouped into pairs, 7 & 8, 9 & 10, and 11 & 12.
This assignment of groups partially equalizes the amount of
energy represented by each group.  Then for each pattern, we
select the response of the first group and the 5 groups that have
the largest responses among the remaining 8 groups.

4.9. Discretization

We quantize the sparse coded representation into a finite
number of patterns. Our expression for the class conditional
probabilities is now given by:

(10)

whereq1 can take on nq1 discrete values andq1 = Q1(pattern)
combines projection, sparse coding, and quantization.

For faces, each of the original coordinates in the projection
are quantized to a finite number of levels between 3 and 8.
Overall,q1 can take on nq1 = 3,854,120 different values. In fig-
ure 3 we illustrate how the successive operations of projection,
sparse coding, and quantization affect the appearance of an
image and the mean square pixel reconstruction error (MSE).

4.10. Decomposition of appearance and position

We decompose the class conditional probabilities into the
product of two distributions using the probability chain rule:

(11)

No further reduction is performed on  and
.  In the following sections we describe the simpli-

fications we use for representing  and
. Each of these distributions describes the

positional distribution of each subregion intensity pattern, x =
q1, within the overallregion.

4.11. Positional representation

In images of non-objects, there are no stable landmarks
from which we can define aregion-based coordinate system.
Therefore, we model the positional distribution as uniform:

(12)

In representing the positional distribution for objects,
, we reduce the resolution of subregion posi-

tion, by mappingpos to a new variable,pos’, over a coarser
resolution.

We also reduce the number of discrete patterns.  In doing
so, we first compute an estimate of  from the
training data of face images (see section 5).  We then select
those nest patterns that have the largest frequency of occur-
rence, where  nest << nq1. For these values ofq1 we explicitly
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estimate and smooth the distribution .  For
the remaining nq1 - nest values of q1, we model

 as a uniform distribution.
To reduce the number of patterns further, we group together

patterns whose smoothed distributions, , are
similar.  We use a simple clustering technique based on VQ [3]
to form these groups of patterns that have similar positional
distributions. The final form of this distribution becomes:

(13)

Where the reduction in the number of patterns is expressed
by q2 = Q2(q1) which maps the set of nest patterns to a smaller
set of nq2 composite patterns, represented by theq2.

For faces, we reduce the positional resolution of subregions
from 48x48 to 16x16. We estimate the spatial distribution for
nest= 300,000 of the original nq1 = 3.8M patterns.  We then
combine these patterns to form a smaller set of nq2 = 20,000
composite patterns. Below we show examples of

, for four different patterns (values ofq2):

4.12. Intensity normalization

We normalize the intensity over the entireregion to have
zero mean and unit variance. Since this normalization discards
information about the mean and variance of original image
region, it could be thought of as a small simplification to the
posterior probability function.

Normalization reduces a known form of variation in the
appearance of the object.  By reducing this variation, we can
obtain a better statistical estimate from a limited pool of train-
ing examples.

For faces, we compute the normalization coefficients only
from the portion of the input region that contains the face. We
perform this normalization separately on the left and right sides
of the inputregion, to compensate for situations in which oppo-
site sides of a face receive unequal amounts of illumination.

4.13. Multiresolution representation

We have only discussed the representation in the context of
one level of resolution. This largely limits us to representing
visual attributes that are the size of the subregion. To enhance
our representation we consider multiple levels of resolution.

We form separate submodels of the class conditional proba-
bility functions,  and , at
several scales of resolution and we do not model the statistical
dependencies among them.  Thus, the expressions for the class
condition probabilities become:

(14)

where  and aj scales the
region’s resolution and there are nmagn scales of resolution.

For face detection, we use three levels of resolution given
by, a1 = 1.0, a2 = 0.577, and a3 = 0.333 as shown below in fig-
ure 5.

4.14. Final form of Bayes decision rule

By fully substituting all simplifications of the class-condi-
tional probability functions into equation (5), the overall
expression for Bayes decision rule becomes:

(15)

5. Estimation

Equation (15) gives the final expression for the functional
form of the likelihood ratio. We now use labelled training
examples to estimate a specific likelihood ratio function within
the structure of this functional form.

5.1. Training set for frontal face detection

We formed training sets from 991 faces images and 1,552
non-face images.  We used the same set of images to train each
of the level of resolution within the model.  The magnification
of these images is scaled appropriately for each resolution
level.

To partially compensate for the limited number of face
images, we expanded this training set by generating synthetic
variations of these images.  For each face image we generated
120 synthetic variations in orientation, size, aspect ratio, inten-
sity, and background scenery.

5.2. Method of estimation

We break the estimation of the likelihood function into sev-
eral components.  For each scale of resolutionj, we first esti-
mate  and  directly from face and
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non-face training images, respectively.  The estimates of these
functions are then  substituted directly into equation (15).  We
then estimate  from the face training images
for nest values ofq1. We then derive  from

 by the procedure outlined in section 4.11.
 is then substituted into equation (15) giving

us the complete estimate for the likelihood ratio function.
There are several principles that are common to the estima-

tion of , and .
Their estimates are computed in closed form.  For

 and , we simply count how fre-
quently each value ofq1 occurs in the training data, using non-
face images and face images respectively.  Then for

,we count how frequently each pattern, x =
q1, occurs at each positionpos‘ in the image region. These are
maximum likelihood estimates and they are unbiased, consis-
tent, and efficient (satisfy Cramer-Rao lower bound)[8].

