EE 6885 Statistical Pattern Recognition Fall 2005 Prof. Shih-Fu Chang http://www.ee.columbia.edu/~sfchang Lecture 4 (9/19/05) EE6887-Chang 4-1 - Reading - Bayesian Classifiers for Multi-Variate Gaussian - Textbook DHS Chapter 2.6 - Model Parameter Estimation - Textbook DHS Chapter 3 - Homework #1 due 2005-09-21, Wed EE6887-Chang #### **Discriminant Function for Gaussians** ■ If consider classification error as "loss" → mini error classification $$g_i(x) = \ln P(x \mid \omega_i) + \ln P(\omega_i)$$ For Gaussian $$\begin{split} P(\mathbf{x} \mid \boldsymbol{\omega}_i) &= N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \\ P(\mathbf{x} \mid \boldsymbol{w}_i) &= \frac{1}{\left(2\pi\right)^{d/2} \sqrt{|\boldsymbol{\Sigma}_i|}} \exp(\frac{-1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)) \\ g_i(x) &= -\frac{1}{2} (x - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1} (x - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \boldsymbol{\Sigma}_i \right| + \ln P(\boldsymbol{\omega}_i) \end{split}$$ EE6887-Chang 3-3 # Decision Boundaries for case I $\Sigma_i = \sigma^2 I$ Decision boundary between class i and j $$g_i(x) = g_j(x)$$ $g_i(x) = \frac{1}{\sigma^2} \mu_i^t x + w_{i0}$ $$\begin{split} w^t(x-x_0) &= 0 & w = \mu_i - \mu_j \\ x_0 &= \frac{1}{2}(\mu_i + \mu_j) - \frac{\sigma^2}{|\mu_i - \mu_j|^2} \ln \frac{P(\omega_i)}{P(\omega_i)}(\mu_i - \mu_j) \end{split}$$ • A hyperplane perpendicular to $\mu_i - \mu_j$ passing through point x_0 • If $P(\omega_i) = P(\omega_j)$ then $x_0 = \frac{1}{2}(\mu_i + \mu_j)$ i.e., midpoint between μ_i and μ_j EE6887-Chang Case 2 $$\Sigma_i = \Sigma$$ Hyper-ellipsoidal shapes of equal size and shape $$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma^{-1}(x - \mu_i) - \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\Sigma| + \ln P(\omega_i)$$ $$g_i(x) = w_i^t x + w_{i0}$$ a hyperplane with *bias* w_{i0} $$w_i = \Sigma^{-1} \mu_i^t$$ $w_{i0} = -\frac{1}{2} \mu_i^t \Sigma^{-1} \mu_i + \ln P(\omega_i)$ Decision boundary $$w^{t}(x-x_{0}) = 0 w = \Sigma^{-1}(\mu_{i} - \mu_{j})$$ $$x_{0} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{\ln[P(\omega_{i})/P(\omega_{j})]}{(\mu_{i} - \mu_{j})^{t}\Sigma^{-1}(\mu_{i} - \mu_{j})}(\mu_{i} - \mu_{j})$$ Not perpendicular to the line connecting the means EE6887-Chang 3-6 #### Case 2 decision boundaries ## Case 3 Σ_i = arbitrary $$2^{(x - \mu_i) \cdot Z_i \cdot (x - \mu_i)} \cdot 2^{\text{III} \cdot Z_i} \cdot 2^{\text{III} \mid Z_i \mid + \text{III}}$$ $$g_i(x) = x^t W_i x + w_i^t x + w_{i0}$$ where: $$W_i = -\frac{1}{2}\Sigma_i^{-1}$$ $W_i = \Sigma_i^{-1}\mu_i$ $$\mathbf{w}_{i0} = -\frac{1}{2} \mu_i^t \Sigma_i^{-1} \mu_i - \frac{1}{2} \ln \left| \Sigma_i \right| + \ln P(\omega_i)$$ - The decision surfaces are hyperquadratic. The geometry form can be - Hyperplane, pairs of hyperplanes, hypersphere, hyperellipsoid, hyperparaboloids, hyperhyperboloids EE6887-Chang 3-8 FIGURE 2.14. Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics. Conversely, given any hyperquadric, one can find two Gaussian distributions whose Bayes decision boundary is that hyperquadric. These variances are indicated by the contours of constant probability density. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc. EE6887-Chang ## Missing Features - Bayesian Classifier - Decide ω_1 if $P(\omega_1 / x) > P(\omega_2 / x)$ - But what if x is not completely observable? - If x₁ is missing, what's the most intuitive classification of ω if equal priors? EE6887-Chang 3-11 #### Missing Features (Cont.) • Let $x=[x_{g'}, x_b]$, x_g : good features, x_b : bad features compute $$P(w_i | x_g) = \frac{p(w_i, x_g)}{p(x_g)} = \frac{\int p(w_i, x_g, x_b) dx_b}{p(x_g)}$$ $$= \frac{\int p(x_g, x_b | w_i) p(w_i) dx_b}{\int p(x_g, x_b) dx_b}$$ Joint prob. of $(\omega_{\iota'} \ x_{g'} \ x_b)$ marginalized over x_b i.e. integrated over the x_b dimension. Q: which class on the right should we choose? EE6887-Chang ### **Noisy Feature** - Let $x=[x_{q}, x_b]$, x_q : good features, x_b : bad features - $x_b = x_t + \text{noise}$, x_t is the original feature being 'contaminated', x_t is 'hidden' - Given good features x_g and noisy feature x_b , find the right class ω_i . $$P(w_{i} \mid x_{g}, x_{b}) = \frac{p(w_{i}, x_{g}, x_{b})}{p(x_{g}, x_{b})} = \frac{\int p(w_{i}, x_{g}, x_{b}, x_{t}) dx_{t}}{\int p(x_{g}, x_{b}, x_{t}) dx_{t}} \quad \text{marginalized over } x_{t}$$ $$= \frac{\int p(x_{g}, x_{b}, x_{t} \mid w_{i}) p(w_{i}) dx_{t}}{\int p(x_{g}, x_{b}, x_{t}) dx_{t}} = \frac{\int p(x_{g}, x_{t} \mid w_{i}) p(x_{b} \mid x_{g}, x_{t}, w_{i}) p(w_{i}) dx_{t}}{\int p(x_{b} \mid x_{g}, x_{t}) p(x_{g}, x_{t}) dx_{t}}$$ $$= \frac{\int p(x_{g}, x_{t} \mid w_{i}) p(x_{b} \mid x_{t}) p(w_{i}) dx_{t}}{\int p(x_{b} \mid x_{t}) p(x_{g}, x_{t}) dx_{t}}$$ need noise distribution $p(x_b | x_t)$, likelihood $p(x_g, x_t | w_i)$, prior $p(w_i)$ Joint prob. of $(\omega_{t'} x_{q'} x_{b'} x_{t})$ marginalized over x_{t} EE6887-Chang