

EE 6885 Statistical Pattern Recognition

Fall 2005
Prof. Shih-Fu Chang
http://www.ee.columbia.edu/~sfchang

Lecture 7 (10/3/05)

EE6887-Chang

7-1

Reading

- Problem with Dimensionality
 - Bellman, R.E. 1961. Adaptive Control Processes. Princeton University Press, Princeton, NJ.
 - G.V. Trunk, "A Problem of Dimensionality: a Simple Example," IEEE Trans-PAMI, July 1979.
- Nonparametric Estimation
 - DHS Chap. 4.1-4.3
- Homework #3, due Oct. 12th 2005
- Midterm Exam
 - Oct. 24th 2005 Monday

EE6887-Chang

7-2

Parameter Estimation

- ML Estimator, Given Data D Find $\hat{\theta} = \arg \max p(D \mid \theta)$
- Gaussian $\Rightarrow \hat{\mu} = (1/n)\sum_{k}\vec{x}_{k}$ $\hat{\Sigma} = (1/n)\sum_{k}(\vec{x}_{k}^{\theta} \mu)(\vec{x}_{k} \mu)^{t}$ Mixture of Gaussian $l = \sum_{n=1}^{N} \log(\pi_{0}N(x_{n}|\mu_{0},\Sigma_{0}) + \pi_{1}N(x_{n}|\mu_{1},\Sigma_{1}))$
- Mixture of Gaussian

$$l = \sum_{n=1}^{N} \log \left(\pi_0 N(x_n | \mu_0, \Sigma_0) + \pi_1 N(x_n | \mu_1, \Sigma_1) \right)$$

• EM for missing features

$$Q(\theta;\theta^i) = E_{D_b}[\ln p(D_g,D_b;\theta) \,|\, D_g;\theta^i] \qquad \text{Marginalize over the missing feature}$$

Bayesian Estimation: Treat θ as R.V., find the max. posterior

$$p(x | \mu) \sim N(\mu, \sigma^2)$$
 $p(\mu) \sim N(\mu_0, \sigma_0^2)$

$$\mu_{n} = \left(\frac{n\sigma_{0}^{2}}{n_{0}\sigma_{0}^{2} + \sigma^{2}}\right)\hat{\mu}_{n} + \frac{\sigma^{2}}{n\sigma_{0}^{2} + \sigma^{2}}.\mu_{0}$$

Application in Face Detection: joint spatio-appearance features, likelihood ratio, discretization

Problem with High Dimensionality

A Simple Example (Turk 1978)

$$p(x \mid \omega_1) = N(\mu_1, I)$$

$$p(x \mid \omega_2) = N(\mu_2, I)$$

where
$$\mu_1 = -\mu_2 = \mu = \{(1/i)^{1/2}, i = 1...n\}$$
 MAP classifier

assume equal prior
$$P(\omega_1) = P(\omega_2) = 1/2$$

assume equal prior
$$P(\omega_1) = P(\omega_2) = 1/2$$
 \Rightarrow decide ω_1 if $z = x^t \mu > 0$

■ Prob. Of Error $P(error \mid x) = min [P(\omega 1 \mid x), P(\omega 2 \mid x)]$

$$P_e = \int_{r/2}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

$$P_{e} = \int_{r/2}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-z^{2}/2} dz$$

$$r^{2} = \|\mu_{1} - \mu_{2}\|^{2} = 4 \sum_{i=1}^{n} (1/i) \to \infty \quad \text{when } n \to \infty$$

$$\therefore P_e \to 0 \text{ when } n \to \infty$$

 $\therefore \ P_e \to 0 \ \ \text{when} \ n \to \infty \qquad \text{If true parameters are known,} \\ \text{high dimensionality helps}$

EE6887-Chang

Problem with Finite Sample Estimation

• If true parameters are unknown, need to estimate from data samples x_1, x_2, \ldots, x_m

 $\hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} x_i$ $-x_i$ is used if sample comes from ω_2

• Prob. of error $P_e = \Pr(z = x^t \hat{\mu} > 0 \mid \omega_2)$

$$E(z \mid \omega_2) = E(x'(\frac{-x_1 - x_2 - \dots - x_m}{m})) = -\sum_{i=1}^{n} (1/i)$$

$$\text{var}(z) = \left(1 + \frac{1}{m}\right) \sum_{i=1}^{n} (1/i) + n/m$$

 $\Rightarrow (z - E(z))/(Var(z))^{1/2}$ becomes a normal dist. when $n \to \infty$

$$P_e = \int_{\gamma_n}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \quad \text{where } \gamma_n = \left[\sum_{i=1}^n (1/i)\right] / \operatorname{var}(z)$$

$$\to 0 \text{ when } n \to \infty \text{ and } m \text{ finite}$$

 $\therefore \lim_{n\to\infty} P_e = 0.5$

Curve of dimensionality (R.E. Bellman '61): convergence of any estimator to the true value of a smooth function defined on a space of high dimension is very slow.

EE6887-Chang

7-

Problem of High Dimensionality (Cont.)

• Prob. of error \rightarrow 0.5 when $n \rightarrow \infty$ and m finite

- Compare with random guess?
- If for 1-D unit interval, we need n₁ samples to estimate distribution, then we need n₁^K for the K-D unit hypercube

EE6887-Chang

7-6

Property of High-Dimensional Space

- If we want to estimate pdf p(x) over the hypercube R^d in d-dimensional space with n samples
- Interpoint distances are all large and roughly equal volume of hyper-rectangle containing a point and its nearest point $\Delta_1 \Delta_2 \dots \Delta_d = \delta$

 $\Delta_1 \Delta_2 \dots \Delta_d = 0$ note $0 \le \Delta_i \le 1$ and most likely some Δ_i are large

Therefore, $L_2 = \left[\sum_{i=1}^n (\Delta_i)^2\right]^{1/2}$ will be large for any pair of points

- Similarly, every point is close to at least one face of the hypercube. Why?
- Most samples are on the convex hull of the training set, i.e., most points can be considered as outliers for the rest.

Predicting a new point: extrapolation or interpolation?

EE6887-Chang

7-7

EE6887-Chang

7-8

Nonparametric Techniques

- Assumptions about the underlying distributions may be incorrect.
- General approach: estimate the density directly. $p(x) \simeq \frac{k/n}{V}$, where k: # points falling in R, V: volume of R form a sequence of R_n : $p_n(x) \simeq \frac{k_n/n}{V}$

form a sequence of R_n : $p_n(x) \approx \frac{k_n/n}{V_n}$ For $p_n(x) \to p(x)$, required conditions: $\lim_{n \to \infty} V_n = 0$; $\lim_{n \to \infty} k_n = \infty$; $\lim_{n \to \infty} k_n/n = 0$

- Two approaches:
 - 1: control and shrink the volumn V_n , e.g., $1/\sqrt{n} \rightarrow \text{Parzen window}$
 - 2: control k_n , e.g., $\sqrt{n} \rightarrow k_n$ nearest-neighbor method

EE6887-Chang