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Reading
= DHS Chap. 5.11

= Paper:
Christopher J.C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Mining and Knowledge Discovery 2, 121-167, 1998.

Homework #6 assigned today
= Due Nov. 16t

Project data will be available this week
Class schedules

= No classes
= 11/7 (M, Uni. Holiday), 11/9 (W), 11/14 (M)

= Long lectures (start at 12:20pm)
= 11/2 (today), 11/16 (W, next class), 11/21 (M)

= Back to normal afterwards
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Linear Discriminant Classifiers
g(x)=w'x+w, = find weight w and bias w,

1 w,
= Augmented Vector (4
v=|tl=|%] a- W°]= “ = g(x) = g(y)=aly
: W :
X4 W,

map y to class w, if g(y)>0, otherwise class w, a-space

= Design Objective a‘yi>b, vy,

= Each y, defines a half plane in the weight space (a).

= Note we search weight solutions in the a-space.
A
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Minimal Squared-Error Solution
Objective: a'y,=h, Vy, "
n 1{ Training sample matrix

. _ tv — D)2 y
= define J, =) S (a'y; —b) Y="2|  dimension: n x (d+1)

i=1
J, =|Ya—b| = (Ya—b)'(va—b) y

V,J, =2Y'(Ya—b)=0

if Y'Y is nonsingular =a= (YtY )_1Ytb —Y'p pseudo-inverse

= Example
training samples: class w; : (1,2)",(2,0)' class w,: (3,2, (2,3)'
1 1 2 1
y_|t 20 1 findY", then computea” =Y'b
b=
-1 -3 -1 1
-1 -2 -3 1
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Support Vector Machine (tutorial by Burges '98)

= Look for separation plane with
the highest margin

Decision boundary
Hy: wx+b=0

= Linearly separable

WX, +b>+1 Vx; inclassw, i.e. y,=+1 N Htargin
w'x, +b<—1 Vx inclassw, ie. y,=-1
Inequality constraints :  y,(w'x; +b)—1>0, Vi
= Two parallel hyperplanes defining the margin
hyperplane H,(H,) :w'x, +b=+1
hyperplane H,(H_) :w'x, +b=—1
= Margin: sum of distances of the closest points to the separation plane

margin = 2/||W|| = Best plane defined by w and b
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Finding the maximal margin

subject to inequality constraints

P AR
minimize =|w| _
2 y,(W'x; +b)—1>0 i=1---1

= Use the Lagrange multiplier technique for the constrained opt. problem

minimize L, w.rt. w and b maximize L, w.rt.w and b
1 |
L, :E"W"z_gai(yi(wtxi +b)—1) Za ——ZZQ oYY % X
i= i=1l j=1
a; >0 with conditions :
dL |
dW 0 = W= Ea y| i Zai yi :O
" i=1 Quadratic
db -0 = Za y,=0 o, >0 Programming

Primal Problem ¢ | Dual Problem

= Prime and Dual have the same solutions of w and b
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KKT conditions (iff) for separable case

a *
2t = Yo =0 v=1md — W=y
» : i—1

i
Qo - a>0
Fplr=—2_ =10

y,;()q-w—l—?b)—lz 0 i=1,0
a; > 0 Vi
ci(yi(wx; +b)—1)= 0 Vi
= Weight sum from positive class =
Weight sum from negative class

= Direction of w:
roughly from negative
support vectors to positive ones

'u-'f'.r: +b=41

if o, >0, x; isonH, orH_ and is a support vector

= How to compute w and b?
= How to classify new data?
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Non-separable

= Add slack variables fi

Xi*w+b > +1-& fory; =+1
Xi-w+b < —14+¢& fory; =-—1
& > 0Vi.

if & >1, then x; is misclassified (i.e. training error)
Lagrange multiplier: minimize

Lp=3IWIP+C Y& — Y aulunlon - w0 — L+ £ = Yt

N J
Y

New objecfive function Ensure positivity
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KKT Conditions for non-separable Solutions

OLp
gful:=wv_2a£yi$iv=0 a¢; =C-a—p=0
T i yi(xi-w+b)—1+€iig
W=—Zz_:a£yi=0 j‘:;o
ui =0
ai{yi(xi-w-f—b)—l—kéi}:o
pibi =10

