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EE 6885 Statistical Pattern 
Recognition

Fall 2005
Prof. Shih-Fu Chang

http://www.ee.columbia.edu/~sfchang

Lecture 14 (11/02/05)
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Reading
DHS Chap. 5.11
Paper: 
Christopher J.C. Burges, “A Tutorial on Support Vector Machines for Pattern 
Recognition,” Data Mining and Knowledge Discovery 2, 121-167, 1998.

Homework #6 assigned today
Due Nov. 16th

Project data will be available this week
Class schedules

No classes
11/7 (M, Uni. Holiday), 11/9 (W), 11/14 (M)

Long lectures (start at 12:20pm) 
11/2 (today), 11/16 (W, next class), 11/21 (M)

Back to normal afterwards
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Linear Discriminant Classifiers 
find weight  and bias ow⇒ w

Augmented Vector
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0( ) tg w= +x w x

( ) ( ) tg g⇒ = =x y a y

1 2map  to class  if ( )>0, otherwise class gω ωy y

Design Objective

Each yi defines a half plane in the weight space (a).
Note we search weight solutions in the a-space.

t >b,    i i∀a y y

a-space
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Minimal Squared-Error Solution
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dimension: n x (d+1)

Training sample matrix

 =2 ( ) 0t
sJ Y Y∇ − =a a b

if  is nonsingulartY Y pseudo-inverse( ) 1 †t tY Y Y Y
−

⇒ = =a b b

Example

1 2training samples:    :  (1, 2) , (2,0)      : (3,1) , (2,3)t t t tclass classω ω
1 1 2
1 2 0
1 3 1
1 2 3
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b
† * †find , then compute Y Y=a b

tObjective:  =b,    i i∀a y y
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Support Vector Machine (tutorial by Burges ‘98)

0

 
:   0t

Decision boundary
H b+ =w x

Look for separation plane with 
the highest margin

Linearly separable

1

2

1     in class   i.e.  1

1     in class   i.e.  1

Inequality constraints :     ( ) 1 0 ,   

t
i i i

t
i i i

t
i i

b y

b y

y b i

ω
ω

+ ≥+ ∀ =+
+ ≤− ∀ =−

+ − ≥ ∀

w x x

w x x

w x

1hyperplane ( ) : 1 t
iH H b+ + =+w x

Two parallel hyperplanes defining the margin

2hyperplane ( ) : 1 t
iH H b− + =−w x

Margin: sum of distances of the closest points to the separation plane 

margin = 2 / w Best plane defined by w and b
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Finding the maximal margin

Use the Lagrange multiplier technique for the constrained opt. problem
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Primal Problem
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Dual Problem

Prime and Dual have the same solutions of w and b

Quadratic 
Programming

minimize  . . .  and pL w r t bw
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maximize  . . .  and DL w r t bw

0iα ≥
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0α >

0α =

 if 0,  is on  or  and is a support vectori i H Hα + −> x

Weight sum from positive class =
Weight sum from negative class
Direction of w:
roughly from negative 
support vectors to positive ones

*

1

l

i i i
i

yα
=

=∑w x

KKT conditions (iff) for separable case

How to compute w and b?
How to classify new data?

w
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Non-separable

Lagrange multiplier: minimize

 if 1,  then  is misclassified (i.e. training error)i ixξ >

Ensure positivity

Add slack variables
iξ

New objective function
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KKT Conditions for non-separable Solutions

1 2

If  ,  
then 0 :  is inside the margin region or on the wrong side
or   0  :  is on  or 

i
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1 2If  0< ,  then 0 :  is on  or i i iC H Hxα ξ< =
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All the points located in the margin gap or 
the wrong side will get i Cα =

What if C increases?

i Cα =

0 i Cα< <

and  both b ξ ↓

When C increases, samples with errors get more weights
better training accuracy, but smaller margin
less generalization performance

after C increases
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Generalized Linear Discriminant Functions
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Include more than just the linear terms

0 0
1 1 1

( )
d d d

t t
i i ij i j

i i j

g w w x w x x w
= = =
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In general

Example

Shape of decision boundary
ellipsoid, hyperhyperboloid, lines etc
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Data become separable in higher-dimensional space
learning parameters in high dimension is hard 
(curse of dim.)
instead, try to maximize margins SVM
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Non-Linear Space
Map to a high dimensional space, 
to make the data separable

1 1 1

1 1 1
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Find the SVM in the high-dim space (embedding space)

Luckily, we don’t have to find 
1

( ) nor ( ) 
l

i i i i
i

yα
=

Φ Φ∑s s

We can use the same method to maximize LD to find iα
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Instead, we define kernel ( , ) ( ) ( )i iK =Φ ⋅Φs x s x
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Some popular 
kernels

Cubic polynomial separable non-separable

polynomial

Gaussian Radial 
Basis Function (RBF)

sigmoidal
neural network
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Error bound based on VC dimension (Vapnik ’95)

Risk: expectation of loss
1( ) ( , ) ,   where  is the classifier model parameter
2 i iR E y fα α α
⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

x

VC confidence
:  VC dimension, capacity

 :   size of the training set 
h
l

VC dim of hyperplane
in Rn is (n+1)

( ) :  empirical risk for a specific classifier over a training/test setempR α
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A tighter error bound of SVM

[# of support vectors][ ( )]
number of training samples

EE P error ≤

( 1) for trainingl−

1 testing data

rotate 
data partition

Leave one out rotation

( ) :  risk (expected test error) for a learned classifier trained on -1 samplesP error l
[ ( )]:  expected risk over all choices of training set of -1 samplesE P error l

[# of s.v.]: expected # of s.v. over all choices of training set of size E l

First, train a SVM over the l  samples
In each rotation, re-train the SVM over the l-1 samples
if the test sample is not SV, then SVM does not change and there is no error.

14-16EE6887-Chang

Potential use and issue of the error bound

leave-one-out

VC bound

actual risk VC bound has good 
predictive power

Leave-one-out bound is tighter than VC bound in this 
experiment (NIST digit classification)
But VC bound ahs better power for selecting a good classifier 
(machine)

Scale the actual risk by 100
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Applications (Active SVM)
0,    support vectort

i ib+ =w x x

0t
j b+ =w x

Space for weight w

Constraint added 
by the new data

In image retrieval
first train a SVM from labeled data
now in interactive retrieval
select a new sample and present it to user
user label the new data
which sample to choose?

Choose the un-labeled sample that is closest to the 
current separation plane


