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EE 6885 Statistical Pattern 
Recognition

Fall 2005
Prof. Shih-Fu Chang

http://www.ee.columbia.edu/~sfchang

Lecture 15 (11/16/05)
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Today’s lecture
SVM with kernel, error bounds

Paper:
Christopher J.C. Burges, “A Tutorial on Support Vector Machines for 
Pattern Recognition,” Data Mining and Knowledge Discovery 2, 121-167, 
1998.

Guest Lecture: Application of SVM in video stream 
concept detection
Project data and guideline announced. Due Dec 12.
Next Lecture: Nov. 21st Monday, Long lecture, starts 
at 12:20pm
Final Exam

Dec. 16th Friday 1:10-4pm, Mudd Rm 644
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Support Vector Machine (tutorial by Burges ‘98)
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1hyperplane ( ) : 1 t
iH H b+ + =+w x

Two parallel hyperplanes defining the margin

2hyperplane ( ) : 1 t
iH H b− + =−w x

Margin: sum of distances of the closest points to the separation plane 

margin = 2 / w Best plane defined by w and b
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0α >

0α =

 if 0,  is on  or  and is a support vectori i H Hα + −> x

Weight sum from positive class =
Weight sum from negative class
Direction of w:
roughly from negative 
support vectors to positive ones
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KKT conditions (iff) for separable case

How to compute w and b?
How to classify new data?

w
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Non-separable

Lagrange multiplier: minimize

 if 1,  then  is misclassified (i.e. training error)i ixξ >

Ensure positivity

Add slack variables
iξ

New objective function
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All the points located in the margin gap or 
the wrong side will get i Cα =

What if C increases?

i Cα =

0 i Cα< ≤

and  both b ξ ↓

When C increases, samples with errors get more weights
better training accuracy, but smaller margin
less generalization performance

after C increases
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Generalized Linear Discriminant Functions
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Include more than just the linear terms
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In general

Example

Shape of decision boundary
ellipsoid, hyperhyperboloid, lines etc
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Data become separable in higher-dimensional space
learning parameters in high dimension is hard 
(curse of dim.)
instead, try to maximize margins SVM
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Non-Linear Space
Map to a high dimensional space, 
to make the data separable
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Find the SVM in the high-dim space (embedding space)

Luckily, we don’t have to find 
1

( ) nor ( ) 
l
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We can use the same method to maximize LD to find iα
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Instead, we define kernel ( , ) ( ) ( )i iK =Φ ⋅Φs x s x
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Some popular 
kernels

Cubic polynomial separable non-separable

polynomial

Gaussian Radial 
Basis Function (RBF)

sigmoidal
neural network
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Error bound based on VC dimension (Vapnik ’95)

Risk: expectation of loss
1( ) ( , ) ,   where  is the classifier model parameter
2 i iR E y fα α α
⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

x

VC confidence
:  VC dimension, capacity

 :   size of the training set 
h
l

VC dim of hyperplane 
in Rn is (n+1)

( ) :  empirical risk for a specific classifier over a training/test setempR α

loss

with probability (1- )η
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A tighter error bound of SVM

[# of support vectors] [# of support vectors][ ( )]
number of training samples ( -1)

E EE P error
l

≤ =

( 1) for trainingl−

1 testing data

rotate 
data partition

Leave one out rotation

( ) :  risk (expected test error) for a learned classifier trained on -1 samplesP error l
[ ( )]:  expected risk over all choices of training set of -1 samplesE P error l

[# of s.v.]: expected # of s.v. over all choices of training set of size E l

First, train a SVM over l samples
In each rotation, re-train the SVM over the l-1 samples, test on the remaining data
if the test sample is not SV, then SVM does not change and there is no error. 
Otherwise, there might be an error.
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Potential use and issue of the error bound

leave-one-out

VC bound

Measured test error
(actual risk)

Leave-one-out bound is tighter than VC bound in this 
experiment (NIST digit classification)
But VC bound ahs better predictive power for selecting a good 
classifier (machine)

Scale the actual risk by 100

2 2( ) / 2( )K e σ−= x-yx, y How to determine the best sigma value?
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Applications (Active SVM)
0,    support vectort

i ib+ =w x x

0t
j b+ =w x

Space for weight w

Constraint added 
by the new data

In image retrieval
first train a SVM from labeled data
now in interactive retrieval
select a new sample and present it to user
user label the new data
use the new label to re-train the weight w
which sample to choose?

Choose the un-labeled sample that is closest to the 
current separation plane.  Why?