If 0<e, <C, then & =0:x; isonH, orH,

If ,=C,
then & >0 : x; is inside the margin region or on the wrong side
or £=0:x isonH, orH,
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= All the points located in the margin gap or
the wrong side will get ¢ =C

What if C increases?

b and ¢ both |

o]
L ]
b .
W 0<q <C
o =C \ after Cincreases

= When C increases, samples with errors get more weights
= better training accuracy, but smaller margin

= less generalization performance
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Generalized Linear Discriminant Functions

= Include more than just the linear terms
g(x) =w, +ZW.X. +ZZWUXIXJ = W, + WX+ X" Wx

i=1 j=1
= Shape of deC|S|0n boundary

= ellipsoid, hyperhyperboloid, lines etc
p

= Ingeneral g(x)= Zai y.(x)=a'y
i1

= Example
9(x) =& +ax+ax’ 9(xX) = aX, +8,%, +axX,
=la a all x ¥ =@ & &l x xx

= Data become separable in higher-dimensional space

= learning parameters in high dimension is hard
(curse of dim.)

= instead, try to maximize margins = SVM
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Non-Linear Space

m.2
@:R?— #. Map to ahigh dimensional space, (x) = (\/5;132 )
to make the data separable 3

= Find the SVM in the high-dim space (embedding space)
9(x) = Za y,®(s,) - ®(x)+b

= Luckily, we doW't have to find ®(s;) nor Zoz y.®(s,)
i=1

= Instead, we define kernel K(si X)) = CI)(Si)-q)(X)
N

=g(x)= Za'yiK(SnX) +b
=1
= We can use the same method to maX|m|ze Lyto find ¢

Za D) IR LERCH

|1Jl

:Zai 7lzzaiajyiyjK(Xi' Xj)
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K(x,y)=(x-y+1)» polynomial
Some popular
Gaussian Radial

ke I‘ne|S K(x,y)= emI-yIF /2 Basis Function (RBF)

K(x,y) = tanh(kx-y —4§) sigmoidal
neural network

separable  Cubic polynomial  non-separable

Error bound based on VC dimension (vapnik '95)

= Risk: expectation of loss

R(a)=E , Where « is the classifier model parameter

Sy = txi0)

R.np (@) 1 empirical risk for a specific classifier over a training/test set

R(a) < Rompla) + \/ (Wog(?lfh) +ll) - log(n/4))

VC confidence

h: VC dimension, capacity 14
| : size of the training set 12 ’
p - /...z'
= VC dim of hyperplane & -
. - 08
in R is (n+1) 5K . —( § /
o - > 08| /
.".’
04 ."';
) ‘ -‘,’ J;": 02 01 02 03 04 05 06 07 08 09 1
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A tighter error bound of SVM

= Leave one out rotation 1 testing data ) °
L]
| (I=1) fortraining (i -
-
rotate — .

data partition

= First, train a SVM over the / samples

= In each rotation, re-train the SVM over the I-1 samples

= if the test sample is not SV, then SVM does not change and there is no error.
E[# of support vectors]

E[P(erron)] < —
number of training samples

P(error): risk (expected test error) for a learned classifier trained on | -1 samples
E[P(error)]: expected risk over all choices of training set of | -1 samples

E[# of s.v.]: expected # of s.v. over all choices of training set of size |
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Potential use and issue of the error bound

Scale the actual risk by 100

07 07
b=
E —
3 06 S 5 0.65
-] " =
%) - s -
g o051 3 06 -
% \ VC bound E | P
S 04 g 085 | s
4] L /./
z 03 < 05 g
x 1 .g | v o
= 0.2 \ o 045 l Pl e
&« | leave-one-out & i P
3 o1 AN > 04 \
< —~————— .. \

0.35 ¥
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o
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Sigma Squared
actual risk VC bound has good
predictive power
= Leave-one-out bound is tighter than VC bound in this
experiment (NIST digit classification)

= But VC bound ahs better power for selecting a good classifier
(machine)
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Applications (Active SVM)

= Space for weight w \ Wix, +b=0, X, support vector
>§ .)K = Constraint added

by the new data

W‘xj +b=0

= Inimage retrieval
= first train a SVM from labeled data
= NOw in interactive retrieval
= select a new sample and present it to user
= user label the new data
= which sample to choose?

=  Choose the un-labeled sample that is closest to the
current separation plane
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