6. Testing results for frontal faces

Each row in table 1 shows our performance for a different
value of a detection threshold,λ' (closely related to the thresh-
old λ given in equation (15)), on the test set of Sung and Pog-
gio [4] (136 faces) excluding 3 images of line drawn faces. We
searched for all faces between the sizes of 18x18 and 338x338
by evaluating each input image at 17 levels of magnification.

Similarly, table 2 shows our performance on the combined test
sets of Sung and Poggio [4] and Rowley, Baluja, and Kanade
[5](483 faces) excluding 5 images of line drawn faces. We
searched each input image at 17 levels of magnification for
faces from size 18x18 to 338x338.

Table 3 shows our performance on three portions of the
FERET[7] face set consisting of subsets of 1000, 241, and 378
face images at profile angles of 0  (full frontal), 15 , and
22.5 , respectively. We searched each input image at 14 levels
of magnification for faces from size 22x22 to 235x235.

Moghaddam and Pentland [6] achieve a detection rate of 97%.
on this test set. False alarm data was unreported.

7. Face profile detection

The same theory has been tested for face profile detection.
There are several significant differences between our algorithm
for profile detection and our algorithm for face detection. For
profile detection we do not perform intensity normalization.
Instead of measuring absolute intensity across the subregion
(i.e. projection on to the first eigenvector for frontal faces), we
measure the difference in intensity between a subregion and its
neighboring subregions. This intensity information is quan-
tized into 3 levels. We then combine this intensity information
with result of sparse coding. In sparse coding we select the 4
largest projections among the 12 remaining eigenvectors.
Instead of quantizing these selected responses, we simply indi-
cate which group of 4 responses was selected, the sign of each

Table 1: Results on images from [4]

Schneiderman & Kanade (20
images)

Sung and Poggio [4](23 images)

Detection rate False alarms Detection rate False alarms

91.2% 12 84.6% 13

89.0% 3 79.7% 5

Table 2: Results on images from [4] and [5].

Schneiderman & Kanade(125
images)

Rowley, Baluja, and Kanade
[5] (130 images)

Detection rate False alarms Detection rate False alarms

93.0% 88 92.5% 862

90.5% 33 86.6% 79

77.0% 1 77.9% 2
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Table 3: Results on FERET[7] images

Schneiderman &
Kanade

Rowley, Baluja, and
Kanade[5]

Data set
Detection

rate
False

alarms
Detection

rate
False

alarms

0  set 99.6% 1 98.7% 3

15  set 100.0% 0 99.6% 0

22.5 set 99.7% 2 95.5% 3

Figure 6. Our results on a test image from [4]
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individual component, and which component is largest.
Below we show some preliminary results acquired for a

fixed value of the detection threshold. The double bar indicates
the front of the face:

8. Appearance-based methods for recognition

The representation described in this paper combines: joint
statistics of local appearance and position on the object, statis-
tics of local appearance in the world at large, a discrete non-
parametric probability distribution, and estimation by counting
the frequency of occurrence of a finite set of patterns in the
training data. Many other methods share one or two of these
concepts, but none, to our knowledge, have combined all of
them.

In particular, our method differs significantly from appear-
ance-based methods that emphasize global appearance over
local appearance. For example, the methods [4], [9], [10], [11],
model the full extent of the object at once. In particular the
methods [4], [10], [11] implicitly give equal weighting to dis-
tinctive and non-distinctive areas on the object.

There are several methods [5], [6], [12],[13], [14], which
capture the joint variation of local appearance and position on
the object. These methods all differ from our approach in that
they model the appearance of hand-selected features on the
object rather than modeling local appearance across the full
extent of the object. [5] captures local appearance through a
multilayer perceptron architecture with hidden units that have
localized support regions. However, this architecture rigidly
fixes the spatial relationships of these localized receptive fields.
[14] uses a Gaussian distribution to model the spatial variation
in feature location. Their model of the non-face statistics is
chosen completely by hand. [6] uses a mixture of Gaussians to
model the statistics of the local features on a face and does not
model the statistics of non-face appearance. The methods of

[12] and [13] both reduce the dimensionality of the local
regions by projection onto the principal components. Recogni-
tion is then performed by comparing a set templates represent-
ing the object to a set of image regions at the appropriate
spacing as specified by the object model.

The method of [15] uses a discrete representation and esti-
mation method similar to ours except they apply it to color
rather than local appearance. We choose a discrete, non-para-
metric, representation of the probability distribution function
because it greatly simplifies the estimation problem. Estima-
tion of multimodal continuous parametric distributions (e.g.
mixture models, multilayer perceptrons) is usually not possible
in closed form and requires iterative estimation procedures
which are not guaranteed to converge to a global optimum.
Continuous valued non-parametric methods such as nearest
neighbor and Parzen windows require storing all training
examples and exhaustive comparison of training examples to
each input. Because such methods require large training sets
for even moderately high dimensional spaces they are prohibi-
tive in storage and computational requirements.
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