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= Reading

= Bayesian Decision Theory
= Textbook DHS Chapter 2.1 — 2.5

= Paper about image features:

= Y Rui, TS Huang, SF Chang, “Image retrieval: Current techniques,

promising directions and open issues,” - Journal of Visual
Communication and Image Representation, 1999

= Other papers (such as MPEG-7 features) on the course web site

= Homework #1 due 2005-09-21
= Basic Matlab sample code (course web site)
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A Very High-Level Stat. Pattern Recog. Architecture

Feature cati -
test + Preprocessing L I\-it"lsurLcmcm Classification
pattern h
Classification !
Training
training P ) F}-'fl_m]".‘x f e
+ Freprocessing - ‘.)\ JQC_IIOJ]. - [.t.ﬂlmni__‘,
pattern Selection
(From Jain, Duin, & ? T |

Mao, SPR Review, '99)

EE6887-Chang 2.3

Example image features: color histogram

= Color Spaces
= RGB — cube in Euclidean space

White
(255,255,255)

e R g= G b— B
R+G+B R+G+B R+G+B

0 otherwise

hRGB[r'g:b]ZZZ{l if 1g[m,n]=r,lg[m,n]=g,lg[m,n]=b

A color histogram represents the distribution of colors
where each histogram bin corresponds to a color in the
guantized color space
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Choose the right color space

= HSI space is closer to
human perception than RGB

= hue (color tone): the
circumference

= saturation : the radius
= Brightness (intensity) : the
vertical axis
= HSI color histogram

= quantize the HSI space and
count the number of pixels
in each bin
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Color Histogram (cont.)

= Advantages of color histograms
= Compact representation of color information
=« Issue of dimension, 64-D, 166-D, 1024-D etc

= Global color distribution
« Does not require segmentation
= Issue of invariance
= Histogram distance metrics
= Issue of correspondence to human perception
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Histogram Distance Metrics
= L1 distance Dy (G.i+D) = 3 H, ()~ Hius (D)
i

L2 distance D,Gi+D) = 3 Hi (i)~ Hia ()]
i

: _ (MG (]
Histogram Intersection Zj:"""( (D) Hia (D)

min[z H.+1(J')’ZH.(J')J
j j

Quadratic DIStance o, - 373" (,(j) - Hi(i (v i) (Hi (1) - Hia (i)
bk
a(é'l,sjz) s correlation between colors jy, j,. e.g. 1-d

Other histogram featur
= Edge histogram

= Issue: affected by quality of edge extraction, lighting,
noise etc

Jud2
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Bayesian Decision Theory P(x] o)

= Class-dependent feature probability i N
distribution P(x/w,) U A\
= Eg., . indoor, ,: outdoor A L8
P ) B

= Given x, which class o,is more likely? =
= Use probabilities P(e)=2/3

= Posterior =
(Likelihood x Prior) / Evidence

Plwy | ) = P(x | @) . P () / P(X)

j=2
= In case of two categories P(X) = Z P(x|@;)P(®;)
=L
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Review: Probability

= A, B are events
= E.g., sequence of coin tossing outcome

= Independent
P(ANB)=P(A)P(B)

N N
A, i=12,..,N,areindependent < P(ﬂ Aj) = H P(Aj)
j=1 j=1

= Conditional Probability of A given B

P(A B) : _P(BIAP(A)
P(B) Bayes Theorem: P(A|B) = P(B)

Total prob. theorm: P(B):P(U BNA J ZP(BM)P(A)

i=1

P(A|B) =

if A aredisjoint,i.e., ANA =®,Vi,j,j# ]

EE6887-Chang 2.9

Probability

= Independence & mutual exclusion (uncorrelated)

are different
Cov(A,B)=0 = uncorrelated

@ P(ANB) = P(A)P(B) = independent
independent = uncorrelated; but converse not true

= Probability of continuous random variable
= Cumulative distribution function (cdf)  Fx (X) = Prob{X e (-o0,x]}

= Probability density function (pdf) Py (x)=Prob{X = x}
_dF, (X)
X, Xy areindependent iff dx’ oo

n
P(X, <Xg X <X,) =] [P(X;, <x)i,,n<N,
k=1
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Probability

= Joint distribution  Fxy(xy)=Prob{X <xY <y}

2

= Joint density fy 069) = 5 Py (0,
= Marginal distribution

x’:xvy’:y
fx (0= fxy (X y)dy
R

= Conditional probability of x given y

fy (Xy) = % note : a function of both x & y
f f
Bayes theorem :f, (x|y) - M
f, (y)

Total prob. theorem:fx(x)zj f, (x| y)f, (y)dy
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Entropy: measure the degree of uncertainty
= Entropy (bits) H=-YRlog,R H=—]" p(x)log,p(x)dx

= Given same mean and
variance,
= Which has the max entropy? ~ H_,, =0.5+log,(v270)

Gaussian :

= For discrete x and arbitrary
function f(.)
= Processing never increases
entropy for discrete variables

= Because prob. cannot be split to
two different values after
processing

H(f(x))<H(x)
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Minimal Decision Risk A
= Given x, which class o;is more likely? ~____7 :
Which action? R
= Formulate as a minimal risk decision problem

» Let {w,, w,..., o }be the set of c states of nature
(or “categories”, “states”)

= Let {o,, a,..., a,}be the set of possible actions
= Example action: “decide class w,”

= Let A(«,; [ @;) be the loss incurred for taking action
o;when the true state of nature is o,

= Risk for taking action «; given x

R(@ %) = 3 4(a; | 0P, 1)
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Two-Category case
o, : deciding o,
o, : deciding o,
Ay = U [ @)

A(e; [ @) represents loss incurred for deciding o,
when the true state of nature is w;

Conditional risk:

Rle, [ x) = A,,P(0w, [ X) + A,,P(0, [ X)
R(ay [ x) = A,P(0; ] X) + A,.P(0, [ X)
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Minimal Risk Decision Rule

Decide w,, if R(e; [ x) < R(a, [ x)
i.e. Decide w,, if
(A1~ A1) Plx [ @) Pl@y) > (A1~ 255) P(x | @) Pw,)

i.e. Decide w;, P(x| @) N Ay - A .P(wz)

P(x|w,) Apn =4y Play)
w IfA,,=2,,=1,2,,=4,,=0, i.e., loss = ‘classification error’
P(x|@) _ P(@)
P(x|®,) " P(a)’

Max A Posterioi (MAP) classifier
P(x|) P(@]%)

Decide a,, if

i.e. P(@ | x) > P(w, | X)

Threshold =0-5——~— \
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FIGURE 2.1, Hypothetkcal clss-conditional probsbility demity funclions. show the
sabiabilivg densite f ousuring

Bayesian Classification Rule (Contd.)

= Decide o, if P(w, [ X) = P(w, [ x);
otherwise decide w,
= Bayesian Classification Error
P(error [ x) =

min [P(wo, [ x), P(o, [ X)]

P(x| »)

ML classifier

P(x|@)
P(x|,)

(Likelihood Ratio)

Decide a,, if

>1, i.e. P(x| @) > P(X| @)
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